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The Theory of the Faraday Effect in Molecules
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In treating the Faraday effect two cases may be distinguished, depending upon
whether the frequency of the incident light is near resonance or well removed from
resonance with absorption lines of the molecule,

Frequency of incident light well removed from resonance with any absorption
lines. In this case it is imperative to include the perturbation of the intensities by the
magnetic field, as well as the perturbation of the energies. A general expression is ob-
tained for the rotation by molecules (poly-, di-, or monatomic), of the form

v A (nn') v B(nn') v~C(nn')
+ +

(v(n'n) —v ) v(n'n) —v T(v(n'n) —v2),

where V is the Verdet constant. This formula contains dia- and paramagnetic terms
of the usual type, but augmented by terms arising from perturbation of the intensi-
ties. It contains, in addition, other diamagnetic terms which have the same frequency
dependence as the paramagnetic terms. For atoms this expression reduces to that
given by Rosenfeld. However for diatomic molecules our results differ from Kronig's,
since we include the effects of the components of magnetic moment perpendicular to
the axis of figure. The terms arising in this way were omitted by Kronig, although
generally they are of the same order of magnitude as the contribution of the parallel
component of the moment.

Independence of spin. When the over-all spin-multiplet width is small compared
to kT/h the rotation is completely independent of spin. As a consequence the para-
magnetic terms vanish for nonlinear polyatomic molecules, and for linear polyatomic
and diatomic molecules in Z states.

Magnitude of the rotation and comparison with exPeriment. The classical Becquerel
formula for the Verdet constant is V =y(e/2mc')van/8v, with y=1. It is shown that
the rotations, in the visible and near ultraviolet, of the gases for which data are
available should be approximately representable by a formula of this form, provided

y is given the proper value. The y value should lie between zero and one. This con-
clusion, in all cases but one, agrees with the known facts. The exception is oxygen,
but the data are probably in error because of polymerization effects which seriously
alter the absorption at high pressures.

Frequency of incident light near resonance with an absorption line. Here only
the perturbation of the energies by the magnetic field need be considered, It is shown
that the rotation in iodine vapour, observed by Wood, is due to rotational distortion
of the excited 'IIO level, which partially uncouples the spin moment from the figure
axis. The magnetic rotation spectrum of the alkalis, observed by Wood and Loomis,
is also explained, in particular the quenching of lines of large rotational quantum
number.

WO different experimental procedures have been employed in measuring
the Faraday rotation in gaseous molecules. One method uses a contin-

uous band of incident frequencies, and a low gas pressure; rotation is then
observed only in the immediate neighborhood of an absorption line. The other
uses monochromatic incident radiation, and high pressures; it serves to mea-
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sure the rotation in "transparent" regions of the spectrum. The first method is
exemplified by Loomis's measurements of the magnetic rotation spectrum of
the alkalis, the second by Siertsema's work on the rotation of hydrogen in the
visible.

Correspondingly, the theory must distinguish two cases:

(I) Incident light near resonance with an absorption line of the molecule.
(II) Incident light well removed from resonance with any absorption line.

Anticipating our later results, we may remark that (I) is the simpler of
the two, as here the rotation is caused by the Zeeman effect alone. In case
(II) it is essential to include, in addition, the effect of the perturbation of the
amplitudes (i.e. , intensities) by the magnetic field.

)(1 to 5 of this paper deal with case (II). (I discusses, in a non-mathe-
matical way, the theoretical attack, the general conclusions, and the experi-
mental data. )(2, 3, and 4 give the mathematical development of the theory.
(5 is concerned with the magnitude of the rotation and with the application
of the theory to a number of simple examples.

)6 treats case (I), in particular, the rotation of iodine as observed by
Wood, and the work of Loomis mentioned above.

$1. DIscUssIDN QF THEoRY AND ExPERIMENT

The theory of the Faraday effect in atoms has been treated by Rosenfeld'
and others. Rosenfeld found, for the case of multiplet widths small compared
to k,T/)I, that when the frequency of the incident light is not near any ab-
sorption line the rotation can be expressed as a sum of terms of two types:
the diamagnetic, characterized by independence of temperature, and the
paramagnetic, proportional to 1/T. The diamagnetic terms are given by

4~e)I" .(n'~)
l

) (~~')
V = —— )

3hmc' . (v(n'e) ' —v') '

where V, the Verdet constant, is the rotation per gauss per cm, the P(ne')
are the matrix elements of the resultant electric moment, and v is the fre-
quency of the incident light. Eq. (1) can also be written in the Becquerel form

e 8e
U = — v —)

28sc~ Bv

in which n is the index of refraction, as given by the Kramers dispersion
formula. ' This value of U will be called the normal Verdet constant.

The purpose of the present paper will be to extend the theory to molecules,
A start in this direction has already been made by Kronig, who, under the
same condition that v is not too near the frequency of any line, finds a Verdet

' L. Rosenfeld, Zeits. f. Physik 57, 835 (1930).
2 See, for example, J. H. Van Vleck, The Theory of Electric and iVagnetic Suscejtibilitie. s,

p. 362.
' R. de L. Kronig, Zeits. f. Physik 45, 458 and 508 (1927).



FARADA 7 EFFECT IN 3EOLECULES

constant of only one-third the normal value. 4 This result seems unsatisfac-
tory, for it does not agree with Rosenfeld's calculation in the limiting case of
a central field. It will be shown that the error lies in Kronig's neglect of the
components of magnetic moment perpendicular to the axis of figure of the
diatomic molecule. Since in a central field the components of magnetic mo-
ment along any three orthogonal axes contribute equally to the rotation,
neglect of two of these components will naturally lead to Kronig's result.

We shall suppose throughout that v is well outside the Zeeman pattern of
any line, i.e. , that v —v(e'e) is large compared to the Zeeman displacements.
When only this restriction is made the rotation of any molecule' is found to
be given by a formula of the form

v'a(ee') v'b(ee') v'c(ee')
P' —2) Q + + c—w„/kr (2)

(v(e'e) ' —v') ' v(e'e) ' —v' T(v(e'e) ' —v')

with 8 = 1/g„e ~»l"r. The three kinds of terms appearing in Eq. (2) will be
called "a terms, " "6 terms, " and "c terms, " respectively. The a terms are the
contributions of the Zeeman effect; the c terms are due to the altered distri-
bution of molecules in the various normal states caused by the magnetic field.
The b terms arise from the perturbation of the amplitude elements of the
electric moment by the magnetic field. This perturbation is, of course, a
consequence of the existence of matrix elements of the magnetic moment be-
tween the various states.

