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In §1, the calculation of the nondiagonal elements of electrostatic interaction is
sketched. In §2, attention is called to the fact that the matrix elements of L, (the
x-component of orbital angular momentum), as calculated between spherical harmonic
eigenfunctions taken with positive phase, are negative when m,; is 4+ and positive
when m; is —. The calculation of eigenfunctions in LS coupling has always been done
using only positive matrix elements of L,. This amounts effectively to using a zero-
order scheme in which one takes spherical harmonic eigenfunctions with negative
phase for positive odd values of m;, and positive phase for all other values. In §3
the calculation of first order energies for configurations which give more than one
multiplet of a kind is considered, and explicit formulas given for the electrostatic
energies and magnetic splitting of the two 2D’s of @°. The results are shown to compare
satisfactorily with the observed data. The second 2D is predicted in general to be
extremely high and inverted.

N THIS paper we wish to calculate the separate energies and intervals of

multiplets which occur more than once in a configuration. For this purpose
we need the nondiagonal elements of the matrix of electrostatic interaction,
which are given in §1. Since this matrix must be obtained algebraically, we
discuss in §2 the interpretation, in terms of algebraic functions, of the eigen-
functions in LS coupling which have been found by various investigators.
This consideration is necessary because of a question of phase to which atten-
tion has not hitherto been called. We then proceed in §3 to discuss the energy
levels and separations, calculating in detail the two 2D’s of d3.

§1. MaATrIX ELEMENTS OF ELECTROSTATIC INTERACTION!

We shall first sketch the calculation of the matrix of the electrostatic
interaction

N &2 N
G= 2 — = 2xGj) (1.1)
>i=1 ¥Vij i>j=1

in the zero-order scheme. In this scheme the eigenfunction belonging to the
state. 4 = (at, a?, - - - a¥) will be the antisymmetric combination

Y(A) = + (V)73 2 o(= 1)2Pus(aVus(a?) - - - un(a®), (1.2)

where P represents a permutation of quantum numbers relative to electron
indices, and p has the parity of P. Here the symbol #;(a’) indicates the one-

! The contents of this section are not original, although they have never been published
in detail. The reduction of the nondiagonal elements to the form (1.5) and the calculation of the
table of ¢'s were done over a year ago by Slater and his students at Harvard and M.I.T., and
by Condon and the writers at Princeton. This fact is noted by Inglis, Phys. Rev. 38, 862 (1931),
footnote 7.
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168 C. W. UFFORD AND G. H. SHORTLEY

electron central field eigenfunction for electron 7 with the j* set of quantum
numbers #/limim 7

Mi((li) = [Ri(nflf)/1',-]®,;(l7'mﬂ) Cbi(mﬂ')é(ai, m,,f) . (1 . 3)
The angle factors are given by the formulas
2041 ( — it dtml
+ 1 l m;l ) ] sin!mlg ———— Py(cos 6),
2 0+ m ) d(cos ) mil (1.4)
&(my) = + (2m)~teims,

OUm) = + [

These are given explicitly because their exact form will be essential in §2. The
sign of the eigenfunction (1.2) is determined by the order of listing the quan-
tum numbers, and we shall adopt for convenience the following standard
order.? The individual sets will be listed first in increasing order of # values;
sets with a particular z will be arranged in increasing order of / values; those
with a particular #l will be listed in decreasing order of the m; values; and
the set with m,= +1 will be listed before that with m,= —% in case the two
sets agree in regard to #, [, and m;.

In this scheme the diagonal elements of G have been given by Slater.?
The nondiagonal elements are easily obtained from formulas given by Con-
don.* Since G is diagonal with respect to M =2m; and M s=2Zm,, there will
be no component between two states of the same configuration which differ
in regard to just one individual set. If the two states differ in regard to two
sets, 4 having the sets a, b, while 4’ has the sets a¢’, b/, this matrix element
is given by

“lGlay = + [ [ [ ax@as@)stt, 2@yustvirin

—ff i, (a)ay(b)g(1, 2)”1(5')%2(0')d71d72],

where the sign is to be chosen as in note 4. The general integral with four
different quantum numbers which occurs here may be shown to be reducible
to the form

f f 1:(a)8a()g (1, 2)a(c)us(d)dridrs

= §(m;, ms©)o(ms?, mD)é(m® + md, m® + m%) (1.5)

