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Multiylet Splitting and Intensities of Intercombination Lines
Part I

By HUGH C. WoLFE*

Utrecht University
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Kramers' symbolic representation method for the treatment of those properties
of free atoms which can be derived on the basis of irreducible representations of ro-
tations in R3 is outlined. Wave functions and operators are represented by functions
of spinor quantities ((, g) whose properties are known from the theory of invariants.
Integrations yielding matrix elements are only symbolic and the results, being de-
termined by the rotation invariance properties, contain therefore undetermined con-
stant factors of the nature of radial integrals. The method is particularly adapted to
the problem of multiplets (interaction between two or more "vectors"—e.g. , orbital
angular momenta, spins —treated as a perturbation). The method is applied to con-
figurations involving two valence electrons of which one is in an s state. Such a con-
figuration gives rise to a singlet and a triplet with the l value of the second electron.
The deviations from the normal l to 1+1 interval ratio in the triplet are due to a re-
pulsion between the singlet level and the center triplet level, their j values being the
same. The mixing up of the wave functions of these two levels gives rise to singlet-trip-
let intercombinations. The constants which represent the interaction energies (1) in-

terchange, (2) spin-orbit, (3) spin of one electron —orbit of the other (assuming that
other types of interaction may be neglected) are found in terms of the three intervals
of the multiplet. Corrections to the Kronig-Honl intensity formulas are found in

terms of the intervals of the two multiplets between which the transitions occur.
These formulas then give the relative intensities of combination and intercombination
lines. The sum rules for intensity hold for the complete multiplet and not for the
singlet and triplet separately. Part II will contain application of the theory to ob-
served spectra.

'N HIS book, Quantenrnechanih und Gruppentheorie, Weyl has shown that
- - many of the properties of free atoms can be derived on the basis of irre-
ducible representations of the rotations in three dimensional space. Kramers'
has obtained a very elegant formulation of Weyl's methods through the use
of symbolic representations of wave functions and operators with properties
well known from the theory of invariants. We propose here to outline this
method and to show its application to a problem in complex spectra.

THE SYMBOLIC METHOD

Let j and rt be the components of a spinor or half vector, i.e. , a two--
dimensional complex vector. The transformations of the monomials f'+ rt™
(rn= —l, —1+1, t), when $ and rt suffer a unitary transformation, con-
stitute an irreducible representation of degree 2t+1(t = 1/2, 1, 3/2, . ) of
the space rotation group. Except the identity, there are no other irreducible

* Fellow of the Lorentz Foundation.
' H. A. Kramers, Proc. Amst. Acad. 33, 953 {1930)and 34, 965 (1931).
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representations. Then a series of 27.+1 quantities Gf, which transform into
each other in an irreducible way under space-rotation, may be gathered up
in the one formula

where a and b are the components of an arbitrary constant spinor. The Gf
can always be so chosen that they transform like $'+ q' r. (art —b$) is invar-
iant.

2.
In the study of multiplets, a free atom may be treated as if it consisted

of two or more vector frames -(Vektorgeriiste), to each of which belongs a
quantum number of the total angular momentum and whose mutual orienta-
tion has, in first approximation, no influence on the energy of the stationary
states. In the complete energy expression there appear small interaction
terms which depend, in a not purely additive fashion, on the elements
(Bestimmnngsstiicke) of a pair of vectors and which denote an energetic
coupling of these vectors. ' As a consequence of this coupling every state,
defined by the quantum numbers of the vectors, splits up into a multiplet.

Consider the coupling of just two vectors. In analogy with the notation
for Russell-Saunders coupling but without assuming anything about the
physical nature of the vectors, we may designate their quantum numbers of
angular momentum by l and s.

The interaction terms in the complete energy expression may be written
down in the form

0 = Qa„X„o„.

Here )„and o.„are functions, respectively, only of the elements of the I-frame
and only of the elements of the s-frame in such fashion that X„and o„are not
invariant under an arbitrary space-rotation but transform according to some
linear law. The coefficients a may contain any combination of rotation-
invariant functions of the elements of either frame. In practice, 0 is usually
given immediately in this form or else, when the l-frame and the s-frame are
associated with different particles, 0 contains terms involving 1/r~2. The
expansion

where r and r& are, respectively, the smaller and the larger of the distances
r~ and r2 (the distances of the two particles from the center of gravity),
brings these terms into the required form.

In an arbitrarily rotated coordinate system K' a selected X„, call it X(",
assumes the form

y (&) — ~+ (&)y~ (~~)
P )

@=1

2 There may also be energy terms involving more than two vectors. To avoid complication,
we shall not discuss these for the present, They are treated by an extension of the method.
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where ) '(') is the same quantity with respect to X' as ) (" with respect to the
original coordinate system X. Thus there are g —1 other l-frame functions
7&&» (p = 2, , g) associated with X&" and these quantities transform in a
way which gives a representation of the space-rotation group of degree g.
If this representation is irreducible we shall say, for brevity: X") transforms
irreducibly. If it is not, one can always reduce the transformation with the
result that each X&» is expressed by the finite sum gr 7&q&» where the Xq&»

transform irreducibly. Thus it is always possible to express 0 in the form (2)
in such a way that every ) and also every 0.„ transforms irreducibly.