De6nition of the term "magnetic interaction"

For brevity, when an element. of the magnetic moment between two states
exists, we shall speak of. the magnetic interaction between the states.

Coalescence of b terms into a and c terms

The magnetic interaction between a state n' and a state n" gives a rota-
tion proportional to the difference quotient'

1 1 1

If v(e'e")/(v —v(e'e)) is small the difference quotient can be expanded in

powers of this ratio (since v(e'e") =v(e'e) —v(e "e)) giving

2v(e'e) 2v(e'e) v(e'e")
1 —— +

(v' —v(e'e)')' v' —v(e'e)'

4 Kronig has calculated the rotation explicitly only for diatomic molecules in 'Z states,
In comparing Kronig's result (p. 511, reference 3) with our Eq. (1), the factor 2 in his expression
must be absorbed by summing over h. = +1 rather than only over A. =1. Making the substitu-
tion (aq(loir)('=4(Pt(lpl~)(', and remembering that in a central field (Pt(lol&)('= —',(P(lob) ~',

one readily verifies that the two expressions dier by a factor 1/3;
' Throughout this paper the term mole'/e is to be understood as including avow.
~ It must be cautioned that this picture is incomplete, as not all b terms appear in the

form of differ'ence quotients (see Eq, (8)).
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Neglecting terms after the first we see that the two b terms contained in
Eq. (3) have reduced to a single a term. Similarly, b terms due to magnetic
interactions between states with slightly different Boltzmann factors give
rise to c terms when expanded in powers of kv(n'n") /kT. Of course k terms
caused by interactions between states of widely different energies cannot be
simplified in this way.

The net result of the operations just described is the enrichment of a and
c terms at the expense of b terms. These modified terms will be called A,
8, and C terms to distinguish them from the a, b, and c terms. It should be
noted that the A and C terms can not be ascribed any such simple origin as
was possible for the a and c terms. Hereafter, whenever we refer to Eq. (2) we
shall mean the equation modified in this way, rather than the equation as
originally given.

Elimination of Boltzmann factors

The exponential factors drop out of Eq. (2) when the following conditions
are satisfied:

a. The over-all spin-multiplet width is small compared to kT/k; or
g'. The separation between the two lowest spin-multiplet components is

large compared to kT/h
b. There are no electronic states with separations from the lowest state

of the order of kT/k.
c. The separations between the rotational levels of the normal state are

small compared to k T/k.
d. The molecule can be considered rigid (e.g. , rotational distortion neg-

lected).
e. The states of the molecule can be divided into groups. ' A set of states

ni, n„n„will be said to constitute a group if v(m, n, ) is small compared
to both v v(n, ,P) and v—(n„m), n„a dnn, representing any two members of the
set, p one of the normal states, and m any state, normal or excited, not be-
longing to the set. Thus in Fig. 1 the states g form a group.

It is evident that condition (e) restricts us to case (II) discussed in the
introduction, for if v —v(n„p) is too small (i.e. , if the incident light is near
resonance with any absorption line" ) division of states into groups will be im-
possible. When v is restricted to such a range that (e) is satisfied, the allow-
able spread of a group will be widely different in different parts of the spec-
trum. For example, groups lying near v or near the normal level may consist
of states differing only in their rotational quantum numbers, while groups
far from v and the normal level may include different vibrational states, or
even states arising from different electronic configurations.

When either set of conditions, (e), (b), (c), (d), (e), or (a'), (k), (c), (d),
(e), is met, the rotation is given by a formula of the form

v'A (me') v'2I(ee') v'C (Ne')I'= Z, —+, +—,—,(4)
(v(N'I) ' —v') ' v(N'I) ' —v' T(v(N'e) ' —v')

' In dividing the states into groups not all states need be considered, but only those having
nonvanishing terms in Eq. {8),
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with A(nn'), B(rsn'), C(nN') constants independent of temperature. Both A
and 8 terms are thus diamagnetic, the C terms paramagnetic. One must not
be misled by the terminology into supposing that the signs of paramagnetic
and diamagnetic terms are necessarily opposite, for this is not the case. The
presence of diamagnetic 8 terms, having the same frequericy dependence as
the paramagnetic terms, has been generally overlooked in the previous
theories (it was noted, however, by Van Vleck'), although, as will be shown
later, the 8 terms are actually no less important than the more customary A
terms.

nsenpo Z

G50 BpF Tf

7-V(12')
(us~)'Z

(nso)' F

nso npo. Z

Fig. 1. Fig. 2.

In virtue of condition (e) and in view of the discussion of Eq. (3), we can
. now say that the A terms are due to magnetic interactions between states

lying in the same group, while 8 terms are due to interactions between states
in different groups.

The A terms of Eq. (4) are of a more general type than the A terms ob-
tained by Kronig and Rosenfeld, since ours include the interactions between
various states in a group. These interactions were neglected by Kronig' and
did not exist in the case considered by Rosenfeld. Rosenfeld's case of atoms
with multiplet widths small compared to kT/h is simplified by the fact that
3EIJ. and 3EI, can be considered constants of the motion, "and so the s com-

J. H. Van Vleck, reference 2, p. 370.
Kronig, to be sure, included the elements of p, between states of different j, but not be-

tween states of diferent electronic quantum numbers. It is to the latter sort that we refer."Strictly speaking, this is true only if the magnetic field is strong enough to produce the
Paschen-Back eAect; however the distinction is trivial in view of the invariance of the spurs
appearing in Eq. (9).
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ponent of the magnetic moment has no nondiagonal elements. Thus there
are no interaction terms like Eq. (3), with the consequence that the A terms
reduce simply to the normal Verdet constant, while the 8 terms vanish en-
tirely (see Eq. (9)).'" Kronig's calculation of the A terms for diatomic mole-
cules is valid in the limiting case of an axial field so far from central in charac-
ter that the components of the magnetic moment perpendicular to the figure
axis have elements only between states in different groups. Here obviously
the A terms are due only to the parallel component of the moment, as Kronig
assumed. The 8 terms will not vanish in this case, and, in fact, are of the same
order as the A terms, although omitted by Kronig. Our A terms agree with
Kronig's and Rosenfeld's in these limiting cases, but otherwise they are not
the same. For example, for nonlinear polyatomic molecules the mean value
of the magnetic moment along any axis is zero;" hence Kronig's method
would give no rotation at all, although we obtain both A and 8 terms.