. ch<lamla; Tom®) c*(Imi®; 19m,9) R (nelentl®; nelend)
k

2 Used by Shortley, Phys. Rev. 40, 185 (1932). See esp. pp. 194, 195.

3 Slater, Phys. Rev. 34, 1293 (1929).

4 Condon, Phys. Rev. 36, 1121 (1930). These formulas must be supplemented by a de-
termination of sign given in reference 2. The rule is as follows: To the matrix component be-
tween two states, ¢(4) and ¢(4’), differing in regard to one or two individual sets, one pre-
fixes + or — according to the parity of the permutation which changes the set 4’ from its
standard order to the order in which the equal elements in 4 and 4’ occupy the same places.
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where
2 1/2 T
c*(my; U'mi) = <~———> f Ok, my — m")O(Im)O('m,") sin 6d6 (1.6)
2E+1 0
Rk(,nalanblb; nclcndld)
0 g 1'<k
— f f Ru(n#0%) Ra(n) Ry(nel9) Ra(n 1) drdrs.  (1.7)
N

Slater’s a’s, b’s, F's and G’s are special cases of these ¢’s and R’s, namely

ab(lomi®; Imp¥) = c*(lomye; 1omy®) c*(1vmb; 1bmyb) } (1.8)

bk(lamla; Pomd) = [ck(lamla; lbmlb) ]2 ’
Fr(nale; nhb) = R¥(nolendld; nelonbib) } 1.9)
G*(nale; n¥) = R*(nlon®l®; nPnale).

Hence the ¢’s may be obtained by taking the square roots of the b’s as
given by Slater and Condon and Shortley® except for sign.® It is easily seen
that the R’s which will be obtained within a configuration will always reduce
to F’'sand G’s.

§2. Tue EI1GENFUNCTIONS FOR LS CoupLING

The direct method of finding eigenfunctions in L.S coupling is to proceed
according to the definition of this scheme as one in which L?, S?, and either
L,, S, or J? J. are diagonal. This method, which has been discussed by
Johnson,” consists in finding the matrices of L?, S? (and L-S) in the zero-order
scheme and diagonalizing them simultaneously. Gray and Wills® have given
a method which depends essentially on the fact that the matrix of J,414.J,,
where J is any angular momentum, has but one component in each row or
column, so that component connecting the state ¥(j, m;) with the state
¥(4, m;F1). Wigner® has given a general formula for the states which result

8 Condon and Shortley, Phys. Rev. 37, 1025 (1931).

¢ The signs are given by Inglis, Phys. Rev. 38, 862 (1931), footnote 7, for s, p, and d
electrons. These are repeated below, together with the signs for f electrons. To get ¢* the square
root of b* is to be taken with the positive sign except for the following values of (lm2; Ibm?; k),
for which it is to be taken negative:

(1+1;242;3) 1+£1;2+1;3) 1+1;2 0;1) (2+£2;3+3;3)
(242;3+2;3) (2+2;3+1;1) (24+2;3+1;5) (2+2;3 0;3)
(2+1;3£3;5) (2+£1;3+2;3) (2+1;341;5) (2+£1;3 0;1)
(2 0;3+3;3) (242;37%1;3) (1+1;1+1;2) (14+1;343;4)
(1+1;3+2;4) (+1;3+14) (113 0;2) (1+1;3F1;2)
(2+2;2+2;2) (242;2+1;4) @+2;2 0;2) (2+1;2+1; )
(3:+3;3+3;2) (3+3;3%3; 6) (3+3;3+2; 4) (3+3;3+1;2)
(3+3;3+1;6) 3+3;3 0;4) (3+2;3+2; 4) (3+2;3+1;6)
3+2;3 0;2) (3+2;3 0;4) B+1;3+1;6) (3+3;3%1;4)

7 M. H. Johnson, Phys. Rev. 39, 197 (1932).

8 Gray and Wills, Phys. Rev. 38, 248 (1931). The sign of the imaginary ¢ as we use it is

9 Wigner, Gruppentheorie, p. 206.

reversed from that in Gray and Wills, in accordance with the more usual convention.



170 C. W. UFFORD AND G. H. SHORTLEY

from the addition of any two angular momentum vectors, and the determina-
tion of eigenfunctions using this formula has been discussed by Bartlett.!?
All of these methods depend in the last analysis on the values of the
matrices of L,, L,, L, and S,, S,, S, for one-electron eigenfunctions. If one
calculates algebraically the matrix of L, using the functions (1.3), one finds!!
a(nwlmpns) L u(nl, my — 1, my) T formy < 0.

