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The Energy Levels of a Rotating Vibrator
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The energy levels of a rotating vibrator are calculated in considerable detail by
means of the Wentzel-Brillouin-Kramers method. The new terms determined are co,s
and a set of correction terms which appear in the earlier members of the equation.
These correction terms enter in such a way that cv, is not exactly the coefficient of
(v+-,'); B, is not exactly the coefficient of E;(E+1},etc. However the diA'erences are
small and are detectable only in the case of light molecules. The correction terms are of
the magnitude of B.2/co.2. Formulas for the e8ect of the correction terms on isotope
shifts are given, and for the calculation of the correction terms themselves. Also a
method is given for obtaining actual potential functions from band spectrum data,
based on Morse's potential function. Finally the numerical magnitude of the correction
terms for several states of H2 and for NaH is discussed.

INTRODUCTION

ECENT work on the measurement of isotope masses by means of band
spectra' "has led to the necessity of examining in more detail the theory

of a rotating vibrator. The energy levels of this sytem were thoroughly in-
vestigated by Kratzer, ' Born and HQckel, ~ Kemble' and Birge~ on the basis
of the Bohr theory, but no detailed quantum mechanical treatment of this
system has been published. This seems to be at least partly because the
potential function suggested by Morse' has energy levels which agree exactly
with those predicted for it by the Bohr theory' (apart from the matter of
half quantum numbers), and which fit the empirical energy levels remarkably
well. Furthermore, the early work of Fues" indicated an almost complete
agreement between the two theories for quite general potential functions, the
difference between Fues' result and that of the Bohr theory being merely a
constant term, spectroscopically undetectable. Calculation of the higher ap-
proximations, however, shows that this constant term is one of a set of terms
which in general depend on the vibrational and rotational quantum numbers,
adding small corrections to the familiar terms in the energy level formula. It
happens that for Morse's potential function the corrections to the pure vibra-
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tion terms are exactly zero which leads us to expect they will be small in
actual molecules. But the predictions of Morse's function for the corrections
to the rotational terms are not zero, so we cannot expect these to be small.

The analysis shows that the coefficients of the various powers of (v+-', )
and X(%+1) in the energy level formula are really a series in powers of the
ratio 8,2/co, '. This ratio is, for most molecules, of the order of magnitude of
10 ' so that all of the terms beyond the first (given by the Bohr theory) are
negligible. However, for hydrogen molecules and some of the hydrides this
ratio is more nearly 10 ', so that in these cases they cannot be neglected.

In this paper the energy levels of a rotating vibrator will be calculated in
detail using a perfectly general type of potential function. To find the char-
acteristic values of Schrcdinger's equation we shall use the Wentzel-Brillouin-
Kramers" method (hereafter called the W. B. K. method) because it solves
our problem in a very simple fashion. The particular advantage of this
method is that it uses the Bohr theory energy levels as its first approximation,
correcting for higher quantum effects by its later approximations. Now ac-
cording to the correspondence principle point of view, quantum effects be-
come small not only for large quantum numbers, but also for large masses,
and the nuclei of molecules have large masses compared to electronic masses.
We would therefore expect the Bohr energy levels to be good approximations
in this case. The W. B.K. method can make use of this fact by starting with
the Bohr levels and calculating any further terms as small corrections. The
details of the W. B. K. method necessary for application to this problem
have been developed in the preceding paper and we shall apply them here to
the solution of the rotating-vibrator, and then discuss applications to a few
actual molecular states.

CALCULATION OF THE ENERGY LEVELS

our first problem is to find the energy levels of a rotating vibrator. To do
this we calculate the characteristic values of Schrodinger's equation for this
system, which is:

dP Seer h~K(K + 1)+ — E —t/" —— - —P = 0.
d(' h' Sm'r, 'm(1 + $)2

Here $= (r —r,)/r„r, being the equilibrium nuclear separation; m is the re-
duced nuclear mass; t/ the potential function with a minimum at r, ; and the
last term in the bracket, which we shall call V„, is due to the centrifugal force
of rotation.

