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On Ferromagnetism and Related Problems of the Theory
of Electrons*
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In this paper is presented a study of those electrons which hold together a
chemically elementary crystal and are responsible for the homoeopolar bonds be-
tween neighboring atoms. The starting point of the theory is Slater's form of the
secular equations for first order perturbations arising from the interactions of iden-
tical atoms composing a system. A rigorous solution of these equations is given in
section 4. The investigation is carried through in a unified way for magnetic and
non-magnetic materials, with respect to internal energies and to magnetic proper-
ties. As anticipated by Heisenberg, the deciding factor is the sign of the Heitler and
London interchange integral Ji. Substances with large negative Ji are non-magnetic,
those with large positive Ji, potentially ferromagnetic. For non-magnetic bodies,
the theory gives a confirmation of Bloch's conclusions with slight differences of inter-
pretation. On the other hand, the results for magnetic materials are new and entirely
different from Bloch's. As to specific heats, it is found that at very low temperatures
they have the expression c =0.208 sR(T/0)3~', where R is the gas constant, s the num-
ber of valencyelectrons per atom, and 8 has a close relation to the Curie point. With re-
spect to ferromagnetism, the result is that a crystal satisfying Slater's equations is
spontaneously magnetized almost to saturation but that the polarity of this magnetiz-
ation changes its sense at irregular intervals. This fact suggests that ferromagnetic
crystals must have a block structure and that they are coherent, in the sense of the
validity of Slater s equations, only within the blocks (compare sections 10 and 11).
With this hypothesis the theory accounts for the fundamental facts of ferromagnet-
ism.

1. INTRODUCTlON

HE discoveries of quantum dynamics, especially Pauli's exclusion prin-
ciple and Fermi's statistics based on it, gave a new stimulus to the theory

of electrons in metals. While Sommerfeld' treated in an exhaustive way the
subject of free electrons, it was pointed out by Heisenberg' that the exclusion
principle must exercise a powerful influence on the orientation of the spins
of valency electrons and that it may play the role of the molecular field postu-
lated by gneiss for ferromagnetic materials. The theory of the more tightly
bound electrons was investigated by Bloch in a series of important papers.
While his work is fundamental in many respects, it treats the non-magnetic
properties' and the magnetic' separately and by different methods. Moreover,
we believe that his results relating to ferromagnetism are open to objection.

~ An abridgment of this paper was read before the ¹tiona/ Academy of Sciences on April
26, 1932 at Washington, D. C.

' A. Sommerfeld, Zeits. f. Physik 4'7, 1, 43 (1928).
' W. Heisenberg, Zeits. f. Physik 49, 619 (1928).
3 F. Bloch, Zeits. f. Physik 52, 555 (1928);59, 208 (1930).
F. Bloch, Zeits. f. Physik 5'7, 545 (1929);61, 206 (1930); '74, 295 (1932).

' This assumption is made for simplicity but is not necessary. We shall see in section 5
that our theory applies, almost without change, to more general cases.
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2. FORMULATION OF THE MATHEMATICAL PROBLEM

We consider with Heisenberg and Bloch a system of N electrons each per-
taining, in the unperturbed state, to a different atom of a crystal. ' Let the
orbital motion of the electron be that corresponding to the lowest quantum
state. Besides, with every electron there is associated a spin the projection of
which on a given axis can be either positive or negative. Let r electrons have
negative spins and N —r positive. The projection of the total spin moment is
then equal to rnh/2ir, where 2m=X —2r If all th.e atoms are successively la-
beled by the numbers 1, 2, . N, let the positions of those containing an
electron with a negative spin be fi, f2, f„(fi&f2« f,) W.e denote
the antisymmetric wave function for such a distribution by P(fi, f2, f,)
As the magnetic interactions are neglected, all the functions with the same
number r, correspond to the same energy and the total wave function per-
taining to the magnetic moment m can be written as the linear expression

The coefficients a(f„ f„) are determined, in the usual way, by a secu-
lar system of equations when we introduce the mutual influence of the elec-
trons and protons as a perturbation. The form of the secular equations was
explicitly derived by Slater

ea(fi, f,) + g ff [a(fi', f„') —a(fi) . f,)] = 0. (2)

The summation is extended over all pairs of electrons having opposite
spins and fi', f, ' and fi, f„di Ielr only in that this pair of spins is in-
terchanged. The coeAicient Jff denotes the London and Heitler interchange
integral for the pair and c is the energy measured from an arbitrary zero point.
Usually, it is permissible to neglect the mutual influence of the more distant
atoms and to take into consideration only the interactions between contigu-
ous electrons. In this case the Eq. (2) is for most crystals reduced to

The sum includes now all pairs of contiguous electrons having opposite
spins. Ji represents the interchange integral for two adjacent atoms.

The main problem is to find a solution of the Eqs. (2) or (3), satisfying the
conditions at the surface of the crystal and other subsidiary conditions which
we shall state in the next section. Bloch has given a very elegant method of
transforming these equations. However, we shall not use it because the solu-
tion can be derived directly from the form given here.

