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Momentum Relations in Crossed Fields
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It is shown that the mechanical linear or angular momentum gained by ions mov-
ing in crossed electric and magnetic fields is at the expense of the electromagnetic
linear or angular momentum already present. Hence Ross Gunn's theory of the
acquisition of angular momentum by a star as the result of ion motions in its external
electric and magnetic fields cannot be upheld.

Three cases are analyzed in detail: (a) Newtonian motion in uniform crossed
fields, (b) Newtonian motion in the field of a uniformly magnetized charged sphere,
(c) relativity motion in uniform crossed fields.

URING the last three years Ross Gunn' has developed a promising
theory of the formation of double stars and of planetary systems based

on electromagnetic forces rather than on conventional gravitational attrac-
tions. While many of the features of his theory are undoubtedly significant,
it will be shown that the mechanism which he invokes to account for the angu-
lar momentum of a star would not give rise to the effect which he anticipates.
Gunn supposes that a star has combined electric and magnetic fields similar
to those of the earth. Ions formed in its atmosphere acquire momentum in the
direction of the vector E)&K, as shown in an earlier paper of the writer. '
This momentum, which is in the same sense for ions of opposite signs, is
transferred to the star as a consequence of collisions and gives rise to a
continuing increase in the angular momentum of that body until finally
fission occurs.

In a lecture some thirty years ago J. J. Thomson pointed out that outside
a uniformly magnetized charged sphere there exists a Poynting flux every-
where in the direction of the parallels of latitude. This implies the presence
of energy and momentum circulating around the axis of the sphere without
ever departing from it. While this phenomenon leads to no predictions em-
barassing to electromagnetic theory, no particular significance appears to
have been attached to it. In the course of this paper it will be shown that this
flux of momentum plays a very vital role in connection with the motion of
ions in the atmosphere of a star.

While certain fundamental theorems of electrodynamics prove that the
laws of conservation of both linear and angular momentum hold for an iso-
lated electromagnetic system provided account is taken of both electro-
magn'etic and mechanical momentum, and therefore that Gunn's argument

Ross Gunn, Phys. Rev. 32, 133 (1928);33, 614, 832 (1929);34, 335, 1621 (1929);35, 107,
635 (1930); 36, 1251 (1930); 37, 283, 983, 1129, 1573 (1931);38, 1052 (1931);39, 130, 311
(1932).

2 Page, Phys. Rev. 33, 553 (1929).
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cannot be upheld, we shall investigate here the details of the process by
which these laws are satisfied in some simple cases, including the case of a
uniformly magnetized charged sphere in whose atmosphere ions are present.

A. UNIFoRM CRossED FIELDs

Consider a uniform electric field B in the direction of the y axis of a set of
right-handed rectangular axes x, y, s combined with a uniform magnetic
field H in the direction of the s axis. Then, as shown in an earlier paper, ions
of both signs progress in the x direction with a drift velocity cZ/H which is

independent of the charge or mass of the ion. The ion paths are cycloids, being
prolate, common or curtate in accord with the magnitude and direction of the
initial velocity. The cycloidal paths for the negative ions are obtained from
those for the positive ions by rotating the latter through the angle vr about
the x axis. The integrated equations of motion are'

S —Xp = 1 —cos t + —— sin t + ——t,

y —yo = — — — 1 —cos—t + sin

s —so = vo, t)

where xo, yo, so are the coordinates of the starting point and vo„vo„, vo, the
components of the initial velocity.

Differentiating the first of these we find for the x component of the
momentum

eII cE
p = ss vo~ sin t+ vo, — cos

mc II
eH cE

mc

and comparing with the second

y —
yo

——(c/eH) (p, —pp, ),

where p„=nsv„ is the x component of the initial momentum.
This equation states that the displacement of the ion in the direction of

the electric field is proportional to the gain of momentum in the direction at
right angles to the two fields, that is, in the direction of the Poynting Aux.

Increase in momentum involves a displacement of positive ions in the same
direction as the electric field, and of negative ions in the opposite direction.