= & [0 m)@ = mit D] =

2.1
— for m; > 0. 2.1)

Now ever since they were first calculated by Born, Heisenberg, and Jordan!?
all matrix elements of the x-component of an angular momentum vector have
usually been taken as real and positive, in particular in references 7, 8, 9, 10.
Of course, this is satisfactory as long as one uses matrix methods and is con-
sistent in the determination of the matrices of other observables; but before
one may calculate a matrix, such as that of the electrostatic interaction,
purely algebraically, one must determine what this choice of positive sign
implies in the phase of the eigenfunctions. Suppose we designate by v(nlm m,)
the system of one-electron eigenfunctions for which the matrix of L, is given
by

d(nbmm)Lov(nl, my — 1, mg) = + [(1 + m)(l — my + 1) ]V2 for all my.  (2.2)
Then the v's will be related to the #’s by the scheme

v(nl, 3,ms) = — ulnl, 3,m,)
v(nl, 2,ms) = + ulnl, 2,m,)
v(nl, 1,ms) = — ulnl, 1,m,) (2.3)

A
8,
—
5
~—
|
+
*
—
&
|
—
g
~—

(or this same scheme with signs reversed). Here the signs alternate for posi-
tive values of m;, but are all positive for negative values.

The matrix of L, is given in terms of that of L,, in any scheme by the
relation

(mi| Lyl m)) = e m'=md (| L, | ml).

The matrices of S, and S, are the same in the % scheme and the v scheme since
they are diagonal with respect to m;. Hence the matrix of any function of
L and S as calculated using positive angular momentum matrix components
is correct for the vscheme.

This means that all eigenfunctions in LS coupling heretofore published
have been in terms of zero-order functions in the v scheme and not in the more

10 Bartlett, Phys. Rev. 38, 1623 (1931).
U See, for instance, Brillouin, Jour. de Physique 8, 74 (1927).
2 Born, Heisenberg, and Jordan, Zeits. f. Physik 35, 557 (1925).
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logical # scheme. This distinction is essential when one calculates the matrix
of electrostatic interaction, for example; if one fails to note this one will
obtain matrices of electrostatic interaction which are not at all diagonal in
LS coupling.?®

As an example we may take the case of p?, as calculated by Johnson using
positive matrix components. If we use a notation m,;* ,in which we write +

for ms=+3%, — for m;= —1, the zero order states for m ;=73 are
I (1-0+0-) IIT (1+0+ — 1-)
IT (1+1- — 1) IV (140~ — 1%)
V (170t — 1+),

In terms of these states the eigenfunction for 2Ds,s (M ;=1%) as given by John-
son is

2Dye = (1/5)121 — (1/5)YV/211 4 (1/10)Y/2111 — (4/10)1/21V + (1/10)1/2V.
This state must be interpreted, if we leted represent the antisymmetrizing
operator +(N!)~* Zp(—1)? P which occurs in (1.2), as
D2 = (1/5)"%Avi(17)v2(0H)v3(07) — (1/5)%eAvi(1H)va(1)vs(~ 17)
+ (1/10)12Av, (1) va(0H)us(— 17) — (4/10) 2% Av;(11)ve(0)ug(— 1)
+ (1/10) 2% Av,(17)va(0H)ug(— 1+).
In terms of the u scheme this becomes, according to (2.3)
Dye = — (1/5)Y 2 Aui(17)u2(0H)u3(07) — (1/5)2eAu; (1) us(1-)us( — 17)
— (1/10) 2 Au; (1) 1y (0F) us( — 17) 4 (4/10) 2 A1y (1) 400 ) 245(— 1)
— (1/10) 2% Au; (1) 12 (0F) 15— 1+).
It is here, of course, not the sign of the whole expression, but the relative
change of sign of the second term, which is significant. In the same way one

must interpret all eigenfunctions which have been calculated using positive
angular momentum matrices.

If one wishes to calculate eigenfunctions directly in the # scheme, one
must substitute the values (2.1) instead of (2.2) in the formulas given by
Johnson for the matrices of L2 and L- S. For the Gray-Wills' method one must
use the formulas

(Ls — iLy)u(lm,)

;-{- form; £ 0
= & [+ m)@ —m+ Ol m = 1) 4
. — form; > 0
(Lz+ 1L )u(lm) (2.4)
+ form; <0
= & [0 — m)( + my + 1) ]V2u(l, m, + 1) {
— for my g 0

13 Failing to note this will in general affect the calculation of transition probabilities, but
not in the particular case of transitions in which one electron jumps from # to s, as calculated
by Ufford, Phys. Rev. 40, 974 (1932).