3. SOLUTION IN A SPECIAL CASE

In order to show how the solution is arrived at, it is best to start from an
example. We take, therefore, the case of a linear chain of atoms with r =2.
The form which Eq. (3) takes in this case is

6 J. C. Slater, Phys. Rev. 34, 1293 (1929);3S, 509 (1930).
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«(f)) fi) + A[s(f) —I, fi) —s(fi) fi) + s(fi+ I, fi) —ci(fi) fi)
(4a)+ ii(f), fi —1) —s(f), fi) + s(f), fi + 1) —s(fi, fi) ] = O,

which holds for fi)fi+1. In the case fi=fi+1 two of the interchanges are
precluded and the equation becomes

«(fi, fi) + &i [s(f) —1, fi) —ii(f), fi) + s(f)) fi + 1) —ii(f), fi) ] = O. (4b)

The diIIerence equation (4a) has constant coeIIicients and its particular
solutions can be written in the form exp in(k, f,+kifi). The corresponding
energy level is

Ei))» ——4Ji(sin' ', nki—+sin' ', nkvd—) . (5)

This expression is symmetrical in ki and ki so that the solution exp in(kifi
+k,f,) belongs to the same energy. We can, therefore, build up theslightly
more general solution a(ki, ki) = ci expin(kifi+kif, ) +c, exon(k, f,+kifi) and
try to choose the coef6cients c& and c2 in such a way as to satisfy the subsidiary
condition (4b). It is important to note that while (4a) is supposed to apply
only in the case fi &fi+1, our solution is of such a type that it satisfies the
Eq. (4a) for all values of fi and fi, including fi ——f,+1. In this last case, both
Eqs. (4a) and (4b) are true and we can replace the subsidiary condition by the
difference

s(f) + I, fi) + s(f), fi —1) —2s(f), fi) = o

fi = f)+ I

It is easy to see that this condition is satisfied if we put

c, :ci ———exp i[n(ki —kq) + 24(k), ki) ],
where

Sill 0.'ky —SlIl Ak2
'

4(k), ki) = arctg
2 —cos (sky —cos o.'k2

The solution itself can then be written in the form

a(k, ) ki) = exp i[n(kif, + kgb) + nk, + 4(k)) ki) ]
(8)—exp i [n(kifi + klfi) + nki + 4)(k9 ki) ].

If we substitute for the surface conditions the periodicity requirement of
Bloch's, all we have to do is to define ki, ki as integers and n =2ir/X. The
Eqs. (8) and (5) will then represent a rigorous solution of the problem. It
differs from Bloch's result only inasmuch as o(k&, ki) vanishes for ki = ki. This'
means that the case of two equal quantic numbers does not occur and must
be excluded.

To obviate possible objections, we prefer, however, to show how a solu-
tion satisfying the actual border conditions can be found. These conditions
result from the fact that when an electron is at one of the ends of the chain
(fi= 1 or f& = Ã) a further decrease (or increase) of the number f labelling its
position is no longer possible. The corresponding transitions must be, there-
fore, excluded from the conditions (4a) and (4b). This means
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a(fg —1, fg) —a(f„f2) = 0,
a(f» f~ + 1) —a(fi, f~) = 0,

when f& ——1,

whenf, = A.
(9a)

(9b)

It is easy to see that in addition to a(k„k,) the expressions a( —k„k,),
a(k„—k,), a( —k&, —k&) are also solutions oI the system (4a), (4b) pertaining
to the same energy (5), because this energy does not change if we reverse the
sign of kI or k2. Combining these four expressions with suitable coe@cients
we can build up a solution satisfying the condition (9a). In fact, the Eq. (9a)
is fulfilled if the expression is arranged as a sum of terms each containing
the factor cosak;(f, -,'),—where j is 1 or 2. Such an arrangement is possible for
any value of the parameters o.k;. On the other hand, the border condition
(9b) can be satisfied by the same expression only for definite and discreet
values of these parameters. It is obvious from the symmetry with respect to
the two ends of the chain that n must be taken as

The condition (9b) is equivalent to the requirement that the solution
can be arranged as asum of terms each containing the factor cosnk; (f2 —X——,').
The arguments of 'the cos functions can be reduced to this form only if we

impose upon the numbers k; the conditions

(1 —1/Ã) kj —(I/~) [p(4, 4) + 4 (k&, —k2) j = 4',
(1 —I/r) k, —(1/ ) [y(k„k,) + y(k„—k,) ] = k, '.

Where the numbers k~', k2' are integers (1, 2, . Ã) and represent the
quantic numbers of the problem. The rigorous border conditions lead, there-
fore, to a different result from Bloch's periodicity relation: The numbers k;
are no longer quantic numbers but non-integral auxiliary parameters.

The coeAicients of the secular problem acquire in this case the simple form

a(f» f&) = cos nk&(fj ——',) cos nk2(f2 —X ——,')
+ cos ak2(fg —2) cos Aky(fg E k) .

4. GENERAL SOLUTION

The results of the preceding section apply with slight changes to the
general case. For a system with r = «X—m negative spins the energy expres-
sion is quite generally

(12)

In the case of a linear chain, we have

&kg
&; = 4J«sill

2E
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where the parameters k; are determined in relation to the quantic numbers
k, '( = 1, 2, N) by the equations

1
k; ——Q '[P(k;, k;) + y(k;, —k~) ] = k

N
(14)

The expression for a(fi, f„) becomes rather cumbersome. It is built
up of terms derived from the product

cos Qki(f, ——',) cos [0!kp(fp —3/2) —!)!(4)ki) 4(k2) kl) ]

cos [nk3(f3 —3/2) —Q(k3, ki) —Q(k3, —ki) —Q(ki, k~) —p(k3, —k~) ]

by all possible permutations of k&, k&, k„.
If the number N is large, the difference between k; and k does not ma-

terially affect the energy expressions for smaller values of r, i.e. , in the neigh-
borhood of magnetic saturation. As to the opposite case r = N/2, m = 0, the
terms of the energy expression in which k; is small and those in which it is
large (near to N) remain practically unchanged. But the middle range of
values of k;, about N/2, is considerably influenced in the sense of an increase
of this number. In the more important of our applications the states of small
magnetic moment will play but a negligible role. Therefore, we shall be satis-
fied with the approximation which is obtained by identifying k with k, as it
is amply sufficient for our purpose.