It would be convenient to use a potential function based on that of Morse,
because this gives a very good approximation to actual energy levels. How-
ever, it is difficult to include the effect of rotation in Morse s potential func-
tion. In the end the simplest procedure is to use a power series expansion of

"t".Wentzel, Zeits. f. Physik 38, 518 (1926);L. Brillouin, Comptes Rendus 183, 24 (1926);
H. A. Kramers, Zeits. f. Physik 39, 828 (1926). For a good short account see A. Sommerfeld:
Erganzungsband, p. 158.
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V around the point $ = 0, as V, has a particularly simple expansion about this
point. Having found the energy levels in terms of this sort of expansion, it is
not difficult then to rewrite the formulas in terms of any simple expression
for the potential function by expanding the latter in a power series about
$ = 0 and equating coefFicients. We shall therefore use

V = hca()$2(1 + ai$ + aiP + a,,)3 + ) (2)

where a() (d,i/48,——; a), is the classical frequency of small oscillations expressed
in cm ' and B,=h/(Sn'rrir 'c)

We shall first calculate the energy levels neglecting rotation (i.e., for the
case % =0). The effect of rotation can then be found by rewriting the whole
effective potential function in the form of Eq. (2) and comparing coefficients.

In the preceding paper I showed that the energy levels of a potential
function with a single minimum could be found by evaluating a generalized
phase integral (Eq. (23) of that paper). It will be convenient to express all
quantities involving energy in this equation in terms of wave numbers. This
involves replacing Z by hcF and V by hc U. Eq. (23) then becomes

(P —V)'"di —(8 (32)f V"(V —V) '"d(+ = 2 B "'( +-') (3)~ ~

The first integral on the left has been evaluated many times. ' "However,
the method necessary to evaluate the second integral is also applicable to the
first, and handles it in a particularly simple fashion, so we shall use it here.

The first step is to transform to the independent variable V. The integral
becomes

(v —v) ~di-j () —v) ~(v) dv-
Here the integral is taken in the U plane twice around the two points U=o
and U = F (the origin of energy being so chosen that U = 0 for $ = 0) . The cut
in the $ plane between the two turning points goes over into a cut in the U
plane between the origin and .the point U= Ji.

The integral can be evaluated if we know V' as a function of U', so we ex-
pand U'

O' = A gU' 2 + A2U + A3U"2 + A U' +
from which we can calculate ( U') ' in a series of the form

(U') ' = A 'U '"[1+B U" + BiU+ BgU')'+ ] (6)

We can therefore write the integral as:

(F —U) "'d&

(7)

iAi '[1 —F/2U —Fs/SU2 + ] [1 + BiU'(2 + BiU + ]dU.
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There is now a cut in the U plane extending from the point U = 0 to ~, intro-
duced by the expansion Eq. (5). Consequently when the integration is per-
formed all of the terms in U"" for which n is odd will vanish because the
integrand will have opposite signs on the two circuits around the point U= 0.
Of the remaining terms only those in U ' will have a residue. The inte-
gration yields:

(F —U)'"dP = (2pr/A i) [F + BgF'/4 + BpFg/8 + 5BpF'/64 + ] (8)

The second integral in Eq. (3) can be evaluated similarly. As before we
transform to U as independent variable. On substituting the expansion Eq.
(5) for U' and expanding the denominator, we have

U'(F —U) igdU =—4pr[Ag+ 5A;F/2+ 35A F'/8+ 105ApF'/16+ . ], (9)5

We have now evaluated the integrals of Eq. (3) in terms of the coeffi-
cients A „of Eq. (5), and it remains to find these A „'s in terms of the a„'s of
Eq. (2). If we expand U"~g and U' as power series in $ and substitute all of
these in Eq. (5), we can equate coefficients of like powers of $ on both sides of
the equation and obtain enough relations to determine the coefficients A „.

The results of this procedure are:

Ai 2ap Ag —2aij Ag ap (3ag 7ai /4)

Ag ——ap '(4ag —6a,ag + 5ai'/2)

Ap = ap ' (5ag —19aiag/2 —17ag'/4 + 105aigag/8 —273ai'/64)
(10)

A p
——ap (6ag —14aiap —12agag + 22ai'ag + 20aiag' —30ai'ag + 8ai )

Ap = ap ' (7ap —39aiap/2 —33aga4/2 —31ag /4 + 279ai ap/8 + 75ag /8

+ 243aiaga, /4 —825aigag/16 —2277aigagg/32 + 9009a,'ag/128

—8151a '/512) .

