JULY 1, 1932 PHYSICAL REVIEW VOLUME 41

The Equation of State of a Non-ideal Einstein-Bose or
Fermi-Dirac Gas

By G. E. UHLENBECK AND L. GROPPER
University of Michigan
(Received May 25, 1932)

With regard to the question if from isotherm measurements one can obtain an
experimental test for the existence of Bose statistics in real gases, as is required by
theory, we prove the following general theorem. The “Zustandsumme” of a non-ideal
Bose or Fermi gas is given by the classical integral provided one replaces the Boltz-
mann exp(— ¢;;/kT) factor by:

el T(1 + exp [~ dnmkTry?/h?) (1)
for each pair of molecules (47). For the second virial coefficient B, this has, i.e., in a
Bose gas, as a consequence that:

B = B non-ideal class + Bideal Bose + B’ 2)
where: .
B’ = 27er drr*(1 — e *OITY exp [— dn2mbTr/h?]. (3)
0

Only at very low temperatures do the last two terms in (2) become appreciable. They
are then of the same order of magnitude, but have opposite signs. Due to this fact, due
to the lack of precise knowledge of the molecular forces, and due to the absence of
accurate measurements of B at very low temperatures, one can as yet not decide from
isotherm measurements alone whether or not real gases obey the Bose statistics.

I. INTRODUCTION
1.
S IS well known, it has been proved from the fact that electrons and pro-
tons obey the Fermi-Dirac (F.D.) statistics, that a gas consisting of par-

ticles of even charge obeys the Einstein-Bose (E.B.) statistics.! A neutral
gas, for example helium, is a special case of this. The question therefore be-
comes very important, if one could for example verify this theoretical predic-
tion from equation of state measurements, in particular from the experi-
mentally determined values of the second virial coefficient B.

The theoretical expression By, for a non-ideal gas, obeying Boltzmann sta-
tistics is, as is well known :2

Ba = 27er drr?(1 — g~¢(NIET) (1)
0

N is the number of molecules per mol. It is here assumed that the intermole-
cular forces are radial and have the potential ¢(7).

The expression Bg g, or Bp.p. for an ideal gas obeying Einstein-Bose or
Fermi-Dirac statistics, is:

1 E. Wigner, Sitzungsber. der Ungarischen Acad. 1928, p. 1; P. Ehrenfest and J. R. Oppen-
heimer, Phys. Rev. 37, 333 (1931).
2 See e.g., R. H. Fowler, Statistical Mechanics, Ch. VIII.
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B . 2 3/2
E.B.} _ $_1~<_L> N @)
Br.p. 24 \7TmkT
In the recent work on the quantum theory of the equation of state of real
gases (London, Slater, Kirkwood, Keyes, Margenau) one has made only use
of (1), introducing for ¢(r) the theoretical expression obtained from a gen-
eralized Heitler-London calculation.? The reason that (2) was neglected is,
that only at very low temperatures (say below 20°) it becomes appreciable,
and because 1t was always assumed that the B for a non-ideal Bose gas was the
sum of (1) and (2).
We wish to show in this paper that this additivity is not strictly true, but
that in addition there occurs a term due to the interaction between the Bose-
ness and the non-ideality of the gas. We get for a non-ideal Bose gas:

B = Bd + Bgp. + B'rp.s. 3

where:
Bgp. = 27er drr*(1 — e/ ) exp [— dnmkTr2/ h?] 4)
0

2. The proof of (3) and (4) rests upon a kind of generalization of the
exp (—V/kT) theorem of Boltzmann for an E.B. or F.D. gas. Recently
Slater* has pointed out the analogue of this fundamental theorem in the
quantum theory. He remarked that quantum mechanically, due to the ortho-
gonality and normalization of the wave functions ¥, belonging to the energy
values E,, the Zustandssumme Sq may be written:

Se = D G BnliT = f .. fdﬂh ce o day e Bl kT, 2 (5)

n

In Boltzmann-statistics for a given E, all the G, linearly independent wave
functions ¥, belonging to it, are allowed, and must therefore occur in the
sum,® so that the G, does not explicitly appear any more. In Bose statistics the
G.=1, because only those E, are allowed, to which belong the symmetric
wave functions, and only these have therefore to occur.in the sum. Similarly
in the F.D. statistics we have the E, to which the antisymmetric functions
belong. Hereafter we will distinguish between these three cases by writing
Soss Soz.B., Sor.D.