For a two dimensional quadratic lattice

xk; ~l)
q, = 4Jq sj.n~ —+ sin~ —)

2G 2G
G'= N. (15)

In the case of a three-dimensional cubical crystal

m-k; m.l; ere;
e; = 4JI sin' —1 sin' —+ sin'

2G 2G 2G
(16)

The parameters k;, l;, rI,, are in both cases connected with a set of quantic
numbers k, ', I, n = 1, 2, G by the relations (14) (with G in place of N)
and by two similar sets of equations which are obtained from (14) by substi-
tuting l or n instead of k.

In all cases, the Eq. (13) can be divided into a main condition, analogous
to (4a), which holds when no two negative spins are in contiguous atoms, and
into subsidiary conditions like (4b) which are true in the opposite case. The
main condition is satisfied by an exponential function (analogous to exp'(kifi
+k~f~) of the preceding section) and by a large number of other exponentials
derived from this. The form of the energy terms in the sum (12) is here also
completely defined by the main condition and by the exponential function
satisfying it. The subsidiary conditions are satisfied by a proper combination
of the exponentials and do not affect the form of the energy expressions.
Finally, the border conditions serve to define the parameters entering into
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the energy terms. Bloch succeeded in solving the main condition, therefore,
his energy expressions are formally identical with ours, although the symbols
have a somewhat different meaning. To this extent his results for other types
of two and three dimensional lattices can also be used. However, if we inquire
into the substance instead of the form, there is a profound difference in two
other respects which are far more import;ant than the changed definition of
the parameters.

(1) In the first place, no troo terms of the energy sum (12) may be effual In.
the example of section (3) we see from the formula (8) that a(f~, f~) vanishes
when k~ =k2. This means that the corresponding energy level does not exist.
The conditions are the same in the general case. Whenever two triples of
numbers b;, l;, n; are equal the function a(f&, f„) vanishes identically.
This is by no means surprising because the exclusion principle is contained in
the formulation of Slater's Eqs. (2) or (3) and makes itself manifest in all the
conclusions drawn from it.

(2). In the second place, the number of terms in the sum (12) depends only
on the absolute value of the magnetic moment It is. equal to -,'X—

~
m~, and

not to —,'X—m as Bloch has it. The mathematical reason for this is that the
case of no two negative spins being in contiguous atoms can be realized only
as long as the number of these negative spins is smaller than (or equal to)
half the number of atoms (r = 2%—m & —,'lV, or m~ 0). If this requirement is
not satisfied, we have no main condition but only subsidiary conditions, which
completely changes the aspect of the problem. However, we can reduce the
new problem to the old one by reversing the direction of our system of coor-
dinates, and by counting as negative those spins which were considered as
positive. To Positive and negative magnetic moments of tbe same absolute mag
nitude correspond the same energy levels. This fact is an immediate consequence
of the fundamental assumptions of this theory (section 2) which neglects
magnetic interactions. Both directions in space are equivalent and the energy
cannot depend on sense of the magnetic moment.

These two features of our energy expressions have an important influence
on the results and lead to conclusions which are considerably different from
Bloch's. Before closing this section, we should like to point out that the theory
can be carried through also in the case of Slater's general Eq. (2) which takes
into account interactions between non-contiguous atoms. For instance, in the
case of a cubical crystal the energy expressions become

E' = 4 g J„„g,[sin' 2ngik; + sin' 2ng2l; + sin' sngan ] ~

g1II'&03

where J„„„is the interchange integral for two atoms with a distance be-
tween them having the projections gld, g&d, g3d if d denotes the lattice con-
stant.

5. THE SUM OF STATEs

To the energy expressions (12) there must be added the magnetic energy
of the crystal equal to —2pmII, where p denotes the Bohr magneton and H
the strength of the magnetic field. The total energy is, therefore,
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c = e —2pmH.

The part e„depends only on the absolute value of the moment so that
s = s . For every energy level (19) there exists, therefore, another of the
form

+ 2pmH

which corresponds to the magnetic moment —p,m.
Accordingly, the sum of states Q = Zexp( —s/k T) can be divided into two

parts
Q = Z(H) + Z( —H), (2 l)

the first containing all the terms with exponents of the type (19), the s=cond
all those of the type (19').The two halfs Z(H) and Z( H) diff—er only in the
sign of H so that the sum of states Q is an even function of this quantity. The
average magnetic moment of the system

d log Q Z'(H) —Z'( —H)M=kT = kT
dH Z(H) + Z( —H)

(21)

becomes an odd function of H which vanishes for H=O. This fact seems
to make this theory inadequate for the explanation of permanent magnetiza-
tion. Ke believe, however, that this average is obtained by a type of statistics
which has a limited physical reality. In the case of ferromagnetic substances
the averaging must be done in a different way. Ke shall return to this ques-
tion in section 10 and shall first develop a few equations for the evaluation of
the function Z(H). With the help of the formula (12), we can represent each
term of the sum of states as+," ~ exp( —s~/k T+2mpH/k T), where 2m =X—2r
But according to (13) or (16), s; is a function of the parameters k;, I;, e; and,
for a given m, there will be as many different terms as there are possible
choices of these numbers. The totality of them is exp (2mpH/k T)Z„,

(22)

We use here the subscript k; as an abbreviation for the triple of param-
eters k, , l;, n;. As we found in the preceding section, all the e~,. in the sum
(12), or all th'ose in our product, must be different. In other words, our prob-
lem is subject to Fermi statistics. Our formula can, therefore, be treated in
the usual way: If we consider the expression