Independence of spin

An important characteristic of Eq. (2) (and consequently of Eq. (4)) is
that, when (n), (c) and (e) are satisfied, it is completely independent of spin.
In any calculation of the rotation, subject of course to these conditions, the
spin can be regarded as completely uncoupled from the orbital angular mo-

mentum, and, in effect, forgotten completely. This result is analogous to the
well-known theorem that the magnetic susceptibility is independent of the
Paschen-Back effect, and like it is a consequence of the fact that we sum our
expressions over all Zeeman components, In view of this property of the rota-
tion the attempts to explain the anomalous behavior of oxygen as due to
its spin are not justifiable. Another conclusion which can immediately be
drawn is that the paramagnetic terms of Eq. (4) vanish for nonlinear poly-
atomic molecules, and for linear polyatomic molecules and diatomic mole-
cules in Z states, This is because the paramagnetic terms are due to the mag-
netic interactions between the normal states. Since spin need not be consi-
dered, these interactions are clearly zero in the cases indicated.

The absence of a spin-paramagnetic rotation is in sharp contrast to the
presence of a spin term in the magnetic susceptibility under the same sup-
position of narrow multiplets. The difference arises because, under the cir-
cumstances, the spin and orbital moments can be regarded as completely
independent systems. They thus will contribute additively to the suscepti-
bility; on the other hand, the spin appears in the rotation only in cross terms
with the orbit, and such cross terms average to zero.

Magnitude of the rotation

It frequently happens that the rotation has not been measured much be-
yond the visible, while all the v(n n) are in the far ultraviolet. The A and 8

"Considering the phases proper to a central field, it is readily seen that, in this case,
Fq. (9) is identical with Rosenfeld's expression.

"This statement might not hold if the molecule had a very high degree of symmetry;
however, whenever w'e consider nonlinear polyatomic molecules we shall assume that this is

not the case.
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terms are then practically indistinguishable, the net result of the 8 terms being
to change the apparent values of the A(nn'). Thus the diamagnetic terms
of Eq. (4) will have, effectively, the frequency dependence, p'/(v(n'n)2 —i')',
of the Becquerel formula. In consequence, as will be shown more fully in f5,
the rotation can often be represented fairly well by the Becquerel formula
with an anomalous value of e/rn.

In general our knowledge of the molecule is not sufficient to permit ex-
plicit calculation of all the terms required by Eq. (4), but simple considera-
tions lead to the conclusion that the Verdet constant should ordinarily be less
than the normal value. The experimental results in all cases confirm this.
The reason is roughly as follows: The rotation is largely due to the nearest in-
tense group of lines in the ultraviolet, which are heavily weighted compared to
those further out. If all the lines lay close to this nearest group a normal
Uerdet constant would result, as is shown in (5. The effect of removing some
of the lines further into the ultraviolet, where in fact they belong, is to
diminish greatly their contribution to the rotation. If the field is not central
this diminution is greater than the corresponding decrease in Bn/Bv, and so
leads to a smaller Verdet constant.

Discussion of experiment"

Siertsema's measurements of the rotation in hydrogen in the visible are
representable almost exactly by the normal Verdet constant. This result,
remarkable in its agreement with the classical theory, will be discussed in (5.
However Sirk's measurements in the ultraviolet show some evidence of the
presence of a 8 term. The magnitude of the observed rotation in nitrogen is
63 percent of the normal Verdet constant, i.e. , the Becquerel formula is
valid if we insert a factor 0.63. As the measurements have not been carried
beyond the visible no diAerentiation between A and 8 terms is possible. The
case of N20 is similar. Carbon dioxide has been observed in the ultraviolet,
but not far enough to give any conclusive evidence as to the presence or ab-
sence of 8 terms (see )5).

Oxygen, on the other hand, is definitely anomalous. The measurements of
Siertsema and Sirks in the visible and ultraviolet cannot be fitted by Eq. (4)
using the observed absorption frequencies, and, as we have seen, this cannot
be blamed on the spin. However the experimental data are open to serious

objection because of the high gas pressures used: Siertsema, working in the
visible, used a pressure of 100 atmospheres; Sirks, 80 atmospheres in the
visible, 40 in the ultraviolet below 2800A. At these pressures a considerable
amount of oxygen would be in the form of the polymer04. " The equilibrium
constant is somewhat uncertain; at 80 atmospheres the estimates of the

"An excellent account of the experimental data on the Faraday effect has been given by
C. G. Darwin and W. H. Watson, Proc. Roy. Soc. 114A, 474 E'1927). The reader is referred to
this paper for references to the literature.

'~' The existence of this polymer was kindly called to my attention by Professor R. I.aden-
burg.
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partial pressure of 04 range from 1 to 10 percent of the total pressure. "
According to Wulf, '4 04 shows continuous absorption below 2400A, as well as
a number of bands extending towards longer wave-lengths. Moreover, the
source of light used by Sirks and Siertsema was a quartz mercury arc, and
Warburg" has shown that at high pressures the 2537A line is efficacious in
producing ozone. Ozone shows strong absorption in the infrared, and in the
ultraviolet beginning at about 2800A, Sirks found, in his 230 cm column of
oxygen at 80 atmospheres, that absorption began at 2805A; in fact it was
for this reason that he was compelled to reduce the pressure for his shorter
wave-length measurements. At 40 atmospheres the absorption had moved
down to 2654A. 02 shows no absorption in this region, but both 04 and 03
bands have been reported at 2810A and 2654A;" these might readily account
for Sirk's results.

In view of these facts we believe the existing measurements of the rotation
entirely unreliable; solution of the problem must await more unambiguous
data.

