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An exact solution of the wave equation is found for a form of one-dimensional
potential energy which may be of use in discussing polyatomic molecular vibrational
energies. An example of its use is given in an analysis of the vibration of the nitrogen
in the ammonia molecule. The potential energy for this atom has two minima a dis-
tance 2x apart, separated by a "hill" of height H. The values of x and H are not
known directly from band spectral data, and are needed for a full analysis of the
spectrum. By joining two potential curves of the sort dealt with in the first part of
this paper in a symmetric manner, a curve simulating that for the nitrogen atom in
ammonia was formed. It was found that for certain values of the constants fixing
this curve, the allowed vibrational energies were the same as the experimentally deter-
mined values for ammonia. The corresponding value of x was 0.38A, and that of H
was —,

' electron-volt. These values are probably near the correct values of x and H for
ammonia.

N THE course of the study of polyatomic molecules one encounters poten-
- - tial functions of a form considerably different from those used in atomic
or diatomic molecular problems. A perturbation method using any of the
usual exact solutions of the Schrodinger equation would usually involve per-
turbation energies too large to give good results.

One method of obviating this difhculty is the use of the Wentzel-Kramers-
Brillouin method. Another is to develop new exact solutions of the wave
equation for potential fields more nearly like those usually encountered in
polyatomic molecular problems.

One such exact solution, for a potential field with two minima, has already
been developed. Another solution, for a different form of potential fiel is
described in this paper, and an example of its application to the vibrational
states of NH3 is given.

THE ExAcT SoLUTIDN

The potential field' which is amenable of exact solution is

V(x) = B tanh (x(d) —C sech '(x)d) .

If ~B
~

(2C this potential has a minimum value at xo = —tanh '(B/2 C). The
second derivative at this point is

(d'U(dx'). = = (1~8d'C')(4C' —B')'
and

V(xo) = —(4C' + B')(4C.
' Morse and Stueckelberg, Helv. Phys. Acta 4y 337 (1931).
' The continuous energy spectrum for a potential field somewhat like this has been dis-

cussed by Eckart, Phys. Rev. 35, 1303 (1930).
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The wave equation for such a potential is

d'P/ds' + (—z —P tanh s + y sech' s)1b = 0

where s=x/d, and (s, P, y) =(8zr'3IIdz/lz')( —Z, B, C). F is the allowed

energy of the system N.ow set lb=e ' cosh 's F(s). The equation becomes

F"+ 2 ((z —b tanh s)F' + [y —b(b + 1) ] sech' s F = 0

and P/F is finite in the range —()() ps & ()(), if

z
[(& + P) ((z —(z —P) i(z] and b = zz [(g + P) '(' + (e —P) '('] (4)

where both square roots are taken as positive quantities.
Now let zz = -,'(1+tanh z). The equation for F in terms of zz is

z((1 —zz)F" + [(z + b + 1 —2(b + 1)zz]F' + [y —b(b + 1)]F = 0 . (5)

The solution of this equation which remains finite at u =0 is the hypergeo-
metric function

F =I' b+-', —y+ —' '", b+-', + y+ —' '" a+b+ l

This series approaches infinity' in the same manner as exp[2(b —(z)z] as u

approaches unity, unless b+ —,—(y+ 1/4)'(' is a negative integer. In this case
the function is a Jacohi polynomial. Therefore lb will not be finite everywhere
unless

b =- (y+ -')"' —zz —z. (6a)

Referring to Eq. (4) we see that the other constant (z becomes

(z = —P/[(4y + 1)'(z —2zz —1)J. (6b)

The allowed values of the energy 8 are

—8 = (b'/8rzMdz)((zz + b')

= —' [(4C + g') '"—
g (2zz + 1)]' + 3'/ [(4C + g') '" —

g (2zz + 1) ]'. (6c)

The quantum number n can be zero or any positive integer less than or equal
to (y+ 1/4)'" —(p/2)'" —1/2. The constant g' = h'/8zrz3(fd'

Therefore the solution of the wave Eq. (2) is the wave function

where the values of (z and b are given in Eqs. (6a) and (6b). The normalizing
factor is obtained from the following equation

E„= 1/2'[(I G((z+ b+ 1, b —(z —1 2(y + —')"' (z+ b+ 1 zz)]'('