(23)

then, Z„ is obviously the coef6cient of the term of the degree r of the expan-
sion of R in powers of s:

Z. = 1
~

R
~r+1 (24)

the path of integration being a circuit round the point s = 0.
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The half Z(H) of the sum of states is now

X/2

Z(H) = g exp [(X —2r)piV/kT]Z„
r=a

Strictly speaking, the expressions R are not the same in the different
functions Z„. But within the approximation of putting k; equal to k;, etc.
(section 4) we can regard them as identical. Substituting (24) in (25) and
summing under the sign of the integral, we find

1 R (ze')l +' —1
Z(H) = — — ds',

2' I z& se
(26)

where v. is an abbreviation for

r = 2pIi'/kT. (27)

Although we spoke of one electron in every atom our equations apply
as well to the case of several valency electrons of different energy. In fact,
each of them will be in resonance only with its own kind in the other atoms
and will satisfy a separate secular system. The total sum of states is then the
product of the sums of state (26). If there are in an atom two or more electrons
in nearly equivalent orbital states and with unlinked or weakly linked spins,
the conditions are somewhat different; they are being now investigated by
Mr. D. Weinstein. It is probable that our expressions will continue to be
true, also in this case, with a change of the physical meaning of the sym-
bol J~ which will now include both the external and the inner interchange
energies.

6. PARTIAL EVALUATION OF THE SUM OF STATES

We consider the case that s;/kT is, in the average, large in absolute value
compared with the quantity r. In fact the characteristic feature of our theory
is Heisenberg's assumption that there is a strong inner directing force due to
the energies e;. The case of small e; is that when this assumption is not justi-
fied; it is, therefore, uninteresting in this connection. We have two terms un-
der the integral (26), let us focus our attention on the second and evaluate it
by the method of the steepest descents. In the usual way, we put the inte-
grand equal to e& and obtain the position of the saddle point x =2 from the
condition d@/ds =0:

The second derivative we denote by

exp (—e,/kT) ' ', E + 1—
+ —+1+A exp (—e,/kT) 2' (2 s r)2—

A exp (—e;/kT) —PS+ 1) — —= O.
~,. 1+ A exp (—r-;/kT) 3 —e" (28)

The position of the saddle point depends on the sign of the energy t.; or
of the interchange integral J~. If the sign is negative, A is small compared
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with exp ( —r): In fact, the left side of the Eq. (28) is negative when A =0,
but since the exponentials are large, most terms of the sum are, practically,
equal to one already for moderate values of A. The sum becomes equal to X
and the expression positive. There is a root in between, which does not lie
close to the point s=e '. Therefore, the last term in (28) is negligible com-
pared with the first two and must be omitted. Neglecting, at the same time, i
beside —,'X, we write it in the form

A exp (—e,/k2')

1 + A( —e;/kT)
e

2
(28')

Turning to the first term of the integrand of (26), we see that it is regular
within the path of integration. It has no pole in s =0 and the point s = e ' lies
outside the circuit of integration. The second term represents, therefore, the
whole integral which takes the form

Z(H) = +[1+A exp (—r.;/k2')]A " (1 —Ae')
(2&r&1)'&2 &, ,

(30)

It must be noted that A does not depend on the magnetic field because
the term containing r is neglected in the Eq. (28') Z(H) depends on H, only
inasmuch as it enters into the last factor of the expression.

The results are quite different in the case of a positive energy e;. A be-
comes now much larger than e '. In fact, for A = ~ the left side of the Eq.
(28') is positive. But for comparatively large values of A the terms of the
sum become negligible so that the other terms dominate and make the ex-
pression negative. The integral retains exactly the same form (30) but it does
not represent now the whole function Z(H). The circuit of integration is
widened to pass through the distant point s =A and the point s = e ' is now
within this circuit. Consequently, the first term of the integrand (26) has
now a pole in this point and the integral does not vanish but has the value
Z&'& (IZ)

Z(H) = Z&" (H) + Z"'(H)
where

Xr
Z"'(H) = exp +[1 + exp (—r —e;/kT)]

k~

(31)

and Z'" is identical with the expression (30). It is obvious, for physical and
for mathematical reasons, that at low temperatures Z(2) is negligible com-
pared with Z"'. In fact, apart from the unimportant factor (1—Ae')
Z& &(H) is identical with the expression Zz&, of the last section which repre-
sents the totality of all terms of the sum of states corresponding to I=0. It
follows from our expression of the energy (12) that the exponents of these
terms are very large, because all the terms of the sum (12) must be differ-
ent and, consequently, only few of them can have very small values. For this
reason Z&«&~ is negligible, if Ji/T is sufficiently large.
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7. EVALUATION CONTINUED

We now substitute into our general expressions the formula (16) for the
energy term. It will be sufhcient to treat the case of the three dimensional
lattice as the other cases have no physical interest. We use the approximation
k;, l;, n; = 1, 2, . G which is good enough as was shown in section 4. If we
define

zk;

2G 2G

"j
t = —)

2G
(32)

the summation can be replaced by an integration with respect to (, rj, f be-
tween the limits 0 and m./2. Moreover, we use the abbreviations

I3 = 2J,/kT, cos 2$ + cos 2g + cos 2l = p.

The terms of the formula (16) become then

(33)

e; = 2PkT(sin' $+ sin' g + sin' f) = PkT(3 —p). (3 l)

Turning to the condition (29') we can include the first term 3/k 7 into the
parameter A writing A'=A exp ( —3P). We obtain, then,

8 -~2 ~' exp P&
d(dqdg = —,'.+ g/e pP

(35)

The constant A' can be determined from this relation in the following way.
Let us subtract both sides of the equation from 1:The right side remains
equal to —, while the left side has an integrand with the same denominator as
(35) but with the numerator 1. The equation can, therefore, be represented as

g f t' (1/A') exp ( —Pp)

1+ (1/A') exp (—Pp)

(36)A = exp 3P.