Slater compares (5) now with the classical “Zustandsintegral” after in-
tegration over the momenta:

3 F. London, Zeits. f. Physik 63, 245 (1930); Zeits. f. phys. Chem. B. 11, 222 (1930).
J. C. Slater, Phys. Rev. 32, 349 (1928); J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682
(1931). H. Margenau, Phys. Rev. 36, 1782 (1930); 37, 1014, 1425 (1931); 38, 747, 1785 (1931);
Proc. Nat. Acad. 18, 56, 230 (1932). J. G. Kirkwood and F. G. Keyes, Phys. Rev. 37, 832; 38,
576 (1931). J. G. Kirkwood, Phys. Zeits. 33, 39 (1932). One has made small corrections in (1),
though, to allow for the existence of discrete states (formation of polarization molecules).

¢ J. C. Slater, Phys. Rev. 38, 237 (1931).

5 Comp. P. Ehrenfest and G. E. Uhlenbeck, Zeits. f. Physik 41, 24 (1927).
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2emkT\3V 12
Sel = ——h2 > f LI fe‘V/"del o dZN (6)

where V(x; - - - 2y) is the total potential energy due to the intramolecular
forces and eventually also due to external forces.

One might expect from the correspondence principle that for sufficient
high temperatures where the influence of the discreteness of the translational
energy levels can be neglected with respect to the influence of the intermolec-
ular forces (which is already the case, excluding the electron gas, say for
T>1° absolute)®

2amkT\3N 12
Dop.e BTy ( “—> eVIrT, (7
n (T>19 h?

Slater makes this also plausible from the meaning of ¥,? as a probability
density. In Chapter III we will give an analytical proof. This gives the
justification even in the quantum theory for the use of (6) in the case of a
Boltzmann gas.

For the case of a E.B. or F.D. gas we will prove a theorem analogous to

(7):

1 <27rka>3N/2

s (T VIR X
> orp.e Bk 2 {151 NI h?

ZE.B‘KE”/’CT%L?
n

(8)
111 + exp [— 4xmkTr:2/h?]
X
where the product has to be taken over all pairs of molecules, and 7;; is the
distance between the (7j) pair. This again holds as indicated for temperatures
so high that the influence of the discreteness of the translational energy levels
is negligible, but not yet so high that the deviations due to the E.B. or F.D.
statistics from the classical gas laws can be neglected. These are given by (8)
in first approximation; in addition therefore the volume must not be too
small. One sees from (8) that there is an apparent attractive force in the E.B.
gas between each pair of molecules with the potential:

¢ = — kT log {1 + e~4vr2mk1/hm} ©)

Of course for temperatures so high that the deviations due to E.B. or F.D-
statistics can be neglected compared to the non-ideality of the gas (7', say for
He, >20° absolute) (8) goes over into (7).

3. Because the total potential energy V (in absence of external fields) can
be written in the form:

V= Z¢(7w)
i
(8) can by using (9) be put in the form,
1 [ 2emE T\ e
e = ]W P Ii_jIe—(¢z;+(¢z] )IKT (8a)

6 We will distinguish the integrands of Sgg, SqE.B by subscripts B, E.B. etc.and sometimes
write for the sums simply =g, Zg.p. etc.
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Exactly as (7) is carried through by way of (6) to give (1), so (8a) is carried
through and will give again (1) when we replace there ¢ by ¢+¢’. Introduc-
ing then the value of ¢’ we immediately obtain (3) and (4).

To obtain an idea of the contribution of By 3.’ to the second virial coeffi-
cient, we have made in the case of helium a graphical integration, introducing
for ¢(7) the theoretical expression used by Kirkwood and Keyes, and the
slightly different one proposed by Margenau, as well as the half empirical
one calculated by Lennard-Jones.” We got:

a. T =20°:Bgp.=—08 Bgpp =+12
b. I'=35°: Bgp.=— 064 Bypp =+35.4.

We see therefore that By 3. and By p.’ are of opposite sign and of the same
order of magnitude at these low temperatures. At higher temperatures of
course both go to zero rapidly. It is clear therefore that because of this fact,
it will be still more difficult to decide from the experimentally determined B
values at low temperatures, between the classical and the E.B. statistics. In
fact, with the uncertainties still existing at present, both in the theory of the
intermolecular potential ¢(r) and in the experimental material, in spite of the
rather great accuracy and extent of the latter,8 it seems to us rather hopeless
to try to make this distinction with this method.