8 Whittaker and Watson, Modern Analysis, page 299.
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where

G(k, X, tz, z; I) = 2 I u "(1 —u)" [F(—zz, tz
—zz; z; u) ] du

0
2n

= 21'(). + 1) Q(—1) [I'(k y s + I)/r(k y I y s + 2) ].
s=0

I'(t + tz —zz) I'(s —t + tz —zz) [p(z) zz!]'
Z

[I'(zz —zz) ]'I'(t+ z) I'(s+ z —t) (I —t)!(zz+ t —s)!t!(s—t)!

where the limits of the summation over t are fixed by the factorials.
The allowed energy levels for a typical form of Eq. (1) are given in Fig. 1.

Fig. 1. Allowed energy levels for a potential function of form corresponding to Eq. (1).

When y is much larger than unity then the allowed values of the energy be-
come

E„= V(x„) + hero(N + —,') —(k'/Bzr'Md') (1 + 33'/8C') (I + -', ) ' +
for small values of n. Here coo is the classical frequency of oscillation about
the minimum point, x=x .

coo -——(4C' —Bz)/4~d(2MCz) "'.
APPLICATION TO THE AMMONIA MOLECULE PROBLEM

An example of the use of these wave functions can be taken from the
treatment of the vibrations of the ammonia molecule.

The equilibrium configuration of the ammonia molecule4 has a pyramidal
structure with the three hydrogen atoms at the vertices of an equilateral
triangle for the base, and the nitrogen atom along a perpendicular line
through the center of the base. Due to the symmetry of the molecule there
will be two equivalent positions of equilibrium for the nitrogen, at equal dis-
tances above and below the plane of the hydrogens. This equivalence of the

See the discussion and references given in the article of Dennison and Hardy, Phys. Rev.
a9, 9S8 (1932).
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two minima makes every vibrational level a doublet, a result which is found
experimentally.

To analyze the vibrational behavior we first separate oR the coordinates
of the center of gravity of the molecule and the Eulerian angles fixing its
orientation in space, and deal only with the coordinates fixing the relative
positions of the atoms. One of these coordinates is x, the distance of the nitro-
gen atom from the plane of the hydrogens. The other five coordinates, s&, s&,

s3, z4, z5, can be chosen that the positions of the two equilibrium configura-
tions are at sx —— ——s5 ——0, x = +x„.The potential function V(x, s&, sn, ss,
s4, s~) therefore has its two minima at these two points.

Classically, the problem of small vibrations about either of these minima
would be straightforward. The potential V near each minima has six mu-
tually orthogonal principal axes, such that the kinetic energy becomes a sum
of squares of velocities and the potential energy becomes a sum of squares
of coordinates. These coordinates, which we can call yo, , y5, make up a
so-called normal set of coordinates'. by their means we can separate the prob-
lem and find the six fundamental modes of vibration. For ammonia, x al-
most coincides with one of the normal coordinate axes. Classically therefore x
can be used as one of the normal coordinates with fair accuracy for small
vibrations.

This analysis is valid for a classical consideration of small amplitude
vibrations, but for large amplitudes the concept of normal coordinates is not
valid; in general the energy equation cannot be separated. Quantum me-
chanically, the use of normal coordinates for the ammonia problem is never
valid, for we can never have the equivalent of small vibrations (i.e. , have the
wave function all concentrated near one point) since there must be as much
of the wave function about one minimum as about the other.

However, we can justify our use of x as a "normal" coordinate (i.e. , our
approximate splitting oR from the general six-dimensional problem a one-
dimensional problem in x alone) by the following method.

The general, vibrational equation, in six coordinates, will not be separable;
but we can say a. few things about the wave functions which satisfy it. From
considerations of symmetry we know that all the wave functions will either
be symmetric or antisymmetric about the nodal hypersurface x =0.The func-
tion for the lowest state will be symmetric, having no nodes at all, and having
two maxima near the two points x =-x, si = . = s5 =0. The function for
the next lowest state will be antisymmetric, its only nodal surface being the
hypersurface x =0. In fact all the wave functions can be separated into pairs,
one function in each pair being similar to the other except for the addition of a
nodal surface at x =0.