If we omit in (30) the unimportant factor 1/(2m. tI) l, Z(II) takes in the case
of negative interchange integrals JI (0 the form

8N
log Z(H) = —(3/2)PX +

7rS

We substitute now f =-,'x —$' and similarly for g, i, so that p = —(cos 2('
+cos 2g'+cos 2f') = —p', obtaining an equation which has quite the same
form as (35) except that A' is replaced by 1/A'. We conclude from this that
A'=1/A' or

~/2

log [1+ exp P (cos 2$ + cos 2q + cos 2f) ]d$dqdp
0

—log [1 —exp (3P/2 + r)].
(37)

Equally simple are the expressions in the case of a positive interchange
integral (J»0). Substituting the notations (32) into the expression (31) we
And
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8'
log Z&" (H) = ', 7&7—r +

7r2

sr /2 ~

J
log [1+exp (—r —2p(sin' $+ sin' g + sin'I'))]dpdqdi,

Vo

(38)

to this must be added negative term Z&@ of the form (37) which is negligible
for low temperatures.

8. ELECTRONIC SPECIFIC HEATS

If the crystal is not subject to magnetic forces (H=r = 0), the two halfs
of the sum of state Q become identical and Q=2Z(0). As the free energy is
connected with Q by the relation &/

= kT log—Q, it is easy to find the expres-
sions for the internal energy and the specific heat.

We shall see in the next section that the case J~ &0 is that of non-magnetic
(diamagnetic) bodies. It we denote, in the usual way, kX =R and, moreover,

P = —8/T, 0 = —2ji/k, (39)

and tl.e number of valency electrons in an atom by s, we find for such materials
the temperature dependent part of the internal energy

8 ~/' pd(dydeeU= sEO—
1+ exp (—Pp)

(40)

This expression is but slightly different from Bloch s and agrees with it
in every important respect giving results analogous to those obtained by
Sommerfeld for free electrons. For high temperatures we can expand with
respect to Pp taking only terms of zero and first order. This gives

log Z(0) = Xs(log 2 —3P/2 + 3P'/16),

the temperature dependent part of the internal energy

U = —3sRO'/8T,

and the specific heat

c = dU/dT = 3sR(8/T)'/8.

(41)

(42)

The evaluation for low temperatures can be carried out in a similar way
as with the integrals of Fermi and Sommerfeld. The zero order approximation
is obtained by taking the integral fffpd/drldj over the part of the cube
0& $&x/2, etc. , limited by the surface p=8. This term which, in every
case, constant and of little interest happens to vanish. For the next ap-
proximation it is well to remember that the normal distance between
neighboring surfaces p = cos 2 $+ cos 2g+ cos 2g = const. is equal to
[(&p/&f)'+(Bp/ l)'+c&s(&p/&g)' 'Dp = s [sin' 2)+ sin' 2r&+ sin' 2f] imp Near.
p =0 it can be expressed by —,'3 —2(cos 2'+ cos 2f)'+2 cos 2&7 cos 2l ] '*Ap

The factor of Ap varies between a minimum of 1/2 3& and a maximum of —,'.
As the lower values have a larger weight, we take as a rough average -', of
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the minimum plus ~ of the maximum which is very close to ~~. On the other
hand, we must know the area of that part of the surface p=0 which lies
inside the fundamental cube. This surface goes through the middle of six
edges of the cube which lie at the corners of a plane regular hexagon and also
through the center of the hexagon. The surface itself is not quite plane and
its area is, therefore, slightly larger than that of the hexagon. We take as
its rough approximation the area of the circle circumscribed about the hexa-
gon which is equal to sr'/8. Multiplying the area by the thickness we find
that in the neighborhood of the element of volume element takes the form
dr =m'dp/32 and the correction of the integral becomes

pdp 7l

, t+ e-&~ 24P&

The internal energy for low temperatures is, therefore,

V = (ir2/24)sRTs/8,

and the specific heat

c = (x-'/I 2) sRT/8.

(43)

(44)

(43)

The expressions are different in the case of magnetic materials (Ji &0) and
they are derived here for the first time. We have to use the expression (38)
with 7=0 and find

8 f' " 2p(sin' $+ sin' g + sin' f)d(dgd IU= sRT—
J o 1 + exp 2P(sin' t + sin' g + sin'I )

(46)

For high temperatures (P«1) we can again expand with respect to the
exponent and obtain

21
1 g Z~'~(0) = X Il g 2 —3P/2 + —l3'

16
(47)

while —Z"'(0) is given by the expression (41).We see that for high tempera-
tures Z(') is not negligible compared with Z(') but becomes of a similar order
of magnitude, especially, as the factor I/(2sr~f) l is no longer small in this case.
We introduce the slightly changed definitions

P=8/T, 8 = 2A/k, (48)

If we determine U and c for T))0 from Z(') alone,

U = —(21/g)sR8'/T c = (21/8)sR(8/T)'

we get the correct dependence on the temperature but coeAicients which are
slightly too large.