Quite analogous results are obtained for the F.D. statistics, the signs be-
ing merely reversed,

BF,D.= *BE'.B B/F‘D.= —B,E.B-
so that also the existence of the F.D. statistics may not be ruled out.

II. A NEw TREATMENT OF THE IDEAL GAs

4. In order to prove (7) and (8), it will be convenient to show it first in the
case of the ideal gas, because as we will see in Chapter I1I, the proof for the
general case can be made to rest upon the evaluation of the sum for the ideal
gas. Consider first as the 51mp1est case two atoms in a one-dimensional box of
length L.

a. With Boltzmann statistics we have to take all linearly independent
wave functions belonging to each energy value, and we get therefore for the
sum:

MR NomXe
Z [ Z Ze—awz/Lﬂ(manz)( Yonm, 4 sin? ——— sin? ———
L

niZng L

NimTXe NomXy
+ sin? ——— sin? ——}
L L
(10)
had T X Mo Xy
> DoeemlIr b gin? —— gin? ———
L = 5 L L

7 Comp. R. H. Fowler, Statistical Mechanics, Ch. X.
8 Comp. G. P. Nijhoff, Dissertation Leiden, 1928.
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2 niTX 2 Nom X
= [_, Zeva'er/LG‘? sin? it N e Ze~a7r2/l42n22 sin? ramve
L L

L ny L ng

where:
a = h/8rmkT

In the neighborhood of zero values of x; and x; we may replace the sums by
integrals and obtain:

2rmkT

> = (1 — e=2la)(1 — gm=2la), : (11)

From the symmetry of the problem it is clear that for x; and x5 in the neigh-
borhood of L we have an analogous expression replacing x; and x; in (11) by
L—x; and L—x;. We see therefore that 23 is zero at the boundary of the
square OABC and rises rapidly from all sides to the value 2rmkT/h. In the
center the wave functions in (10) will average out, because of their different

X2

B Cc
L
0 L A X

Fig. 1.

phases. Replacing them by the average value 1/4 and the rest of the sum by
the integral, (10) again becomes 2wmkT/h?, so that Zp remains constant
throughout in accordance with (7). As we will see in §5, the exponentials in
(11) account for the correction due to the discreteness of the energy levels.

b. With E.B. or F.D. statistics we get:

ZE.B.} _2

Z Z Ze——ar2/L2(nl2+n22)(%)5nlnz
F.D.

{. mwEy |, NemwXe
L2 ”1%’“2

(12)

L Mmmxy | Memky) 2
+ sin —— sin
L L

We see that OC is for each term of the sum a symmetry line; in the F.D. case
it is a zero line, in the E.B. case a maximum line. This will therefore also be
the case for the total sum. We get working the bracket out and going over
from the double sum to products of single sums asin a:

.B. 1 hd nw
gj;} =325t ”27,:2[ Ze_"‘"“m”z{cosz(xl — X3)

n=0

(13)
— cos i+ m}]
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~ All the terms in the first sum of the bracket are in phase along the line x; =x,
whereas the second sum has a value only in the corners O and C; in the rest
of the square the second cos averages out to zero. Therefore we can neglect
the second sum with respect to the first sum. Neglecting also the exponentials
in Zp (this can really only be justified for NV particles, see §5) and replacing
the sum by an integral, we get:

ZE.B.} 1 2omkT
2r.p.

2 h?

This is in accordance with (8). We have therefore practically everywhere half
the classical value; only along OC it rises in the E.B. statistics sharply to the
classical value, and in the F.D. statistics it decreases equally sharp to zero.

5.

Going over now to NV particles in a one-dimensional box of length L, we
have:

a. for Boltzmann statistics:

2amkT\Y/2 N
ZB =

1 — ez, 15

) I ) (15)

This is clearly (11) extended to N particles. From this follows the free energy
¥, according to:

{1 + eploma2}, (14)

L
oot = [ [ day T (16)
0

Of course one must remember that (15) holds only for every x; between 0 and
3L, and that for the other half we have an analogous expression replacing x;
by L —x,. Because of this symmetry we can write Eq. (16):

Qb T\ V12 L/2
eVl = <~— ) .2Nf .. 'fdxl < dxy H(l — eﬁxﬂ/a)'

h? 0 .
Of all the terms in the product we need only those which after integration give
terms proportional to LY and L¥!; because we are only interested in the
second virial coefficient. We then obtain:

7

2aemkT\N/? N h? 172
o (Y[ ECENT
h? V \8wmkT
writing V for L now. This gives for the pressure: ’
% NkT\:1+ 1 1 < h? >”2:| (18)
PE Ty Ty v 282 \emkr/)