Monatomic gases should, according to Rosenfeld, have a normal Verdet,
constant. This has been verified for neon, although at only one wave-length,
5460A. The same result has also been found for argon. "

In general the rotations in the large number of liquids and solids cited by
Darwin are not accurately representable by the Becquerel formula, even with
an anomalous value of e/nz Ther. e are two obvious reasons for this: fIrst, the
A (nn') are not proportional to the f values of the Kramers dispersion formula;
second, 8 terms are also present.

(2. DERIVATION OF THE GENERAL FORMULA FOR THE ROTATION

Let the magnetic field and the light ray be directed along the s axis. The
rotation of the plane of polarization per centimeter is"

0 = CB Qr(N'I) [P.(crt')P„(n'n) ]e ~'"r,
nn'

where

8 = S/ ge ~"'"" C = 4m'v'i/ch

and P, (nn'), Pv(rIn') are the elements of the x and y components of the
electric moment in the presence of the magnetic field. Here, and throughout
this paper, the square brackets have the meaning

[P,(vtvt') P„(n'vt) j = P, (nm') P„(rI'n) —P„(rlvt, ') P,(i'n);

r(rs'n) = 1/(v' —v(n'vt)').
' 0. R. Wulf, Proc. Nat. Acad. 14, 356, 609, 614 (1928); Jour. Am. Chem. Soc. (II) 50,

2596 (1928)."References to Warburg's work are given by Wulf, reference 14.
"Wulf, reference 14; D. Chalonge and M. Lambrey, Comptes Rendus 184, 1165 (1927)."R. de Mallemann, L. Gabiano, and F. Suhner; Comptes Rendus 194, 861 (1932)."H. A. Kramers, Kon. Acad. Wet. Amsterdam 33, 959 (1930).Kramer's Eq. (34) should

be multiplied by 4m, as can be seen from his Eq. (32).
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We expand P„P„,v(n'n), W„, B in power series of the form P, =P,'+ XP,&»+;then, under the supposition that v —v(n'n) is large compared to the
Zeeman splitting, the terms of Eq. (5) linear in K give

V = e/X = CB' g[r'(n'n)([P, '(nn')P &»(n'n)] + [P &'&(en')P„'(e'e)])
nn'

+ 2v'(e'n) v&'&(e'n) r'(e'e) ' [P,'(ee') P„'(e'n) ]
—(W„&"/kT)T'(n'n) [P.'(nn')P„'(e'n)] }e ~"'~ .

(6)

P,&'&(nn') is expressed in terms of the unperturbed amplitudes by means of"

H &'& (nn") P,'(e"e') P, '(nn") H &'& (n"e')

h „. v'(nn") v'(n"n')

The prime on the summation sign indicates that n" = n and n" = rs' are to be
omitted from the summation. Denoting the s component of the magnetic
moment by &&z„we have H"&(nn') = —

&&z, (nn'). Using these, and a similar ex-
pression for P„&"(nn'), we obtain

V = —(CB'/h) Q' v'(n'n") '[P '(en'-)z&, (n'n")P„'(n"n)]
nn'n' '

e-~-'»~

(2CB%h) gv'(n'n)r'(n'n)'[P, '(ne')z&, (n'n')P„'(e'n)]e ~*'&zr
nn'

+ (CBO/h) g v'(e"e) 'r'(n'n) {[P,o(ne)P o(e n )]&z (e n)

+ (zznn) [P,'(n"n')P '(n'n)] }e ~"'&"r- (g)

+ (2CB'/h) gv'(n'n)r'(n'n) 'z4(nn) [P,'(nn') P„'(n'n) ]e ~'&'r-
nn'

+ (CB'/kT) Qr'(n'n) (&zn)n[P, '(en')P '(e'e)]e &r '&»—

Here we have extended our definition of the square bracket to include

[P,'(en')&z, (e'n") P„'(n"e) ] = P, '(ne') (&z' .n)nP„'(e"n)

—P„'(ee')&z, (zz'n") P, '(rz"n) .

In accordance with our division of states into groups, all matrix ele-
ments will now be written (dropping henceforth the superscript') in the form
P~(nk;n'k'), where n and n' represent the quantum numbers which are the
same for all states in a group, k and k' the quantum numbers which differ-
entiate the various states within a group.

The terms of the first sum in Eq. (8) for which n" =n' (although, of
course, k "Wk') can be simplified by expanding the factor in curly brackets in
powers of v(n'k';n'k")/(vz —v(n'k';nk)'). To simplify the terms of the third
sum for which n" =n (k" v-'k) the method of pairing terms previously used by
Van Vleck" is employed.

"See, for example, Born and. Jordan, E/ementare Qugntenmechamk, p. 198.
"J.H. Van Vleck, reference 2, p. 191; Phys. Rev. 29, 727 (1927).
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The pair of terms

(1/h)v(nk"; nk) 'r(n'k'; nk) {[P,(nk; n'k')Pv(n'O'I nk") ]v,(nk"; nk)

+ v, (nk; nk") [P,(nk"; n'k')P„(n'k', nk)] }e «/"

+ (1/h)v(nk; nk") 'r(n'k'; nk") {[P,(nk"; n'k')P„(n'k'; nk)]v„(nk; nk")

+ n, (nk"; nk) [P,(nk; n'k')P„(n'k', nk")] }e

can be written

{[P,(nk; n'h') P„(n'k'; nk") ]p,,(nk"; nk) + v, (nk; nk") [P„(nk"; n'k') P„(n'k'; nk) ] }

1 —74 kikT —'/I /~kT

hv(@k j leak) v' —v(n'k' j mk) v' —v(n'k'j mk")

Putting W k = 8' h + hv(ek"; ek),
v(n'k'; nk") = v(n'k'; ek) —v(ek" j nk)

and expanding gives (the first bracket representing the first line of the above expression)

2kT v —v(n'k' nk)' kT

h(v v(n k j nk) ) kT

plus higher order terms which are very small. Apart from them, this is the same as

{[P,(nk; n'k')Pv(n'k'; nk" ]n,(nk"; nk) + v, (nk; nk") [P,(nk"; n'k') Pv(n'k'; nk) ] }

{(1/h)v(n k; nk)r(n'k', nk)k+ (1/2kT)r(n'k'; nk) }e Wnk/"

+ {[P (nk"; n'k')P„(n'k'; nk) ]v,(nk; nk") + v.,(nk"; nk) [P„(nk; n'k')P„(n'k'; nk") ] }

{(1/h) v(n, 'k'; nk")r(n'k'; nk") + (1/2kT) r(n'k'; nk") }e Wnk"'"—
The purpose of these manipulations is to remove all sma, ll v's from the denominators of

Eq. (8).A primed sum is no longer required for the terms written in this form, since the diagonal
terms (i.e. , k"=k) are already present in Eq. (8): namely, the fourth and fifth sums there ap-
pearing. The expansion of the first sum of Eq. (8) leads to a similar simplification, the diagonal
terms being contained in the second sum.