We are now ready to go back to Eq. (3) and substitute the results we have
obtained for the integrals. We shall at first express these in terms of the
A „'s and B„'s for simplicity, using the a„'s only at the end.

Substituting Eqs. (8) and (9) in Eq. (3) we have

(2pr/A i) [F + BgFg/4 + BpFg/8 + 5BpF4/64 + ]
—(2piB /16) [Ag+ 5AgF/2+ 35AiFg/8+ ] = 2prB 'i'(p+ -', ). (1l)

By the inversion of this series we find F as a power series in (s+ —,). The result
1s;

F = B,A,Ag/16 + A,B,"g(s + -', ) + (B,"'Aig/32)(5Ag —BgAg)(g + —',)
—(B,BgAig/4)(p + —',)g + (Brig/128)(35Ai —15BgAg + 3AgBgg

—3AgBg)(s + -,')'+ (B,g"Aig/8)(Bgg —B4)(s + —',)'
+ (B,gA, 4/64)(10BgBg —5Bg' —5Bg)(p + -', )' +

(12)
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Substituting Eqs. (10) gives us the term value equation for an oscillator
having Eq. (2) for a potential function up to and including terms in B,4/m, '
(One term, not depending on (v+-,'), has been omitted. )

Before we carry out this substitution, however, it will be convenient to
take account of rotation. In this case the effective potential function is
U+ U, = U~, which is of the form

&a = aoV(1+ aK+ a2V+ )

+ B,E(K+ 1)(1 —2]+ 3]' —4,"+ . ). (13)

We can introduce a new variable tl such that $ = rl+ s, e being a constant, and
choose e so that the minimum of U~ falls at the point g =0. If we then ex-
press 2&z as a power series in tl of the same form as Eq. (2), and use the
coefficients of this new series in Eq. (12) instead of the a„'s, we shall have the
energy levels of a rotating vibrator.

The detail of determining these coefficients is rather tedious but quite
straightforward, so we shall not reproduce it here. The energy level equation
which one finds is most conveniently written in the following form

F,rr = QV(;(s + ,')'E'(K +—1)'. (14)

The first subscript under Y refers to the power of the vibrational quantum
number, the second to that of the rotational quantum number.

The first fifteen PE s are found to be "
Vpo = (8 /8) (3a2 —7aP/4)

Vqo ——op, [1 + (21, /4o&, )(25aq —95a~a3/2 —67a2 /4 + 459a~ aq/8

—1155ag4/64) ]

Y9Q ——(8,/2) [3(a~ —5aq'/4) + (8,'/2&v, ~) (245a6 —1365a&a„/2 —885a2a4/2

—1085a~ /4 + 8535a, a4/8 + 1707ag /8 + 7335aqa2a3/4

—23865aPa3/16 —62013aPa2 /32 + 239985aq a2/128

—209055a &6/512) ]

Vao ——(B,s/2co, )(10a4 —35a&as —17a22/2 + 225aga2/4 —705a~'/32)

V4o = (5J3, /co, )(7a6/2 —63aqa&/4 —33aqaq/4 —63a3 /8 + 543a&'a4/16

+ 75a~3/16 + 483a~a2a3/8 —1953aga&/32 —4989aPa~~/64

+ 23265ag4ap/256 —23151ag'/1024)

&Oi = 8„,[1+(8, /2co, )(15+14ax —9ag+15aa —23aia2+ 21(ai + aF)/2) ]

"Eq. (14) can be changed to a set of power series in (%+1/2)' instead of IC(%+1) by using
the Formulas

Kn(X+ 1)n = [(E + ~)& —-']"

This will afFect only the second order terms (of the order of 8,'//co„') in each of the 7's,
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Yii = (B,'/cu„) [6(1+a,)+(B, /a), ')(175+285ai —335ag/2+190a3 —225ai/2

+ 175a;+ 2295aP/8 —459aia&+ 1425aia'/4 —795aia&/2

+ 1005a2'/8 —715ana3/2+ 1155ai3/4 —9639ai'a2/16+ 5145ai a, /8

+ 4677aiag'/8 —14259ai'an/16 + 31185(ai' + ai )/128)]

Ygi = (6B, /", ')(5 + 10ai —3a2 + 5a3 —13aiag + 15(ai' + ai')/2)