The evaluation for low temperatures T&(0 is facilitated by the fact that
the exponent retains its positive sign in the whole interval of integration.
If P is large, the integrand is appreciable only for small values of the vari-
ables $, ii, f It is per.missible to replace the signs by their arguments which
lead to
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or

and

3
U =— +

(2~P) i'i 2'» 3~/'

U = 0.0830sRT"'/8"',

c = 0.208sR(T/8)'"

sRT

(50)

(51)

The coefficient in this formula is rigorous and not approximate as in (45).
The measurements of Eucken and Werth ' on the specific heats of iron

and nickel show for temperatures between 16' and 22'K considerable devia-
tions from the third power law in the sense of an increase of heat capacity.
Eucken himself points out that his observations did not go to suKciently deep
temperatures to establish the law which this excess follows. All we can say is
this: If the deviation is attributable to the cause discussed in the preceding
paragraphs, its order of magnitude leads to a value of 0 of a few hundred de-
grees and a value of Ji of a few one hundredths of a volt. If the formula (51),
for magnetic materials, were confirmed, it could give us very valuable in-
formation. The knowledge of the characteristic temperature 0 would be very
helpful in elucidating the mechanism of ferromagnetism (compare the next
two sections).

It should be pointed out that our theory neglects the possible variability
of J» and 9 with temperature. This is not a rigorous procedure because Ji
must depend to some extent on the distance between the atoms. We pre-
sume, however, that this source of error is very small at low temperatures be-
cause of the insignificance of the thermal expansion in this region. Neither
is the energy of magnetization contained in our expressions but this cause
makes an appreciable contribution only in the vicinity of the Curie point.

9. MAGXm rzXvj'ON

We turn now to the behavior of our crystals in a magnetic field. The mag-
netic moment is obtained by differentiating the logarithm of the sum of
states Q with respect to H

M=AT
dII

(52)

Let us first discuss materials with negative interchange integrals (Ji&0,
P(0) for which we have to apply the expression (37). The dependence of
Z(H)on the strengt'h of the field is all contained in the last factor [1—exp
( —3P/2+r)] ' which is very small compared with the other factors. In
fact, it does not contain the number of atoms X and this makes its logarithm
entirely negligible beside the logarithm of the rest of the expression. Sub-
stances with a negative J~ are, therefore, magnetically inert as far as the
electronic interchanges are concerned. We must remember, of course, that our
formulas are valid only when P is considerably larger than r, or —Ji larger
than 2pH. For fields of about 10,000 gauss this would mean that —J~ must

A. Eucken and H. berth, Zeits. anorg. Chemic 188, 152 {1930).
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be larger than 10 4 volt. We have pointed out in section 6 that the assump-
tion of very small values for J~ has little interest as it corresponds to the
case when Heisenberg's hypothesis does not apply and the older theory of
paramagnetism enters into its rights. The fact that materials with negative
interchange integrals of appreciable absolute value must be nonmagnetic is
evident directly from the energy expressions (12), (16).The state of vanishing
magnetic moment (m = 0) is, then, that of the lowest energy which dominates,
in an overwhelming way, over all other states. We arrive, in this way to the
following classification of crystals with respect to their interchange integrals
JI. Materials with large negative values of JI are nonmagnetic as far as elec-
tronic interchanges are concerned. Materials with small values of J& (negative
or positive) are paramagnetic. Those with large positive values of J~ are,
potentially, ferromagnetic (compare with next section).

In the next section we shall give reasons for the view that the formula (52)
should be applied with restrictions to the case of magnetic materials (A) 0).
Here we wish only to investigate what sort of a magnetization curve would
result if this equation were always valid. We know from formula (21) that
this curve is antisymmetrical of the general character of those pertaining to
paramagnetic bodies. What is its slope in the point II=0? It is easy to see
that in this point the slope is given by the expression

dM d' log Z(H) d log Z(H)=kT — +
dH p dII' dH ~p

We shall be satisfied with low temperatures when P becomes large. The
Eq. (38) gives us then the approximation

8/2

log Z(H) = —',Ssr + 1Vs T

2mB

—27' e
—3r

+ ~ ~ ~

25/z 35/2

(de/dH) p
= (1Vsp)P/kT,

neglecting a term of the order Ill'. If we refer M to one/cm' of the material,
the expression must be multiplied by n/Ill' (pp being the number of atoms
per/cm') and becomes ppKs'p'/kT. The values of the constants are as follows
@=0.9 10—", r is of the order 10", kT is about 4 10 ' for room tempera-
ture. (dM/dH) p is, therefore, of the order of magnitude 2s'Ill' 10 '. This repre-
sents a steep rise of the curve even for very small crystals.

10. EXPLANATION OF PRIMARY FERROMAGNETISM

We shall see in the next section that, in a sense, our Eqs. (52) and (54)
describe the magnetization curve of certain systems. However, their physical
reality is derived in an indirect way: We believe that the method of the sum
of states is inapplicable to a coherent crystal in the conditions which prevail
at low temperatures. In fact, what is the physical meaning of the sum of
states Q = Z exp ( —p/kI )P It is derived from Gibbs' concept of the ensemble
of systems which is equivalent to the succession, in time, of the diferent
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states of one given physical system. The mean value of any quantity derived
by the use of the sum Q represents, therefore, the time average of this quantity.
In the cases in which this method has been heretofore used this time average
is what we really observe. In the theory of gases states which occur with an
appreciable probability deviate but little from the mean state. The time aver-
age is very close to the most probable state of the system and very close to,
or identical with, the readings of our instruments which always integrate
over a finite, though sometimes small, time. The situation is entirely differ-
ent in our theory of magnetization. It is true that positive. and negative mag-
netic moments will occur equally often in the course of long periods and the
time average will vanish. But this time average is not at all close to the most
probable state. On the contrary, under the conditions mentioned, it coincides
with one that is so improbable that it practically never occurs. To show this,
let us compute the time average of the absolute value of the magnetic moment
in the absence of a field.