Now suppose that at a certain instant n ion pairs per unit volume are
formed. Under the action of the fields they separate, acquiring at the same
time momentum in the direction at right angles to the two fields. Whether
they make collisions with neutral particles and thereby transfer part of their
momentum to the latter or not, the total mechanical momentum generated
is proportional to the separation of the ions. If Ay denotes the mean separa-
tion of the positive from the negative ions, an effective electric moment

' Page and Adams, PrinciPles of Electricity, p. 289. In the present paper we are using

Heaviside-Lorentz units.
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nay is set up in the region under consideration. This gives rise to an electric
field of the same magnitude in the direction opposite to that originally exist-
ing. Consequently the electromagnetic momentum g per unit volume in-
creases in the amount Ag = —(1/c)nedyH.

However, if Dp is the increase in mechanical momentum per unit volume,
it follows from (1) that

and consequently

AP = ately/c

Ap+ Ag = 0.

So the increase in mechanical momentum of the ions is at the expense of
the electromagnetic momentum already present. Production of ions acts as a
mechanism for converting the latter into the former. When all the electro-
magnetic momentum has been transformed, the electric field is reduced to
zero, an9 no more transverse momentum is acquired by the ions. Since elec-
tromagnetic momentum is consumed in the same region of space as that in
which mechanical momentum is generated, Eq. (2) applies to angular
momentum about any arbitrary axis as well as to the case of linear momen-
tum for which it was derived. However, we shall discuss in the next section
the specific angular momentum relations existing in the case of a uniformly
magnetized sphere which has an electric charge.

B. UNIFORMLY MAGNETIZED CHARGED SPHERE-

Take origin at the center of the sphere with polar axis in the direction of
magnetization. The spherical coordinates consisting of the radius vector r,
polar angle 0 and azimuth P are chosen so as to constitute a right-handed set
in the order named. If Q is the charge on the sphere and 3II its magnetic
moment, the nonvanishing field components are

2M M
Ep =- —r Br = —cos 0) Bg

= sin 0)
47f r' 47fr' 4~r'

and the equation of motion of an ion with charge e and mass rn is

mf = e {E + (1/c) v && H ),

which is equivalent to the three component equations

Sill 0$

e 2'
2r'0+ r0 —r sin 0 cos 0&2 = sin 0 cos 0$

4m' cr'

e M 2'
2 sin 0r'P + 2r cos 00$ + r sin 0@ = sin 0r' — cos 00

4m m cr' Cf

The third equation is the significant one for our purposes. It can be
written
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d eM d sin' 0—(r' sin'0@) = ——
dt 4vrmc d t

or, if we put p—=mr' sin' 0& for the angular momentum of the ion about the
axis of the sphere,

dP = —(eM/4rrc)d(sin' 0/r) .

Next we must calculate the change in electromagnetic angular momentum
due to motion of the ion. To do this we shall first compute the electromagnetic
angular momentum of an isolated system (Fig. 1) consisting of a point pole
m and a point charge e. It is evident from symmetry that the resultant
angular momentum is entirely about the line connecting ns to e. As

E = e/ 4vrp', H = nz/47rr',

the component of angular momentum parallel to this line is

g = —(rle/16rr'crp') sin 0 sin n

per unit volume. Therefore the total angular momentum can be written

gaea f f" r sin' 0—dodr
Sere Jp 8p p'

if we eliminate n by the relation p sin n =a sin 0. First we shall integrate with
respect to 0, keeping r constant. In doing this it will be convenient to change

Fig. i. Fig. 2.

the variable of integration to p by means of the relation p' = r2 —2ar cos 0+a'.
We have then

When r &a the limits of p are a —r and a+r, whereas when r) a the limits are
r —a and r+c. For the first region

m e use
rdf

6' 0 c p 127rc
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and for the second
mea ('" dr me

62
6xc J ~ r' 6~c

Adding, the total electromagnetic angular momentum is found to be

G = Gl + G2 — mc/47CC. (4)

At first sight it seems strange that the angular momentum should be
independent of the distance a between the charge and the pole. A little con-
sideration, however, shows that this is to be expected. For if the charge is
projected directly toward the pole the magnetic field exerts no force on it and
its mechanical angular momentum along the line joining the two remains
constant. So the electromagnetic angular momentum should be independent
of u.

The magnetic field in which we are interested is that of a dipole. If the
line joining the center of the dipole to the charge e (Fig. 2) has a length r
and makes an angle 0 with the axis of the dipole, the component of the
electromagnetic angular momentum of the system along the axis of the
dipole is

me me
d(cos 8) = sin 8dg.