It is now convenient to introduce the ubermatrix notation used, for ex-
ample, in Born and Jordan's E/ementare Quantenmechanek In this .notation
P, '""' signifies the matrix of all the elements P, (nk;n'k') having a given n
and n'. Sp is an abbreviation for spur.

One finds, on carrying out the op'erations described above that Eq. (8)
becomes

V = (CB/h) gv(n'n)r(n'n) Sp [(—2[P,&n"'&/", v&"'"'&P &"'"&]
n'

y [P (nn'&P (n n)1 (nn) '~ (nn)IP (nn )P (n'n ))& —'W(n)/kTI'

+ (CB/h) Q —v(n'n") —'[r(n'n) —r(n"n) I
n'n" (n'Hn'')

[P (nn & (n n")P (n" n)]e—W(")/kT1

+ v(n"n) 'r(n'n) Sp [([P,(-""'&P„&"'""&]k',&"""&

(nn") IP (n" n')P (n'n) &) —W(n)/kT
I

+ (Cg/2kjP) gr(n~n) Sp I([p (nn')P (n'n)]/" (nn)

n'

+ (nn) IP (nn')P (n'n) t) —W(") (kT l
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As all small v's have been removed from the denominators of Eq. (8) we have
been able, in Eq. (9), to write v(n'k';nk) =v(n'n) In. the first sum of Eq. (9)
small terms involving v(nk';nk) have been omitted. This corresponds to
neglecting the pure rotation spectrum.

f)3. INDEPENDENCE OF SPIN

The spurs appearing in Eq. (9) are invariant of a transformation to a
system of representation appropriate to strong fields. If the over-all spin-
multiplet width is small compared to kT/h the matrix e ~ "&ir is independ-
ent of spin. Then the "strong field" representation the spin appears only in

p„which breaks up into two parts, p&, +p„, of which only the second con-
tains the spin. On summing over rn, this term vanishes, since p„ is a diagonal
matrix with elements ranging from —2Ps to 2Ps. Thus, when the over-all
multiplet width is small and when v is not near resonance with any line, the
rotation is independent of the spin. "This result, of course, is valid for all
field strengths (barring saturation effects).

In )5, dealing with the magnitude of the rotation, we shall consider only
narrow multiplets; p, may accordingly be taken as representing only that
part of the magnetic moment due to the orbital angular momentum.

(4. ROTATION IN RIGID MOLECULES

We will make the approximation of supposing the molecule rigid, that is,
we suppose the "internal" wave functions, which are expressed in terms of a
coordinate system rotating with the molecule, independent of j. Then the
summation over j, m, j', rn', j", rn" implied in Eq. (9) can be readily performed
by a method given by Niessen. "Let x', y', s' be the rotating system of co-
ordinates. On applying Niessen's method to Eq. (9) we find"

V = (C cV(3hg) g pv(n'n)r(n'n)' Sp {—2[p &nn'&p &"'"')p &"'"']
s'gzn

+ [p, (nn')p, (n'n) ]+, (nn) + ){,(nn) [p, (nn')p, (n'n) ] }

+ (CN(3hg) g g —v(n'n")-'[r(n'n) —r(n"n) }
x' y'z' n'n' ' (n" &n')

Sp [p, ( )nn(){n'n")p, {n"n)] + v(n n)
—ir(n n)

Sp [ [p, (nn')p, (n'n") ]i{,(n" n) + ){,(nn") [p, (n"n')p, (n'n) ] }
+ (CN)6kTg) g gr(n'n) Sp [[p„&-)p,&--&]„„&-&

x' y'z' n'

+ ){,(nn) [p, (nn') p, (n'n) ] }

(10)

The symbol g, „, indicates a summation of the three terms obtained by
a cyclic interchange of x', y', z'. g is the statistical weight of the normal state

"This result has been given, for central fields, by Rosenfeld, reference 1, and in the old
quantum theory, also for central fields, by Darwin, Proc. Roy. Soc. 112A, 814 (1926).

K. F. Niessen, Phys. Rev. 34, 253 (1929).Niessen's derivation is valid only for diatomic
molecules, but the proof can be given for the general case.

"lt should be noted that Eq. (10) holds when either condition (a) or (a') is satisfied.
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of the stationary molecule. The elements of matrices such as P '""' are, of
course, independent of j, m, j', m'.

Making a simple rearrangement of the terms in the second sum of Eq.
(10), we find the explicit expression for the A(nn'), B(nn'), C(nn') of Eq. (4):
A())n') = (CS/3hg) ') Q) (e's)

~l ytz1

2 [p, (nn')+, (n'n') p, (n'n) ].

[p, (nn') p, {n'n}]+,{nn} + +, (nn} [p, &nn') p, &n' n) ] }
B(nr)') = (C1V/3hgv') Q Q —v(n'I") 'Sp I

—[P. &nn'I), &"'""'P„&"""&
X'y'Z' n''(n" F n')

+ [P, ( "&I(,( "n'&P, ( 'n)]} + p()i~~))) Sp I [P, ( n'&P, &n'n'')]

, (nn") [p, (n, "n')p, {n'n}] }

C(&&))') = (CX/6kg ') Q Sp I [p;&""'p„.{"'"
]I&,

&"" +}{{,. n"'[p.«""'p„"'"] } .
g/y& I

C}5. MAGNITUDE oF THE RQTATIQN

For nonlinear polyatomic molecules the matrix p(""~ will be zero, there be-
ing no "precession frequencies" which are not large compared to kT/h. Thus
the C(n)I') will vanish. Diatomic molecules and linear polyatomic molecules
in 2 states will also have no elements in p("") different from zero, so the
C(r)rs ) again vanish. In these cases there will be no paramagnetic rotation.