~
2pm

~

= kT(d log Z(EI)/dH)o = Esp[1 —0.058(T/0)"']. (55)

This means that, on the average, the crystal is in a state close to magnetic
saturation. When we further compute the relative mean quadratic deviation
from this time average

(56)

we find that the spread around the mean value is extremely small. These
formulas show us that the crystal is, practically, always in a state approach-
ing saturation. The time average zero is explained by the fact that the two
senses of the magnetic moment are equally probable so that the crystal, at
irregular intervals, spontaneously changes its magnetic polarity.

These results refer only to the case of low temperatures. When the tem-
perature becomes sufficiently high, the state of vanishing magnetic moment
is no longer one of low probability. This is apparent from our expression (41)
valid for high temperatures. This expression is, practically, identical with
the logarithm of Zz/2 of section 6 representing the totality of all the terms of
the sum of states pertaining to the magnetic moment m=0. The Eq. (41)
shows us that this term has a negative exponent and is small as long as
3i5/2 —3l3'/16)log 2. But when the temperature rises the inequality is re-
versed into 3P/2 —3P'/16(log 2, the exponent becomes positive, and the
term large. It is true that, in this form, the argument is not quite convincing:
The formula is derived for small values of P and it is not certain that it still
holds when 3P/2 —3P'/16 becomes equal to log 2 or smaller. However, we get
qualitatively the same result when we go back to the original definition

Z$7/2 Z exp ( —s/k T) the summation being extended over all possible energy
levels compatible. .with the condition M =0 or r =X/2. Now, let us look at
our energy expressions (12) and (16). The number of terms in the sum (12)
depends on the magnetic moment 2m; it has its minimum 0 for saturation
(2m=X) and its maximum X/2 for the nonmagnetic state (2m=0). As a!l
the terms of the sum must be different, the mean energy also increases from
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e =0, for saturation, to a huge value, for the conditions of vanishing magnetic
moment. It is easy to see that the energy excess of the state 2m =0 over the
state 2m=X cannot be smaller than 1.45%Jr (or 0.72hX8) and not larger
than 2.42XJi (or 1.21k&8). On the other hand, the number of difierent en-
ergy levels pertaining to the state 2m =0 is X!/(1V/2)!(X/2)! or, within the
accuracy of Stirling's formula 2 . We find, therefore, for Z~/2 the limits

X(log 2 —1.218/T) & log Zntp ( E(log 2 —0.728/T).

Owing to the large factor X, the change of Z@/~ with T is very rapid. In
the region log 2)1.218/T;(or T) 1.88) it becomes a very large number; in
the region log 2 &0.728/T (or T(1.048) it is a very small number. The transi-
tion from a high probability to a low probability of the unmagnetized state
occurs somewhere between these two limits at a point which is roughly of .

the order
Tp = 1.50. (57)

The conditions are the same for the other states of magnetization of our
crystal (2m =IV —2r). As r increases from 0 to X/2 the individual terms of the
groups Z„defined by the Eq. (22) become smaller and smaller because their
exponents grow in absolute value. On the other hand, the number of terms
increases with r being equal to X!/(X—r)!r!For high temperatures this sec-
ond effect overweighs the first: The probability of a state increases with
r= ', X—

~m~-and has its maximum for the unmagnetized state m=0. The
characteristic temperature above which such a distribution exists is, nearly,
independent of r and approximately given by the Eq. (57). For temperatures
T & Tp, the most probable state and the time average derived from the sum of
states coincide and the sum of states has a good physical meaning. The crys-
tal will be unmagnetized or very little magnetized. The opposite is true for
low temperatures. The negative exponents are so large that all Z~ areneg-
ligible but those pertaining to very small r. We have here the conditions
analysed in the beginning of this section. The point Tp of Zg. (57) is, there

fore, the primary Curie point of a coherent crystat: Below it the crystal is a
state of spontaneous magnetic saturation, above it, in a, practically, unmag-
netic state.

Let us now return to the discussion of conditions below the Curie point.
As we have seen, a coherent crystal is, then, in a state very near to complete
magnetic alignment but its magnetic polarity spontaneously reverses itself
at irregular intervals. %hat is the length of these intervals? Any change of
magnetization is due to perturbations coming from the irregular thermo-
kinetic state of the medium around the crystal and of the crystal itself. If
there were no mutual magnetic interactions between the electronic spins, every
electron would respond to these perturbations independently. In order to
change its polarity, the crystal would have to pass through the extremely
improbable state of vanishing magnetic moment and such an event could
occur only once in an eon. In reality, there exists some measure of magnetic
linking between the spins and they can turn over in groups so that the crystal
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need not pass through the most improbable state. However, if the crystal is
not small in size, the periods involved are still very long. The estimate can
be made in a way analogous to that used by Bloch, ' in a somewhat different
case, from the magnetic linking of the spins and from the moment of momen-
tum which the crystal has to pick up in order to reverse its magnetization.
We call a crystal coherent if Slater's equation applies to it as to a unit, the
numbers X and G determining its size. If there existed coherent crystals of a
considerable size they would be always in a state of complete magnetization
in some direction and a field could only change this direction but not demag-
netize them. This is contrary to observation and we are compelled to conclude
that the coherence extends only over microscopic elements. Even a well de-
veloped monocrystal must have a block structure. Slater's equation and all
the consequences contained in it which we hive developed in the preceding
sections applies only to the separate blocks. It is unimportant for us whether
these discontinuities of a crystal are irregular (in the sense of the mosaic
structure surmized by Darwin and Smekal) or form a regular secondary struc
tire, as advocated by Zwicky. The size of a few hundred atoms in each direc-
tion G, postulated by these authors, would insure a su%ciently frequent spon-
taneous change of magnetization.