Y3, ——(20B,'/&u, ')(7 + 21ai —17a2/2 + 14a3 —9ai/2 + 7aq + 225a, '/8
—45aia2 + 105aia3/4 —51aia&/2 + 51a'i/8 —45a.a,/2

+ 141ai'/4 —945ai'a~/16 + 435ai'a3/8 + 411aia2'/8
—1509ai ai/16 + 3807(ai + ai )/128)

P02 = —(4B,'/". )[1+ (B,'/2&v, ')(163 + 199ai —119a~ + 90a3 —45a4

—207aia2 + 205aia3/2 —333ai'a2/2 + 693ai'/4 + 46ag

+ 126(a,' + a, i/2))]
Y'„= —(12B,'/a&, ') (19/2 + 9a, + 9a3/2 —4ag)

Y» ———(24B,'/co, ') (65+ 125ai —61ay+ 30a' —15a4+ 495ai'/4 —117aia2

+ 26aP + 95aia3/2 —207ai'a2/2 + 90(ai + ai'/2))

Y» ——16B,'(3 "a,)/", '

Yim
——(12B, /(v, ') (233 + 279ai + 189ai + 63ai —88aia2 —120a2+ Spate/3)

T04 ———(64B,'/&v, )(13+9ai —a~+ 9al /4).

(15)

The new quantities are F4p, Y» and the second terms " in FIp F2p Yp] Y] y

~p2.
The connection between the 7's and the ordinary band spectrum con-

stants is as follows:

I'IP ~ Me

I'pi ~ &.
I'p2 D,
Vp3 P,

F2p ~ —M pX

Vgg —0,,

Vp4~ H,

I"3p a),y

V2I

F4p ~ (deS

Throughout this paper the Y~, 's will be used to denote the coefficients in
Eq. (14), and the old coefficients will retain their mechanical significance.
Thus B,will be used only for h/8z'I, c and not for the coefficient of X(%+1)in
the energy level equation, etc.

DISCUSSION OF THE ENERGY LEVEL FORMULA

The most important point about Eq. (15) is that the Y's are not exactly
equal to the coefficients given by the Bohr theory. For example, Y&p, which is
the coefficient of (v+ —,'), is not equal to co„but differs from it by terms in
BP/cu, ' Similarly Yo& .differs from B, by small terms. In fact each of the Y's

' The second term in Ypp has been omitted because it is not important. It has the same
form as F40 or the second term in F:p.
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is a power series in B,2/eP. Now for many molecules this ratio is of the order
of magnitude of 10 ' so that the first term of the power series is adequate
for all practical purposes. But for some molecules, notably H2, B,2/co, 2 is
more nearly 10 ', and higher terms in several of the F's must be taken into
consideration. This correction arises from the presence of the second term
on the left hand side of Eq. (3), and one can see from the fact that m appears
in the denominator of this term that the corrections will be small for heavy

. systems and large for light ones. It is for this reason that these terms will be
most easily detectable in H2.

Unfortunately the detection of the effect of these higher terms in actual
spectra will be complicated by the fact that the nuclear potential function is
defined only in so far as the nuclear and electronic wave functions are sepa-
rable. This is ordinarily true to terms in B,2/co, 2, which means that this
coupling will introduce terms of nearly the same size as the new terms which
we have been discussing. In cases where the interaction is very large, such as
l-uncoupling or when there are perturbations, the coupling effects will be
much more important than the effects discussed here. This state of affairs
can be detected by using the fact that for a simple rotator y'0& (D,) is deter-
mined by the other V's. The values of V&0 and Y~& determine all of the a„'s.
Consequently F02 can be found in terms of these Y's. If this theoretical value
of I'02 does not agree with the observed value, the system is not a simple
rotating vibrator, and we can expect that there is appreciable interaction. It
is therefore important to find YO2 as accurately as possible from the data, as
it is necessary to show that coupling effects are small before one can deter-
mine the size of the correction terms.

One of the chief uses of a detailed derivation of the energy level equation
is to find how the terms depend on the nuclear mass. By definition we know
that B, is proportional to m ' and that ~. is proportional to m '", so we
can find the mass dependence of the F's if we assume that two isotopic mole-
cules have identical potential functions.