The work of Rosenfeld and Kronig give limiting values for the A(nr(').
We have shown in $1 that in a central field the A (ni)') have just the values
which give the normal Verdet constant, and in the other limiting case (for
diatomic molecules) of an extreme axial field the A (nn') are reduced to one-
third the previous value (the three terms of the P, „, sum reducing to a
single term), unless both r( and ri' are Z states, in which case A (nn') vanishes
entirely. '4 The A (nn') of polyatomic molecules similarly vanish for suKciently
asymmetrical 6elds.

The whole question of the magnitude of the rotation is greatly clarified
by consideration of a few simple examples. The molecular wave function (in
the x', y', s' system) will be supposed the product of the hydrogenic wave
functions of the individual electrons. This makes A a constant of the motion.

Let the normal state be (ns(r)'Z, as in the hydrogen molecule. Take for
excited states nso.n'p~II and nsa. n'po. Z, and let v~, v2, v3 be respectively the
nson'f&o Z —(ns&r)'2, ms{rn'PirII —(r)so)'Z, ns{rn'f&o Z —n, s(rn'P)rII separations.
This situation is illustrated in Fig. 2 (a). No assumption will be made as to
the relative magnitudes of ) ) and ) 2, other than that condition (e) is satisfied;
they must accordingly be considered as belonging to two different groups.
This procedure, of course, is valid even when ) ) —) 2 (i.e. , ) ~) is small. Using
the well-known hydrogenic moment matrices we readily find from Eq. (10),"

'4 We are thinking here of the practically important case, in which the normal state is a Z
state. In general the one-third remaining after passage to the axial field limit will be divided
among the states of different A. into which the central field group breaks up.
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4m.eEI ' P2 I gP'
V = +

3hmc' vs(vs' —v') vs(v ' —v') (v ' —v') '

where Ps=2 lP;(rs'pzr, Iso) ~' in the notation of footnote (25).
The normal Verdet constant is

4~e3b~ viP' 2v2P'
V„ +

3hnsc' (v, ' —v') ' (v, ' —v') ' (12)

The asymptotic properties discussed above are easily verified. If v3is
made small compared to vt —v, Eqs. (11) and (12) both reduce to

V 4xe+vsvs+2/1snscs(v 2 vs) 2 ~

thus U is just the normal Verdet constant. If v3 is very large, so that the
first two terms of Eq. (11) and the first term of Eq. (12) are neghgible, the
rotation, as given by Eq. (11), is reduced to one-third the above value, which
is Kronig's result. In this case V= —,V„(the index of refraction being reduced
to 2/3 its central field value, while the rotation is reduced to 1/3).

If y is defined by y = V/V„, we have seen that 7=1 for a central field,
and y = 0.5 for an extreme axial field. "In intermediate cases y will lie between
these values. For example if we take vt ——2vs, v =vs/6 we find y =0.817. Tak-
ing v =vs/4 gives y=0.813. If vs corresponds to a line at 1000A these two
values of v correspond to 6000A and 4000A respectively. This simple calcu-
lation strikingly illustrates the point made in f1 that A and 8 terms are, in
such a frequency range, practically indistinguishable. Further, it shows very
clearly why a Becquerel formula with an anomalous value of e/ inssapproxi-
mately valid for many substances. If we put v=vs/2. 5, corresponding to
X = 2500A, we obtain p =0.79. 'Thus even measurements this far in the ultra-
violet would be of little value in distinguishing between Eq. (11) and the
modified Becquerel formula.

Magnetic interactions between some of the excited states may be due to
the "core," or part of the molecule exclusive of the excited electron, for when
we remove an electron from a closed shell the residuum may have a magnetic
moment. Of course states which have different core-configurations are greatly
different in energy, and so the magnetic interactions of the core may easily
connect widely separated levels. On the other hand, a normal Verdet con-
stant requires narrow, rather than wide, separations. The essential diAerence

~' For example, denoting the normal state by $1, the II state by $2, and the wave functions
of the individual electrons by (nl x;) we have

p& = (nsalx&)(nsalxs), ps = (nsalxf)(n'ps xs),
P (12) = —effp~ (x~ + xs)psdr&drs = —ef(nsa x2) "xs(n'pal xs)drs

= P, (nso-, n'P7f-).

The elements such as I', (ns0. ; n'pm) are given in all the standard texts, e.g. , H. Weyl, The
Theory of Groups and Quantum Mechanics, p. 200."If the Z state is taken as the lower of the excited states y would range from T to 0 (we
are supposing I &I &, v&). For polyatomic rnolecules also, p would be expected to range from 1 to
0, These 6gures are exclusive of negative terms, which will be discussed later.
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between the rotations in atoms and molecules lies in the spread, in molecules,
of levels which coincide in atoms; and the more complicated the core the
larger this spread is likely to be. One would therefore expect the rough rule
that molecules with complicated cores have lower values of y than simpler
molecules. The data confirm this, the y values for H~, N2, CO~, N20 being
respectively 1.00, 0.63, 0.56, 0.34.

The central field behaviour of hydrogen in the visible is now readily ex-
plained, for the core consists of a single electron in a o state, and thus plays
no part in determining the rotation. As one would anticipate, the potential
energy curves'7 show that the excited 1s0.2po.Z and iso.2p~II states lie quite
close to each other as compared to their separation from the normal state.
Since there is little possibility of exciting the core electron to obtain other
states which could contribute to the rotation, the rotation is evidently due
almost entirely to the two excited states mentioned above; and, as we have
seen, these closely spaced levels should give a normal Verdet constant.

As an example of the case in which the core does have a magnetic mo-
ment we shall take for the normal state (np~)'(npo)'Z, the nitrogen configura-
tion, and for excited states (nP7c)'(ego)'m's~ii and (nP7r)'nPon'soZ M.agneti. c
interactions between these states will evidently be due to the core of the II
state. Proceeding exactly as in the previous example we again find the rota-
tion to be given by Eq. (11).In a central field the energies of our two excited
states will coincide, and a normal Verdet constant will result: in such a field
no distinction need be made between the magnetic moment of the core and
the magnetic moment of a valence electron. In the axial field of a diatomic
molecule the energies of the excited states will be widely different, since these
states have different core configurations; p will thus be considerably less than
unity. This result, as contrasted with the result obtained for the hydrogen
molecule, illustrates the effect of a complex core in diminishing the Verdet
constant.