14 This state is the negative of Johnson’s II because of the different order of listing the
quantum numbers.
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which have signs chosen in accordance with (2.1). When using Wigner's
formula for the addition of an / electron to an ion of resultant orbital momen-
tum /¢, the sign of the coefficient!® (J{L MLl 1"l m,* m;) must be changed when
mi=-+1, +3, - - - . This is because an electronic function which is different
in the # and v schemes is combined with an ionic function which is equivalent
in the two schemes in the sense of (2.3). In adding L and S to obtain eigen-
functions in'the LSJ M ; scheme, Wigner's coefficients are used as given by his
formula without change of sign, since the initial states are now independent
of the scheme used in obtaining them. The changes given in this paragraph
are required only when it is desired to calculate eigenfunctions directly using
positive phases for all of the one-electron functions, the other alternative be-
ing the calculation using v's throughout.

§3. FirsT-ORDER ENERGIES FOR CONFIGURATIONS WHICH GIVE MORE
THAN ONE MULTIPLET OF A KIND

We shall now discuss the calculation of the first-order energies for con-
figurations which give more than one multiplet characterized by the same
values of L and S; at the same time giving the detailed results for the con-
figuration d?®, which gives two 2D’s, and is the simplest and most completely
analyzed configuration of this type.

The electrostatic energy of any multiplet occurring only once in a con-
figuration may be obtained very simply by the diagonal sum method outlined
by Slater,? without having to calculate any eigenfunctions or to use nondiag-
onal elements of electrostatic interaction in the zero-order scheme. When
several multiplets of a kind occur, however, this method gives only the sum
of the energies. In order to separate the energies, one must solve a secular
equation connecting a group of eigenfunctions representing the multiplets of
one kind. This is most easily explained by an illustration: the case of the two
2D’s of d*. Consider the highest M1 and M s values which belong to a 2D.
These are M =2, M g=4%. The zero-order states of d3, which are characterized
by M=2, M s=1 are, in the notation of §2,

A Aui(2H)ua(27)uz(— 27) B Au,(2)us(1)uz(— 17)
C  Au(2H)us(17)us(— 17) D Auw(27)us(1)us(— 1%)
E Q/{Ml(2+)1/t2(0+) ug(O’) F Q/{%l(i+)u2(1_) M3(0+) .

In terms of these zero-order functions one must determine two orthogonal
eigenfunctions for 2D, which will then be characterized by M =2, Ms=1. A
convenient way of doing this is to find by any of the methods of §2 the eigen-
functions for all the other multiplets which have states M =2, Mg=3
(namely 2Hs,1/2, 2Ge,1/2, 2F2,1/2 *F2,1/2) and then to choose two functions ortho-
gonal to these and to each other. The following were obtained by this proce-
dure:

5 This is Wigner's coefficient sLml,-ml(‘i‘), formula (27) p. 206, Gruppentheorie. For example
in Wigner’s table, page 208, the signs in the column »=1 should be changed, when u=m;?,
rv="mj.
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D% 1 = %["‘ A+ B—-C+ E]

(3.2)
3Dby 19 = (84)12[— 54 — 3B — C + 4D — 3E — 2(6)'/?F].
The matrix of electrostatic energy for these states becomes?!®
a b
a | 3Fy 4 TFy + 63Fy 3(21)Y3(F, — SFy) (3.3)
b | 3QU)V(F, — SF,) 3F, + 3F, — S57F, '
which has for its eigenvalues the energies
€ = 3Fo + SFy + 3F, + (193F32 — 1650F /4 + 8325F %)/, (3.4)

This formula then gives the electrostatic energies of the two 2D multiplets.
The eigenfunctions for these multiplets, for M =2, M s=3%, may now be ob-
tained. If we write the eigenfunction for either of them as a2D%,;1/a+82D 3,15,

we find
3F0+7F2+63F4—€ 3 —1/2
| Ciamn—s0 ) 1)
3(21)Y/%(Fy — SFy)
3Fg+ TFy, + 63F, — ¢
3Q1)Y(F, — SFy)

(3.5)

g =

Now since this is the only state with M;=5/2, this state is identical
with the state 2Ds;2, M;=5/2. The eigenfunctions for the other values of J
and M; may be obtained from this by the Gray-Wills’ procedure, and the
whole matrix of magnetic interaction'’ calculated. This procedure leads,
however, only to secular equations which are too complicated to be solved.
In all the analyzed d® configurations the magnetic interaction is very small

-compared to the electrostatic, so that one can consider it merely as a small
perturbation on the electrostatic levels; hence it will suffice to calculate the
diagonal elements of magnetic interaction in the LSJ M ; scheme. The use of
the diagonal sum rule together with the Landé interval rule enables all of
these elements to be readily calculated'® for multiplets which occur only once
in a configuration; but for multiplets occurring more than once this method
gives only the sums of the magnetic energies. For the state (3.5) one obtains
by direct calculation the value

(2Dsy5, 5/2| V1| 2Dyps, 5/2) = [a2/2 — 21)V2aB/3 — BY/6]¢
= £[1 F (59F; — 435F )(193Fs* — 1650F,F4 + 8325F2)~12[¢,  (3.6)

16 The notation is as in Condon and Shortley,’ Fo=(1/49) F2(nd?), Fy=(1/144)F*(nd?),
where F2and Ftareasin (1.9).

17 For the elements of this matrix see Johnson,” p. 201, and Shortley,? §5. These elements
are given with plus signs and must be so used only in the v scheme, as has been done by
Johnson.