The wave functions for the higher states wil1 have other nodal surfaces
as well. These surfaces will have quite complicated forms in general, and can-
not be separated into clear-cut families of surfaces, as can be done in a separa-
ble problem. Nevertheless we will find that some of our wave functions will
fall into an easily classified family. These functions will represent states where
one type of oscillation is excited and the others are not; the nodal surfaces of



N. ROSEN AND P. 3II. 3IIORSE

this family will be a one-parameter set of surfaces which will be orthogonal to
the x axis. This family of wave functions is the set we wish to study. They will

only be large near the x axis. Therefore, for these wave functions, we will
not introduce much error if we consider their variation along the x axis to
satisfy a one-dimensional wave equation, using for potential field V(x, 0, 0, 0,
0, 0) (called hereafter V(x) for short), and their corresponding energies to
be given by the allowed energies of this one-dimensional problem.

Perhaps we could And other normal coordinates" in a similar manner.
In the other cases they might be curvilinear ]ines joining the two minimum
points and they would each be tangent to one of the classical normal coordi-
nates at these points. However, the reasoning is not as clear cut for these
other cases, and since we do not need them for our problem, we will not digress
further,

The problem of the vibrations along the x axis is clear cut and the be-
havior of the wave functions along the x axis and the corresponding energy
values can be obtained by solving the wave equation

O'P/dx' + (Sn'M/h')(W —U(x))ig = 0.

From the discussion above we know that V must have two minima sym-
metrically placed at x =+x, separated by a potential "hill. " As ~x

~
becomes

large, V approaches some asymptotic value whose height above the minima
gives the energy of dissociation of ammonia for this type of vibration.

In studying the behavior of ammonia it would be very useful to know
the value of x, the height H of the hill between the minima and the general
shape of the potential curve. The data for determining these quantities are
obtained from the analysis of the molecule's infrared spectrum. Presumably
by analyzing the rotational structure of the bands one could obtain values of
the moments of inertia of the molecule about its major axes, and thence ob-
tain the value of x . The moment of inertia about the x axis has been ob-
tained4 in this manner, but this alone cannot give us any of the properties of
V(x). It seems that the best way to determine these properties is to assume a
form of the potential held and then see whether the values of the vibrational
energies computed for this field check with the experimentally determined
levels. This method will not give us a unique answer, particularly since we
know the values of only a few of the lowest vibrational energies. In general,
a whole family of curves could be devised whose energy levels check with the
observed levels. However, we are helped out of this difhculty by our knowl-
edge of the general shape of V, and so we can rule out many potential forms
as being unreasonable. From the results to appear later in this paper it seems
probable that all those potential forms which appear reasonable and which
check the data differ very little in their essential properties, and all give about
the same value of x and XI. If this is actually the case, then the values of x
and H which are obtained in this paper are fairly close to the correct values.

A form of potential field which would satisfy our preconceptions of its
form would be made by joining two potential fields V(x) of the form given in

Eq. (1) in a symmetric manner.
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8 tanh (x/d —k) —C sech' (x/d —k), x & 0
V(x) = —8 tanh (x/d + k) —C sech' (x/d + k), x & 0.

This would make the half distance between minima, x,„=kd —tanh '(8/2C).
The height of the intermediate hill, H, can also be found.

It can be shown' that as long as the energy level considered is below the
top of the intermediate hill the difference between the level for the single
minimum problem (such as for Eq. (1)), and that for the corresponding
double minimum problem (such as for Eq. (10)), can be fairly accurately
given by a perturbation calculation.

The wave functions for the double minimum problem become

4„+(x) = E[g.„(x —dk) + P„(—x —dk)] (11a)

where the Ik's are given in Eq. (7). The constant X is a normalization con-
stant. The energies become

IV,,P = Z. + [f.(x+ dk)]'V(x)dx
0

+ [ P„(x —dk) U(x)g.„(—x —dk)dx
0

(11b)

This shows that for each level of the one minimum problem there is a pair of
levels for the double minimum case.

The actual shift of the center of gravity of the levels, given by the first
integral, is not particularly important, since its value is small compared to
the distance between levels for different values of n. But the second integral
is of importance since twice its value gives the separation between the levels
in a pair. This separation is small compared to the energy difference between
different pairs as long as the levels are below the top of the intermediate hill.

The integral

aW„= 2 ~[ y(x —dk) V(x)y( —x —dk)dx

giving the inter-doublet separation can be computed since we know the func-
tions Ik„.