This agrees with the result obtained by the direct calculation of the Zustands-
summe.? The second term gives the correction due to the discreteness of the

% For a gas of N particles in a #-dimensional vessel this gives:

_NkT-1+ 11 ( A )1/2]
="y 2812 Yun \amkT
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energy levels. This correction is independent of N, in contrast to the correction
due to the E.B. or F.D. statistics which are proportional to N. For this reason
the above correction is completely negligible. Because it arises from the ex-
ponentials in (15) we will from now on neglect these.

b. For E.B. or F.D. statistics we get for the sum:

_ Z Z . Ze_o“rz/m(nlu_...nNZ)gnlu'nN

= ny (19)

41 . hmXy . RNTXN 2
Z SIn ———— + + * S1n —
P L L

P (-1)

where the sum goes over all permutations of the x; keeping the quantum
numbers fixed. The factor g,,...., is one, when all the »; are different; is 2
when two are the same and the other different; 4; when three are the same,
etc. When we work the square out we get first of all the square terms, which
are just the Boltzmann terms evaluated in a. From the rest of the terms we
must select only those which after integration over x; will give terms pro-
portional to L¥~1. One can easily convince oneself that these terms are of the
type:
nymwXy Ny4mwXo
sin? ——sin? ——— - - -
L

WmX; | WWE; | MemX; | MW (20)
. N3mXo Nam X1
L L L L sin? ——sin? ——— - - -
L L

Asin §4 we write for the first four sin:
%[COSZLl—r(xi — x;) — cos —n—ﬂi(x@ + x;)] X
L L
Nom Nomw
[COS“[“‘—(xi — x;) — cos ~L—(xz- + xj)].

For the same reason as in §4 we may neglect again the cos of the sum x;+4x;.
Going over from the multiple sum to products of single sums, and replacing
the sums by integrals, we get:

ZE.B,} 1 <2ka>N/2[l Lo
SroS TNIN R T L 2emkT
0 n 2
Z{f g™ L2n? cog —Tr(aa~ — x,-)dn} ]
ij 0 L

1 <27rka)N/2[ :l
= — 1+ Ze~(ri—x,')2/2a
N! h? i

1<27rka)N’2 {1+; (eieppafal
= —(— [1{1 + e (@ma2ia},
M\ ¥

(21)
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The sum and product are to be taken over all pairs. The last two lines differ
only in terms which after integration over x; give terms proportional to
powers of L lower than N —1, and therefore they have been neglected.
Formula (21) agrees with (8), when we put there V'=0.

To check (21) further we may calculate the free energy. One obtains:

L
VAT = fdxl...de{ 2.5,
0 > r.p.

(Y LD E Y
Vv

AN 2 \demkT

where again we write V for L. Neglecting the 1 with respect to N, we get for

the pressure:
& NkT N 1( h? )1/2]
= s 22
? 1% 14 [ +,V 22 \wmkT 22

which agrees with well known results.!® Comparing (15) and (21), and their
consequences (18) and (22) resp. one sees that the reason why the E.B. or
F.D. correction has the factor IV, in contrast to the discreteness correction, is
simply that the number of pairs, which one can form with NV objects (x;), is
IN(N—-1).

These considerations can immediately be extended to a gas in a three-
dimensional rectangular vessel. One obtains then instead of (21):

ZE_B,} 1 <2ka>3N/2
D r.D. ?

T
so that one sees that the apparent potential due to the Bose-ness is radial
(see Eq. (9)).

H(l + e— (1120 [ (mi—j) 2+ (yi—yj) 24 (2i—2))?) (2 la)

i

II1. TueE Non-IpeEaL E.B. or F.D. Gas

§6.
The wave equation for the whole gas we write as:
(H—Ey=0
where:

1
H= 2 o pa + p® o+ 2a) + Viwn- - - 22) 23)

V= 206+ >m
Iy ;

where ¢;; is the interaction potential between the particles and m; an eventual
external potential. We shall abbreviate always all the coordinates by ¢ and
all the quantum numbers by #. We wish to show in this paragraph that:

10 For an E.B. or F.D. gas in an #-dimensional vessel one finds according to the usual
method:

NET~ 1 ( k2 )"/2 N

=222z 2.
PN o) v
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Ze~En/kT¥[/n2 = Z¢ne~H/ de)n . (24'>

In the right-hand side H is to be considered as an operator working on ¢,,
which are the normalized eigenfunctions for the ideal gas.!* Formula (24) is
true regardless of the statistics, that is to say, it holds equally well when we
take on both sides only the symmetric wave functions (E.B. statistics), or
only the antisymmetric wave functions (F.D. statistics), or all the wave
functions (Boltzmann statistics).