The Bohr theory leads to the result sUggested by Kemble' that

( Y( '/ Y'1 ) = (m/nz ') "+'~'" (16)

the superscript i referring to one of the isotopes, but this equation takes
account of only the first terms in the expressions for the V's. The presence
of the new correction terms will alter the mass dependence of the Y's, as they
are now of the form

yi, =ft, (B„co,) [n(, —(B,'/(u, ') f3(;+ ] (17)

where f&;(B„co,) contains that part of the first term in Y~; which depends on
I, whereas n~; and P&, do not depend on m. Since B,'/u, 2 is small, Eq. (16)
now becomes

(1' '/y' ) = (m/mf)'~2+'[1+ (8 B /a (u )((nz —m')/rs')] (18)

R. S. Mulliken, Phys. Rev. 25, 126 (1925).
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This gives us a simple way of finding the correction to the isotope effect due
to the presence of the new correction terms in the energy level formula.

We want to be able to find the coefficients P (in Eq. (17) ) from the experi-
mental data. This is simplified by the fact that these correction terms are
small enough so that we can use a method of successive approximations. If
we regard the Y's as being given experimentally, and if we neglect the cor-
rection terms, a set of approximate a„'s can be calculated from the V~0's and
the V~~'s. These a 's can then be used to calculate the correction terms with
sufficient accuracy for most purposes. Carrying out this procedure algebraic-
ally we find the following equations for the corrections which are designated
by l31;.

Pol ylo F21/4yol + 16121'20/3yol —&121 6&1 + 4121

Plo = 5&10&."0/4&01 + 120'10 &21/3&01 —10al —20al —15al /2
—5121 /2 + 720(4al + 16121'/3)/Vpl + F20 /2I pl

P02 ——73/2 + 37a, + 67al'/2 + 33a,' —6a, ' —9Y,phoo/2Vp, '

+ F 10 apl(3 11121/6)/2y 01 720(130/3 + 4al + 74121'/3)/2 Vol

+ 31&20'/9&012

Ql (Vllylo/6701 ) 1

(19)

The other p's (pop, p», and others not given in Eqs. (15) ) are more compli-
cated but can be calculated in the same fashion. Eqs. (19) are not as simple
as the expressions for the corresponding P's in Eqs. (15). However to use
Eqs. (19),it is not necessary to calculate all of the a„'s involved first.

In view of the importance of Morse' s' potential function for vibrational
analysis we shall discuss brieHy its relation to the formulas which we have
used.

The most striking property of Morse's potential function is the simplicity
of the energy level equation to which it leads. It is interesting to see how this
simplicity arises in the method we have used for calculating energy levels.
Morse's potential function can be written

U = D(1 —e- &)2.

From this it is easy to show that

U' = 2a(DU) "2 —2aU.

Comparing with Eq. (5) we see that for this case

A1 ——2aD'~ A p
———2a

(2o)

(21)

(22)

and that all the other A's are zero. Now all of the V~0's, except V~o and Y2p,

involve A „'s with n & 3 so that they vanish, and the same is true of all of the
terms beyond the first in Y&0 and 720. A similar but no so far reaching
simplification can be found in the case of Kratzer's potential function. This
accounts in detail for the fact that the Bohr theory with half quantum num-
bers gives Morse's energy levels exactly. '
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Because of its simplicity and because it represents actual molecular
energy levels so well, it would be convenient to have a relatively simple po-
tential function based on that of Morse. One could then determine a po-
tential curve from band frequencies more easily than at present. The most
satisfactory way to do this seems to be to write the potential function in the
following form. (The a used here is equal to Morse's a multiplied by r, ).

U = D[(1 —e &) + P4(1 —e '&)'+ P, (1 —e '&)'+ (23)

This can be expanded about the point $ =0 in a power series and the a„'s so
determined can be substituted in Eqs. (15) and then the P's determined in

terms of the Y's. Morse determined u from the relation a '8, = —coax. We
shall use

a = 1 —(FipVgg/6Vp&'). (24)

Then the P„'s can be expressed as follows:

Pg = (2/3) [1 + Ego/Yoga']

Pe = [Fio V2i/6VoP 5 + 10a —23a /4 + 7a'/6 —3P4a'(a —1) ]/5a3 (25)

Pe = Fioyso/5a4&oP + P4/5 —17P42/20 —P5.

Now since the first term in Eq. (23) is a very good representation of actual
potential functions we would expect the P„'s to be quite small and Eq. (23)
should converge rapidly.