When we deal with homonuclear diatomic molecules another factor may
enter which we have not yet considered. For such molecules P(ne') has ele-
ments only between the normal state and states of opposite symmetry with
respect to reflection of the electrons in the origin. States n" of the same syrn-
metry as the normal state will have no effect on the refraction, but Eq. (10)
shows that they will aRect the magnitude of the rotation if the elements
p, (nn") are not negligible, although no terms containing r(n "n) will appear.

A situation in which p, has elements between the normal states and an ex-
cited group of states can be obtained by inverting the energy levels of our
first example, so that the (iso)'Z state lies above the nso rI, 'p7rII and rlso n'po Z
states, as is shown in Fig. 2(b). Eq. (11) then holds only if v3 is small compared
to AT/A, so that there is no difference in the concentrations of the molecules
in the mson'ps. ii and nson'poZstates. ."The second term of Eq. (11) is then
due to molecules in the latter state, the first and third to those in the former.

"R.S. Mulliken, Rev. Mod. Phys. 4, 1 {1932).
"A weight factor 1/3 should be included in Eq. {11)in this case. There will also be a

paramagnetic term; however it is of no interest for our purposes.
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However if the II state is the higher of the two, that is if va is positive and
large compared to k2/h, the first and third terms vanish anIl we are left with
a negative 8 term. A negative B term is also obtained if the Z state is the
higher.

In our examples the effect of magnetic interactions between two excited
levels is to give, when v (v&, v2 or v &v&, v2, two B terms which, although they
are of opposite sign, give a net rotation which is positive; when v2 (v (~~,
two negative 8 terms. The effect of interaction between the normal state and
an excited state of frequency v3 is to give a negative 8 term when v (v&, a
positive term when v )v~. Negative 8 terms may account for the negative
rotation of TiC14 ~

It is of some interest to calculate the rotation under the assumption that
all excited levels lie in the same group. Suppose the electric moments have
elements only between the normal states, n, k, and a group of states, n', k',
having the same n'. Under this hypothesis the second sum of Eq. (10)
vanishes, and the teilmatrices appearing in the remaining terms can be re-
placed by the complete matrices (the spur, of course, is still taken only over
the normal states). The third sum of Eq. (10), and the second and third
terms of the erst sum, are zero in virtue of the commutability of the coordi-
nates. On summing over all electrons we have

P,v.,Pv —Pvv„P, = —(e /2mc) gx, (x,p» —y;p„)yz —yv(x, p» —y;p„)x;
i jIc

= —(e'/2mc) gx;x, (P„;y& —y&P„;) + yvy, (P„x, —x~P„)

= —(e'h/4xmcf) P(x;x;+ y.;y;) = —(eh/47rmci) (P,'+ P„') .

Adding the terms obtained by cyclic interchange of x, y, s, we find

4xeNv' v(n'n) 1
V = — P~ P(nu;n'S') ',

3hmc' (v' —v(n'n)')' g

which is just the normal Verdet constant.

$6. ROTATION NEAR AN ABSORPTION LINE

Going hack to Eq. (6) we see that when v is close to one of the v(n'n) the
rotation is

vLn'n) v I'I (n'm'; nm) [P,(nm; n'm') P„(n'm'; nm) ]
V = 2CB P ———— ——e w (ar (13)

(v' —v(n'n) ') '

for, since this term contains 1/(v' —v(n'n)')' rather than 1/(v' —v(n'n)'), it
is very much larger than all the others. The rotation thus depends only on
the Zeeman e8ect, the perturbation of the amplitudes being negligible.
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Rotation in iodine

The iodine lines observed by Wood" come from a 'IIO —'Z transition, and
so exhibit no Zeeman effect if we use the "rigid molecule" approximation.
Actually, the Zeeman effect, and consequently the optical rotation, is due to
rotational distortion, that is, to the effect of molecular rotation in uncoupling
the spin from the nuclear axis of figure. The suggestion that rotational dis-
tortion is responsible for the behaviour of iodine was originally made by
Kemble, "but an adequate mechanism was lacking, as at the time the tran-
sition was mistakenly classified as 'Z —'Z. Kemble supposed that the orbital
moment, rather than the spin moment, was uncoupled by the molecular ro-
tation, but it now seems much more probable that spin uncoupling is the
preponderant effect.

We shall use the rotating system of axes, x', y', z', previously employed by Van Vleck; '
the z component of the spin in fixed axes is given in terms of this rotating system by

s, = s„~ sin 0+ s, cos0,

0 denoting the angle between the axis of figure of the molecule and the fixed axis z. The term
involving s, gives the spin part of the ordinary rigid molecule Zeeman effect. In our case this
just cancels the e6ect of the orbital angular momentum, since Q=O in the ~IIO state; we shall
not be further interested in this term. The matrix s„' sin 9 can be written

(s„sin 0) {O.jm; 0-,.j''m') = 2s„(o-,a,')L(aj m; 0,j''m') .
The elements L(ojm; 0-,'j'm') are defined and evaluated in a paper by Rademacher and
Reiche."As the multiplet separations of the IID state of iodine are very wide, only the first
order perturbation of s, by the molecular rotation is required. This is given by a formula similar
to Eq. (7), from which we find for the diagonal elements of s,&'), when 0=0, o-& =1,

s,&')(—1jm' —1jm) = 2II&')(—10)L(0jm; —1jm)s„~(0 —1)/hv( —10)

+ 2L(—1jm; Oj m) s„I(—10)H&'&(0 —1)//hv( —10)
= 48 &'){—10)L(0jm; —1jm)s„I(0 —1)/hr (—10),

since all the quantities involved are real.
It is convenient to write s,&') (cr,jm; o-,'j'm'), L(o.,jm; a,'j'm'), and v(a.,a,') in terms of 0

rather than 0-,. The elements appearing above are, in this notation, s,&'& {Ojm; Ojm), L{1jm;
Ojm) and 2 (01).We then have"

s„(o;;o., + 1) = —', [S{S+1) —o,(o, + 1)]«';
II«&&{o,; o;+ 1) = b[j(j + 1) —D(Q + 1)]«'[S(S+1) —o;(o. + 1)]'";b = b'/8s'bIr'

I{1jm; Ojm) = —m/2 [j (j + 1)]«s;

and from these
s,&')(Ojm; Ojm) = —2bm/hv(01) .