18 Pauling and Goudsmit, Structure of Line Specira, §39. The a of this section is our ¢.
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where V' is the magnetic interaction Z£(r;)L;-S;, and { the radial factor
(nd! E(r) l nd). The upper sign is to be taken with the upper sign in (3.4),and
vice versa. From the Landé interval rule we know that the 2D splitting is 5/2
this quantity, while the other d® intervals are given in Table XIII of Pauling
and Goudsmit. The sum rule says that the sum of (3.6) for the two 2D’s must
be ¢, which is seen to be the case. .

We shall now see how these calculations compare with the experimental
data. The first instance of d® is Russell’s!® 3d? in Ti II, which has been dis-
cussed by Condon and Shortley,” who have also given the formulas for the

31450
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Fig. 1. Energy levels of the configuration @® The values for Ti II and Zr II are calculated
from the constants given by Condon and Shortley;5 in V III the constants are chosen to make
4F, 4P, and 2G fit exactly.

electrostatic energies. They found that they could obtain a fairly good fit for
this configuration with Fy=2845, F4=>54 (3F,=17,750). If we put these values
into (3.4) we find for the energies of the two 2D’s 12,820 and 31,450 cm™!. The
only 2D found by Russell is at 12,710 cm~!, which agrees excellently with our
lower 2D. The position of the second 2D is predicted 10,000 cm™ higher than
any other level of the configuration, which may account for its not being
found. The intervals in this configuration are discussed in Pauling and Goud-
smit, p. 163. Using, as they do, the 2/ interval as standard, one calculates,

19 Russell, Astrophys. J. 66, 283 (1927).
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from (3.6) the lower %D interval as 142 cm™, while the observed value is
129.4. The interval for the higher 2D is calculated as —67.7 cm™L

In the 3d® of V 111 White?® has found all the multiplets except 2F and one
2D. The configuration d® has the peculiarity that the calculated electrostatic
energies for 2/ and 2P are equal. In this instance these energies are not at all
equal so that we cannot depend much on 2/ and ?P. However if we choose the
F’s to make the other three multiplets, *F, 4P, ?G fit exactly, the 2/ energy is
fairly good (15,869 cm™! calc., 16,906 cm~' obs.) while that of the 2P is not
(11,327 cm™ obs.). This is in accord with the observation of Condon and
Shortley, who in two instances (TiII and Zr II) found a reasonable fit for 2,
but not for 2P. The values of the constants which are obtained in this way are
F,=1171, F,=83 (3F;=23,891). These constants give for the values of the
two 2D’s, 17,300 and 42,700 cm™. The first of these is agreeably close to the
2D found by White at 16,317 cm™; the second is predicted 25,800 cm~! higher
than any other level of the configuration, which has a spread of only 16,900
cm™ as analyzed! Hence it is not surprising that this second 2D was not found.
The intervals as usual agree only roughly. White has remarked that *F fits
the interval rule fairly well, and if we use the { given by this level, (which is
about an average { for the configuration), the calculated 2D intervals are 248
and —110 cm ; the first of these is to be compared with the observed interval
of 147 cm™..

For the 4d? of Zr 11, in which Kiess and Kiess* report two 2D’s, Condon
and Shortley obtain an approximate fit of all levels except 2P with F,=683,
Fy=36 (3F,=16,000). With these values the calculated 2D’s lie at 11,750
and 27,310 cm™, with separations of 593 and —309 cm™!, respectively. These
separations are calculated using the 2H, which gives an average value for
¢, as standard. The observed 2D’s lie at 13,869 and 14,559 cm~! with separa-
tions of 734 and 435 cm™'. Hence we must infer that, if these are correctly
classified, one of them is very strongly perturbed.

These are all the instances of d® which are sufficiently analyzed for com-
parison with the theory. In general we have seen that the lower 2D corre-
sponds well with the one usually observed; the second 2D is predicted ex-
tremely high and inverted.

20 White, Phys. Rev. 33, 672 (1929).
21 Kiess and Kiess, Bur. Standards J. Research 5, 1210 (1930).