For the proof one remarks first that for any function (power series) f(x),
we have:

in which X again is the operator, in particular:
e_E"/kT‘pn = C_H/kT\Pn- (25)

We develop now ¢, according to the normalized eigenfunctions of the ideal
gas. In the case of a cubicle vessel this is simply a development in a multiple
Fourier-series

Yaulg) = chmd’m(Q) (26)
where one must then remember that ¢ »(q) is an abbreviation for:?
¢ ( ) < 2 >3N/2 . mur;cl . mom Y1 . MINTEN
myeeemgy (%1 0 zy) = — sin sin - -sin .
A L L L

Substituting (25) and (26) in the left-hand side of (24) we get:
Done Bl K = 5T DT D citaipie HI Mgy = D e HIM g,
n n [ i 7

since: 2,CniCn; =08
§7.
Introducing for simplification:

V' = 8w2mV/h* E' = 8r'mE/h®
the wave equation becomes:

%y /dg* + (E' — V)Y =0
and for the sum, using (24) we get:

Semiings o Tentt = Fgerdiavg,
n n

n

1 Comp. F. Bloch, Zeits. f. Physik 74, 295 (1932). We came to this result independently
and because our point of view is somewhat different, we thought it not superfluous to repeat the
proof.

12 This is in the case of the Boltzmann statistics. For the E.B. or F.D. statistics one takes
the symmetric or antisymmetric combinations, and because these form with respect to sym-
metric resp. antisymmetric functions a complete orthogonal set, the argument remains the
same.
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where « has again the meaning 4%/8w*mkT and where g abbreviates again the
3N coordinates of the gas.

We will prove now that when « is very small, we have in first approxima-
tion:

S et g, o gt ek, @)
n

n

where #%,’/8m*m are the energy values of the ideal gas. In particular for a cu-
bicle vessel

€ = 71’2(%12 + mt 4 - - - %31\72)/1:2-

In this way the evaluation of the sum for the non-ideal gas reduces to that
for the 7deal gas. Using then the results of Chapter II, we will then have
proved our main theorems (7) and (8).

Formula (27) is not obvious, becduse d?/dg* and V' are not commutable,
so that in general:

eoz(dZ/dq2~V’) = ea(—V’-Hﬂ/qu) _-_t: e——aV,eadzlqu

:1_—_ ead?/dg?, p—aV’

To prove (27), write:

F = ex(@/d=V)g
then F will fulfill the differential equation :*®
oF /da = (8%/9¢%) — V')F
which we rewrite:
OF /o + (e’ + V)F = (82/d¢* + &./)F (28)

Fora=0, F=¢, and the right member is zero. In first approximation there-
fore:

F = ¢peaentV) (29)
which gives (27). In Note I we will prove that in higher approximations:

Z¢Izea(d2/dg2AV’)¢n = g—av’ Ze~ae§,¢n2, [1+ afi(q) + a2falg) + - 1 (30)
which justifies more strictly that (27) is true for small «; fi(¢), f2(q) are cer-
tain functions of the coordinates, which contain V and its derivatives.

As a special example, which is of interest because the summations can be
carried out exactly, we will consider in Note II the case of the harmonic
oscillator.

Note I.

To find the next approximation we substitute (29) in the right-hand side of (28). Considered
as a differential equation for F as a function of @, we can immediately integrate. Making use of
the Schriodinger equation:

13 Comp. F. Bloch, reference 11.
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(d*/dg* + &/)gn = 0

od(  dW’ dd>n av’ ad  dV'\?2 s
F=|¢n— —<Ln 2 — | — —a(e V) 31
[:¢ 2;¢ dq2+ dq dq§+ dq)]e e

we obtain:

Substituting in the left-hand side of (27) and calling the sum for the ideal gas:
S = Ze_"“n b

y 2/q2v’ 4V’ dS av’
Tt CAE L IECO
'an) ¢ m=e 2\ dg* + dg dq + dgq

we get:

Substituting the value of .S from (15) and (21), only the third term of theright-hand member will
give a term proportional to a. Neglecting the terms which give o2 and o?, we obtain:
a. for Boltzmann statistics:

’ i
ZB = ( )3N/2 v H(1 - 5¥I‘2/a) [1 o Z 1 ——ee_z 2/a+ e ] (32)
b. for E.B. or F.D. statistics:

3N /2
= 2 - i<_1_> e TI( + o-@imaitiae))
7]

ZFD "\dmo
s — X ("1/201)(21::‘)2 V' oV’
{ o+ ZQL;( V _) :I -

45 1xe @ —‘"j)’/za ox; 0

We must remark, that the terms proportional to « in (32) and (33) contribute to the second
virial coefficient, but as one easily verifies they will give corrections to (3) which are propor-
tional to & (for a gasin a three dimensional vessel), whereas (2) is only proportional to a%/2,

Further one must remark that the second term in the bracket of (32) and (33) are not the
fi(g) of (30), for if one proceeds to the next approximation, one gets another term proportional
to «, which contains 92V’/dx:%. One can convince oneself though that in the second virial
coefficient these terms give corrections proportional to powers of « higher than .

One can approach the proof of (27) from a somewhat more general standpoint. When f and
g are any two non-commutable quantities, one can show that for small values of a:1

0 = {1 @/ Def — f) 4 -+ - Je-
When we identify now g with d?/dg? and f with V7, and let exp[a(f+g) ] work on ¢, one obtains
again (31).18

Note I1.
For the harmonic oscillator it is possible to carry out the sums exactly. Introducing the
abbreviations:

y = 2xx(mv/ k)12 0 = hv/kT
we can write:

H,%(y)

i (34)

QrmkT)™12 Y e Enlkly,2 = (20)112¢7012~0 3 gnb

4 Comp. J. E. Campbell, Theory of continuous Groups, pp. 54-57, for analogous questions.
15 One uses here the special case # =2 of a general formula for

derived by Hylleras (Zeits. f. Physik 74, 216 (1932)).
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where » is the frequency and H, the #* Hermite polynomial. Introducing Weber's function
D(y):*e
H,(271%y) = 20126 4D, (y)
the right-hand side becomes:
(20)112¢70/2 Y gm0 D, 2(2112y) /n!.
%

We distinguish again fwo cases;
a. Boltzmann statistics. We have to sum over a/l values of #. From the general result:!”

D, (&) D, 2 22 ~z
ZMW‘” = (1 — e %) 2@+ liexp | — ‘f_fl_____‘f_’ﬁ_ (35)
n n 2(1 — ¢ 25;)
putting x = 0; £ = n=21/2y, we obtain:
20 0 0
@rmityte St = (=g )remp (= 5 = 5% a3 (9

One sees that for 0 very small the right-hand side goes over into:
0212 = g=ontmi? (KT — V[T

b. E.B. or F.D. statistics. We must suppose then that we have to do with two particles
attracting each other with a force proportional to the distance between them, moving in a one-
dimensional vessel. If x stands for the distance between the particles, in E.B. statistics we must
take only the eigenfunctions even in x, and in F.D. statistics we must take the odd ones. Separat-
ing into center of gravity and relative motion coordinates,!® we have then to consider for the
relative motion simply the sum (34) where in E.B. statistics we have to sum over all even values
of #, and in F.D. statistics over the odd values!® and where one must remember to replace 7 by
4m. Using now the general result;2°
2

+ 7? @7

sh 3 Ene 2

Z
neven Dn(E)Dn('f}) 2 1 ( E ) CO!
M N = — p—2z)—1/2 —_— teh
2 { n' ¢ (1= em)™iexp coten sinh (1 — ¢

podd

From this follows then immediately:

(xmkT) 123 EB. X ( 20 )112 ( ) , 0) g ( 22 )g
Y (. — tgh ) At + B QRET
(rka)_””ZF.D.% NT—en) P\T73 778 e —og)s ©9

For small 6 the right-hand side goes over into:
%e—n‘lmﬂﬁ/kf’(l + e—4w2kax2/h2)

in accordance with (8).

16 Whittaker-Watson, Modern Analysis, p. 347.

17 See G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930). F. Bloch reference 11
also gives the result, using a transformation function of Kennard (Zeits. f. Physik 44, 326, 1927.)

18 Strictly this is only possible for an infinite vessel. Because we are not interested heére in
the discreteness effect of the total translational motion, this is quite allowed.

19 The center of gravity motion will simply give an extra factor (4=mkT/h2)V2,

20 The proof is quite analogous as given for (35) by G. E. Uhlenbeck and L. S. Ornstein,
reference 17.