We arrive, in this way, at the following picture of the constitution of
ferromagnetic materials. They are built up of microscopical blocks which are
in a state of permanent spontaneous magnetization. The polarity of this
magnetization is subject to frequent spontaneous changes. As far as our sim-
plified theory goes the electronic spins might have any direction and the mag-
netic axis could rotate freely within the block. In reality there must exist cer-
tain directions of preference related to the main crystallographic directions be-
cause of the interactions between spin and orbital momentum. ' The magnetic
polarity will a1ternate between these preferred directions. The permanent
magnetization of these micro-crystalline blocks is what we designate as the
primary ferrogmagnetism. The secondary magnetization of the bulk of aferro-
magnetic substance is produced by the alignment of the magnetic axes of the
primary elements. While this picture is, by no means, new we claim to have
demonstrated, for the first time, that the permanent magnetization of the
blocks is not a hypothesis but a necessary consequence of the exclusion prin-
ciple.

REMARKS ON SECONDARY MAGNETIZATION

Already in Maxwell's rreotise we find the opinion that ferromagnetic ma-
terials are built up of permanently magnetized microcrystalline blocks. He
believed that a magnetic field produces an alignment of the magnetic axes by
rotating the whole block. Although this seemed little probable because of the
enormous viscosity of these materials, I thought Maxwell's hypothesis suN-
ciently interesting to have it tested experimentally. A few years ago I caused
Mr. Yensen" to look for a possible rotation using the Hull-Debye x-ray

s F. Bloch, Zeits. f. Physik 74, 295 (1932).
' Compare F. Bloch and G. Gentile, Zeits. f. Physik 70, 39S {1931).
~0 T. D. Yensen, Phys. Rev. 32, 114 (1928).
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method. It was not very surprising that the result was negative. According
to our results of the preceding sections, Maxwell's assumption is unnecessary
because the magnetic polarity of a block alternates while the block itself re-
mains in place. In modern times the idea of permanently magnetized micro-
crystals was used with great success by Weiss" in the case of polycrystalline
materials. Recently, Bitter" gave a considerable amount of experimental evi-
dence which tends to show that it applies also to monocrystals.

The objective of this paper and its main result is to establish the primary
ferromagnetism of the microcrystalline blocks. There exists a considerable
literature about secondary magnetization and we limit ourselves, in this con-
nection, to a few remarks. The agglomeration of blocks represents a large num-
ber of similar systems side by side. We can interpret, therefore, the statistical
averages of section 9 in a new way. They represent as well the time averages
for a single block as the actual mean values for the agglomerate. The simpli-
fying assumption is implied that the blocks are all equal and that the mag-
netization has one of two opposite directions. It would be easy to drop these
restrictions but hardly worth our while, On the contrary, we simplify still
further by dropping the small second term of (53), i.e. , by assuming that our

'

blocks are completely magnetized. Eq. (52) gives then for the magnetization
(per unit volume of the agglomerate)

EspH
M = esptgh

kT

There are two effects left out of account in this formula, which can modify
it sufficiently to produce a spontaneous and permanent secondary magnetiza-
tion. The first is the field produced at a given point by the rest of the system.
According to Lorentz, " this cause can be taken care of by substituting in-
stead of the outer field II the actual strength of field II' =II+nM. In Lorentz'
cases n was of the order -,'but it is hard to say what it is equal to in our case.
The condition for secondary permanent magnetization would then be
(dM/dH) p(0 or nNs'y'/kT) 1/n. The . fact that monocrystals of iron and
cobalt have little or no remanence indicates that this cause is not quite suffi-
cient to produce permanent magnetization and points to a rather small size
of the blocks or to a small value of o.. The other eA'ect which distorts the
magnetization curve is the inHuence of mechanical stresses put forward by
Akulov" and discussed in detail by Gans" and by Becker."These two causes
seem entirely sufficient to account for all the phenomena of secondary ferro-
magnetism. We wish, only, to point out that they may give rise to a sec-
ondary Curie point which would be observable by magnetic methods if it
happened to be lower than the primary Curie point determined by the Eq.

"P. Weiss, Phys. Zeits. 9, 361 (1908)."I,Bitter, Phys. Rev. 38, 528 (1931);39, 337 (1932).
~' H. A. Lorentz, Enzyklopadie der math, Wiss. U 14, section 37."N. S. Akulov, Zeits. f. Physik 04, 817 (1930).
'5 R. Gans, Schriften d. Konigsberger gelehrten Gesellschaft 8) 33 (1931).
'6 R. Becker, Zeits. f. Physik 62, 256 (1930),
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(57). The problem of relating these theoretical Curie points to those found by
observation is not simple and we reserve it for another communication.

Note added in proof It w. as overlooked by the writer that, in another paper
(Leipziger Vortraege 1930, p. 67), Bloch gives the proportionality of the
specific heat of ferromagnetic materials with T'". However, the agreement
with our results is more or less accidental, as Bloch's treatment is quite differ-
ent and makes use of the two assumptions, pointed out at the end of our sec-
tion 4, which we do not consider as permissible. —The experimental test of
this law is complicated by the fact that the elements of the iron group contain
two kinds of valency electrons, the first kind having, presumably, a negative
interchange integral, the second a positive one. (Compare: Slater, note 6).
The complete electronic specific heat is, then, to be represented by the sum
of our formulas (45) and (51): c =R [u&s&T(8, +nisi(T(0i)@'], n~ ——ir'(12,
o.2 ——0.208. Only 02 is related to the primary Curie point.