4mc 4&c

Now if d/ is the length of the dipole, d0 =dl sin 0/r, and

G = (e3II/4~c)(sin'%),

where 3E is the magnetic moment andi of the dipole. Comparing (5) with (3)
we have

dp+ZG = 0. (6)

This equation shows that any gain in mechanical angular momentum by
an ion is accompanied by an equal loss in electromagnetic angular momen-
tum. Suppose that the uniformly magnetized sphere is initially uncharged
electrically and that ions of one sign (electrons, for instance) are projected
toward it from a great distance, the impinging ions having on the average no
initial angular momentum about the axis of the sphere. When these ions strike
the sphere they impart to it mechanical angular momentum in one sense
while giving rise to an equal amount of electromagnetic angular momentum
in the opposite sense. If, after the sphere has been charged by the impacting
ions, ion pairs are formed in its atmosphere, the action of these ion pairs is to
transform the electromagnetic angular momentum into mechanical angular
momentum until finally the mechanical angular momentum imparted by the
ions impinging from outside is just annulled. Therefore the electromagnetic
process postulated by Gunn cannot lead to a continuing increase in mechan-
ical angular momentum of the sphere.

If we replace the point pole by a finite sphere of magnetic charge in de-
ducing (4) we are led to a different result, obtaining in addition to the term
appearing on the right-hand side of that equation a second term containing
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in the denominator the square of the distance a between the center of the
sphere and the point charge. This additional term remains when we super-
pose two slightly displaced spheres of opposite sign so as to construct a uni-
formly magnetized sphere. Its presence is due to the fact that we erroneously
employ H inside the magnetized sphere in calculating the electromagnetic
momentum when we should in fact make use of B. The added term dis-
appears when this error is corrected, and (5) is found to hold rigorously for a
uniformly magnetized sphere as well as for a magnetic dipole. The analysis,
which is somewhat laborious, will not be reproduced here.

C. RELATIVITY DYNAMICS

The preceding analysis is inapplicable to the case where the ions have
velocities comparable with the velocity of light. In such an event the varia-
tion of mass with velocity must be taken into account. We shall develop
the theory for the case of uniform crossed fields on the relativity dynamics.

As before we shall take Z in the direction of the y axis and H in that of the
s axis of a right-handed set of rectangular axes fixed in the observers' inertial
system S. In addition we shall have occasion to refer to a set of parallel axes
x', y', s' located in an inertial system S' moving in the x direction relative to
S with the constant velocity n=eZ/H. As shown in a previous paper' the
electric field vanishes in S' and the ionsdescribe helices around the lines of
magnetic force with angular velocity

~' = —elf'/m, e,

where us~ is the transverse mass. If vp is the initial velocity of an ion relative
to S', the components of velocity at any time t' are

v = vp cos M t —vp~ sin co't',

V„' = Vp
' Sin ~'t' + Vpy COS N t',

I /= Vp~ ~

,p

Now the displacement of an ion along the electric field is

y —yp = y' —yp' = (i/cu') I pp, '(1 —cos pp't') + pp„' sin cu't'
I

= —(&/~') (e.' —sp.') .

Making use of the relativity transformations for the components of
velocity,

where P —=I/c is the ratio of the relative velocity of the two inertial systems
to the velocity of light. Now

~2 + V
I2 + V

~2 —
V

t'2 + V
~2 + V

I2 —V~2
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since the speed relative to S' does not change with the time. Transforming to
system S we find

(1 —v'/c')'~' 1 —v"/c'
=—constant.

1 —Pv, /c 1 —P'

Also

i ttl ~c mpc i
co' eH' eH [(1 —P') (1 —v"/c') ]'~'

where nap is the rest mass of the ion.
Therefore

tS pC V~ —Q

where p, is the momentum and T the kinetic energy of the ion. Now

(u/c')(r —r,) = (P/c)eZ(X —X,) = (eH/c)P (X —X,).
Solving for y —yp, we find identically the same relation

3' —3'o = (c/eH)(P* —Po*) (7)

between the displacement along the electric lines of force and the gain in
momentum at right angles to the two fields as was obtained on the Newto-

nian dynamics. Therefore electromagnetic momentum is converted into
mechanical momentum by ions produced in the atmosphere of a star or planet
in precisely the same manner as in the cases previously discussed.