"R. W. Wood and G. Ribaud, Phil. Mag. 27', 1009 (1914).
"E.C. Kemble, Bull. Nat. Res. Council 57: Molecular Spectra in Gases, Chap. VII."J. H. Van Vleck, Phys. Rev. 33, 467 (1929). The primed and unprimed systems of his

Eq. (5) will be interchanged, to accord with our previous notation, We shall follow this paper
in our choice of phases for H&'~ and s„I, and in notation'. 0-, will denote the component of angular
momentum along the figure axis, 0-, the component of spin along the figure axis, Q=o&+0.,"H. Rademacher and F. Reiche, Zeits. f. Physik 41, 453 (1927).See Eq. (13) and the table
on p. 475.

33 Van Vleck, reference 31, Eqs. (30) and (31). From Rademacher and Reiche's table we
find I (1jm; Ojm) = [m~ /2 [j(j+1)]'".The minus sign must he taken when m)0 to match Van
Vleck's phases for H&') (see Van Vleck's footnote (25)}.
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Using the fact that L(1jm; Ojm) =L(—ijm; Ojm), it is readily verified that the same result is
obtained when ab = —1.

Thus for our 'II0 —'Z transition

v(')(j'm';j m) = —4pbm'/h'v(01),

p being the Bohr magneton number.
The elements of the electric moment appearing in Eq. (13) are the familiar amplitudes of

the symmetric top, given, for example, by Kronig. "The terms different from zero are

iP2 (j + m + 2) (j+ m + 1)[P,(j, m; j + 1, m + 1)P (j+ 1, m + 1;j, m) ] = + — r

2 (2j+ 1)(2j+ 3)

iP2 (j+ m+ 2)(j+ m+ 1)[P,(j, m; j —1, m + 1)P„(j —1, m + 1;j, m) ] = +—
2 (2j+ 1)(2j+ 3)

where P = P ('Z li, ) i~

The rotation is found by substituting these expressions in Eq. (13) and
summing over all values of m, the result being multiplied by two, since the
two upper states, a.

&
= + 1, contribute equally to the rotation. In this way we

obtain

g vrebv, P v~Be ~ ~" ' '(m + 1)(j + m + 2)(j + m+ 1)
U

bme ve(p vg ) (2j + 1)(2j + 3)

(m —1)(j —m + 2) (j —m + 1)

(2j + 1)(2j + 3)

with v~= p('II, , 'Z), p~ ——v('IIe, 'II&) (i.e. , v(01) in our previous notation), for
the R branch, and an analogous expression for the I' branch. Performing the
summations,

16webv&P'v'Be w1+""rj(j + 1)U=+
3/gme2|12(p2 p12) 2

j here is the j of the 'IID level; the minus sign is to be taken for the R branch,
the plus for the P. Our theory thus agrees with Wood's observations in giving
positive (normal) rotations for the lines of the P branch, and negative (ab-
normal) rotations for the R branch.

Magnetic rotation spectra of the alkalis

The calculation of the rotations in the alkali vapours is similar. The lines
observed by Wood and Loomis" are 'II —'2 transitions. Here the Zeeman
effect is given by the well-known formula W"& (Ajm) =pA'm/j(j+ I). We have

34 Kronig, reference 3. The phases we use are

P„I(O,j, m; 0',j ', m + 1) = + iP, (0,j, m; 0',j ', m + 1).

"F. W. Loomis, Phys. Rev. 31, 323 (1.928); Loomis and Nusbaum, ibid. 38, 1447 (1931);
391 89 (1932).
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vi'&(I j'm', Ojm)

IP,(j, m;j 1, m—+ I)Pv () 1, m+—1;jm) ]

fp, (j,m;j +1,m+1)P„(j+1,m+1; jm)] = +
2 (j+1)(2j+1)(2j+3)

pm /hj'(j'+1),
iP' U —1)U+. )U+m —1)+

2 j(2j—1)(2j+1)
iP' (j+2)(j+m+2)(j+m+1)

)

iP' (j+m+1)(j+m)
j U+1)

P2 =
~

P., (iZ iii)
~

~

fP, (j,m;j, m+ 1)p„(j,m+ 1;jm)] =

The rotations are, in terms of the j of the normal state,

47rev&P'v 8e ~i" f(j )
V =—

3hmc'(v' —v, ')'

fj() = (j + 2)f(j + 1) R branch,

f(j) = —(j —1)/j P branch,

f(j) = (2j + I)fj ()'+ 1) Q branch,

vi ——v('II 'Z).

The signs of the rotations of the R and I' branches are just opposite those
foUnd for iodine. These signs are confirmed by Wood's observations of the
rotation in Na2.

It may seem a little surprising that, aside from the Boltzmann factor
e—~jl', the rotations of the I' and E branches are nearly independent of j
when j is large. However it must be remembered that although the over-all
width of the Zeeman pattern decreases as 1/j, the number of components
increases linearly with j. The angle of rotation is small, only a few degrees,
hence the intensities, which are proportional to sin 0, vary with j approxi-
mately as ]f(j)e ~'~

I ."As the intensities in the absorption spectrum vary
as (2j+1)e ~~'"r, the intensities of lines of large j in the P and R branches of
the magnetic rotation spectrum are weighted adversely, as compared to the
absorption spectrum, by a factor e 'vi'"r/(2j+I), and so are, comparatively,
greatly reduced. It is perhaps worthy of remark that the intensity of the ro-
tation spectrum is proportional to the square of the density, rather than the
first power. The intensities of the Q branch decrease much more rapidly than
those of the R and P branches, which accounts for the fact that the Q branch
is not observed in the rotation spectrum. For small j the A branch is con-
siderably more intense than the I'. This, together with the piling up of the R
lines at the heads of the bands, explains why sometimes the R branch alone
is observed. The present theory is thus adequate to account for the principle
characteristics of the magnetic rotation spectrum.

I am deeply indebted to Professor J. H. Van Vleck, under whose direction
this work was done.

"It should be noted that, since the separations between lines increase with j, the density
of lines on a photographic plate will decrease even more rapidly than the intensities.