From Eq. (6c) the separation between the lower two pairs is

g(4C + g2)1/9 g2
E, —E, = 2g(C+ g'/4)"' —2g' —8'/4 (12a)+ gs g(4C + g2)1/9

The inter-pair separations turn out to be

4r(2b) s
' 2C t3nh k 8

a~'o =— (12b)
I'(k + a)I'(k —a)(2 cosh k)" I/+ 1 I/g

21'(2I/ + 2) ~
—2a fs

AR'g =—
r(b+ a)I'(k —a)(2 cosh k)" [(2a'+ b)(b+ 1)'+ a'b(1 + 2b)]
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~' —(b + 1)' (b + 1)' 2a(b + 1)
~ 2C — —+ tanh k + tanh' b (12c)5+1 8+2 6+2

(b + 1)'
+— tanh' k

b+ 2

a' —b —1—8 — —+ 2u tanh b + (b + 1) tanh' b
b

where from Eqs. (6a) and (6b) we have

b = (C/g' j —,')"' —n ——',, a = —B(2g'b. (12d)

The value of n for (12b) is zero and that for (12c) is unity.
The data by which we seek to obtain values for the constants in Eq. (10),

representing a possible form for the potential field in ammonia are obtained
from the paper by Dennison and Hardy. ~ They are the separations between
the two lowest pairs of levels, E~—ED=950 cm ' and the inter-pair separa-
tionsDS'0=0. 8 cm ', 6$'~=33 cm '.

One difficulty is at once apparent, for there are four constants to deter-
mine in Eq. (10),8, C, d and k, and only three experimental values available

cm' r

rr

2000"

10Ã.

.V, V
-7,0 -O,P 0 O,P 7.0

X in, sQ"om units

Fig. 2. Energy levels and potential function for the nitrogen atom
in the ammonia molecule.

to make the fit. It would seem that even for this form of potential there
would be a whole family of possible curves which would fit the data. This ac-
tually is true, a range of values of B, C, d and k was found which would fit.
However this range of values is considerably curtailed if we require that U
be reasonable in shape; that ~8

~

cannot be greater than 2C, that the second
level must be below the center hill, and that the hill should not be higher than
the value of U at x = ~.

These requirements limit the range of allowed values of C to between
2200 and 3000 cm ', that of 8 to between zero and 1000 cm ', but that of d
is between 0.16 and 0.185A and that of k is between 2.24 and 2.20. This means
that the possible values of x lie between 0.365 and 0.390A, and those of II lie

' Dennison and Uhlenbeck, Phys. Rev. 41, 313 (1932), obtain, by different methods, a
result in exact agreement with this.
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between 1950 and 2100 cm '. One of the potential curves for an intermediate
set of values of the constants is shown in Fig. 2, with its corresponding energy
levels.

The fs,ct that all possible forms of potential of the form of Eq. (10) giving
energy levels which 6t the data give values of x and II which differ at most
by eight percent, makes it seem probable that any form of V which would fit
the data and have a reasonable form would give values of x near 0.38A and
of H near 2050 cm ' (a quarter volt). This seems likely, for the value of Eg Zp
will more or less fix the curvature upward about the two minima, while the
values of Ag o and Ag ~ will more or less fix the curvature downward about
the central hill and the height of this hill, while the joining of the curves
about the minima and the curve about the hill will more or less 6x x .

The value of the dissociation energy U(pc) = U(x ), however, is not
closely fixed by our data, for it varies from 2200 to 4000 cm '. This is to be
expected, since the energy levels we have used to 6x our curves are very
little e8ected by a change in the form of V for large values of x. In fact a
potential curve of the form given by the dotted line in Fig. 2 would have very
nearly the same values of allowed energies as the curve given by the solid
line for Eq. (10). For this reason our analysis can tell us nothing about the
value of the dissociation energy for this type of vibration (except that it can-
not be less than 2200 cm '!).

However the value of x is the important value to be 6xed, for a complete
analysis of the ammonia spectrum requires a knowledge of its value. It seems
likely that its value should be about 0.38A, which makes the moment of
inertia about the axis of symmetry 4.41 10 "gm-cm'. ' The range of possible
values of x introduces in this last result an uncertainty of only about 1 per-
cent.