In calculating Eqs. (25) the new correction terms were not used. For ob-
taining graphical potential functions they are not of enough importance. It
should also be mentioned that although the P„'s make corrections to the heat
of dissociation predicted by Morse s potential function, it is not to be sup-
posed that these corrections are very reliable. It has been repeatedly shown
that the extrapolation of energy levels to dissociation can be used only when
most of the energy levels are actually known.

DIscvssIQN oF AcTUAL DATA

We turn now to the calculation of the correction terms for some actual
molecular states. These terms are most important in the case of the H2
molecule. The upper states are known to show a good deal of l-uncoupling, "
as can be seen easily from the difference between the observed and calculated
values of Yo&(D„.). The normal state of the molecule should be quite free
from such coupling effects, but unfortunately the vibrational analysis has
not been carried through with 'enough precision to be able to tell definitely
whether or not this is the case."

Nevertheless it is possible to see how large the correction terms will be for

"W. Weizel, Zeits. f. Physik 55, 483 (1929) and 55, 727 (1929); G. H. Dieke, Zeits. f.
Physik 55, 447 (1929)."Birge and Jeppeson (Nature 125, 463 (1930)) have found evidence for a "perturbation"
of this lowest level, but there is not yet enough data on the constants of this state to determine
the nature of the perturbation.
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several states of this molecule, and they will give us some idea of what to ex-
pect.

For the normal state Hyman'~ has found the following values for the Vs

I'ip = 4371 YIg = 2. 794

Vpg = 60.59 V2g = 0.0105

V2p = 113.5.

From these Ppi can be calculated and turns out to be

(26)

Also

Ppx = —1.37.

2I o/oi o = I/5200.

So we conclude that Vp& differs from 8, by one part in 3790. In a careful
analysis this would be detectable.

Similarly, using data from the analyses of Richardson and Davidson, "
we find that for the 2'Z state

I'pi = B„(1—1/778)

Yio = oi.(1 —1/9240)

Fpo = D (1 —1/213) .

(27)

Although in Y&p the correction is very small, it is obviously not negligible in
either of the other two.

The behavior of the corrections for this state is of some interest as it
seems to be typical. The correction to YIp is very small. If Morse's potential
function were correct it would be zero, and the fact that it is small shoms that
Morse's function is a good approximation. Now Morse's function is known to
be a better fit for most molecules than for Ho, p so we would expect pip to be
even smaller for other molecules than it is here.

The correction to Pp& is quite large. This appears to be a typical behavior
as can be seen from the fact that the value of Ppp predicted by Morse's po-
tential function varies between 10 and 500 for moderate values of a. This is
considerably larger than the other P's we have been discussing.

In the 2oZ state" we find that the corrections are quite small. pop is the
largest, being equal to 5.2 so that

Yoo = D.(1 —1/1165).

The other two are negligible.
The corrections to P2p and V~I demand a knowledge of Y4p and of Y3~, but

as these coefficients have not been determined for the states of H2 it is not
possible to find the corresponding corrections.

~ H. H. Hyman, Phys. Rev. 36, 187 (1930)."O. W. Richardson and P. M. Davidson, Proc. Roy. Soc. A125, 23 (1929).
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An interesting case arises in the alkali hydrides. "They are the only known
bands for which F20 is positive. We might therefore expect the correction
terms to be abnormally large. Weizel" has tried to explain the strange be-
havior of these bands as due to l-uncoupling, but there also appears to be an
abnormality in the pure vibration states, and it is therefore of interest to see
how the corrections turn out in this case.

The best data available appear to be on NaH. "The value of BP/co, 2 is
0.00003i0 which is materially smaller than for the states of H2. In this re-
spect LiH would be the most suitable substance for finding large effects. The
corrections a.re

In terms of P~, 's one finds

Ppg = —i4. 15

Ypg = B (1 1/2280)

Y'~: ——~,(1 —1/3920)

F02 ——D,(1 —1/886) .

Pio = —8 23 Ppg = —36.4.

(28)

These P's are, on the whole, larger than those for H2 which indicates a slightly
anomalous behavior of the potential function. The relatively small value of
BP/co, 2 prevents these large values of P from making large corrections to the
Y's.

For molecules heavier than hydrides, the values of BP/a&, ' are so small
that unless the P's are abnormally large, the corrections will be undetectable.
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