Since we are dealing with a free atomic system, the series (2) is rotation-
invariant and therefore can be divided up into parts such that the X and 0

in each part transform irreducibly with the same degree g.' Thus we may write

(4)

where the summation indices have been omitted in the last sum.
In the quantum theory, the elements which determine an atomic system

are uniquely defined according to their significance; the elements of the elec-
tron spin (its angular momentum components) as well as the ordinary co-
ordinates and momenta have this property. That we consider them as oper-
ators makes no difference. But, for even values of g, the transforming quan-
tities are only defined up to a factor+ 1. Actually, in the series (4), only odd
values of g occur and, if we set g = 2r+1 and T, = Q„(4) assumes the form

(6)

We are now ready to consider the symbolic representation of the energy
operators. Ke have already remarked that 2m+1 quantities which transform
irreducibly under space-rotation may be represented by t'+~q' r. If we repre-
sent the) (,) by x&'+~I y&' ~i. and the 0 «) by x2'+~2 y2' ~2, then 0, must contain
these quantities in the form

(7)

For 0, is invariant under rotation and the only simultaneous invariant that
can be formed of two spinors is (x&y& —yzx&)", where n is a positive integer. In
general, 0, may be a sum of expressions like (7).4

3.
Let us now consider the symbolic representation of the wave functions.

Each state of a multiplet is uniquely defined by the quantum number j of the
3 It is well known that Tax(,)x(,') is never invariant for gag'.
' In case of an energy term involving three vector-frames, we shall have symbolic terms

of the type
(+2/1 /2+1) (+3/1 $3+1) (+Q /3+2)

where a, P, and y must be all even or all odd integers.



resultant angular momentum, where

t —s~ & j&t+s.
Wave functions satisfying the unperturbed (i.e. , interaction terms neg-

lected) wave equation may be composed of products of two functions, one of
coordinates associated only with the l-frame and one of coordinates associated
only with the s-frame. There are 2l+1 functions of the first type which
transform irreducibly under space-rotation and may be represented symbolic-
ally by f&'+ i rl&' "i and 2s+1 functions of the second type, which may be
represented by (,'+ ~ iis' ~. For the state with quantum number j of the mul-

tiplet there must be 2j+1 functions which transform irreducibly under rota-
tion and are composed linearly of terms $&'+ i il&' i (2'+ s il&' ~. We intro-
duce a constant spinor (a, b) and form the invariants

($291 '62$1) i Q (a'gl baal) j R (a'V2 b$2) ~

Then the state with quantum number j is represented by the invariant

pi„——E QsR~,

where
n+P =2l; n+p=2s; l8+p=2j. (10)

The 2j+1 functions, which would be required for the study of the Zeeman
effect, are the coefficients in lbi„of a& —"' b&+"' (m'= —j, j+1, —

,j)

We now proceed to show that every term of (6) makes a contribution to
the energetic splitting of the multiplet which is, up to a numerical constant
C, which does not depend on j, a completely determined function of 3, s, j,
and v. .

According to the principles of the quantum mechanics, the energy split-
ting E„due to the interaction term (7), is given by

where f means integration and summation over all space and spin coordi-
nates. Both integrals are invariant under rotation and every term must
contain (a, b) and (a*, b*) each to the power 2j. The only invariant of (a, b)
and (a*, b") is (a*a+b*b) to some integral power. Therefore, these quantities
appear in both integrals only in the form of a factor (a,*a+b*b)"' and E, does
not depend on (a, b).

' In case there were more than two vector frames composing our atomic system, we should
form our wave functions of products of all the invariants ((;qf, —g;(7,) and (aqf, —bgf, ) in such
a way that in every term the sum of the powers of j; and q; is 21; and the sum of the powers of
a and b is 2j. In general, it will be possible to do this in a number of linearly independent ways,
say f, which means that there will be f states of the multiplet with the same jvalue. To And the
sfobilised linear combinations of these f functions is a perturbation problem involving the
solution of an f order secular determinant.
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In (11),a?, is an operator which works on P?„.a?, is built up by multiplica-
tion and addition of operators which involve only the coordinates of the
$-frame or only those of the s-frame. Accordingly, when we have written out
all the terms in (11),every term may be put in the form

CIII2

where II and I& involve, respectively, the coordinates of the l-frame and of the
s-frame and are integrals of the. type:

(12a)

(12b)

The j value appears only in the factor C which contains, in a known manner,
the expansion coefficients of the various factors in (11).We will show that, on
account of the irreducibility of the transformations which the factors in I&

and in I~ suffer under space-rotation, both integrals are completely deter-
mined in their dependence on the various m's. There remains over only a
common constant C„ in principle undeterminable by the symbolic method,
which depends in general on l, s, ~, and the particular atomic system with
which we have to do and which is of the nature of a radial integral,

All integrals of the type (12a) are obtained by comparing coefficients of
like powers of the components of the constant spinors on the two sides of

(a 'pl I $I ) (A $1 2?a1) (a'gl 5)1)

= const (a*a + f?*b)" '(a*A + b*B)'(aB —bA)' (13)

The evaluation of this integral follows directly from the invariance under
rotation of all the factors in the integrand and of the domain of integration.
The result must be built up of the three invariants of (a*, t?*), (a, I?) and
(A, 8) and these quantities appear to the proper powers only in the form
given in (13).

Having seen that the results of the integrations in (11) are determined by
the transformation properties of the factors and therefore do not depend on
the special form of the operators which occur in co„we may simplify the in-
tegration in (11) by choosing special expressions for the operators x&'+"
y&' " which transform in the same way. We have only to take care that in so
doing we do not make the integral vanish identically.

Replacing x?,'+" y?,
' & by operators acting on functions of the symbols $?,

and r??„we shall obtain, in place of (12a) and (12b), integrals of the type
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All integrals of this type are found by comparing coefficients on the two sides
of

(15)

where the results of integration are again determined immediately by the in-
variance. We find for (14) the result

—1

const.
P+&

Thus we find that our choice of operators to replace x&'+&, yA,
' & is limited to

such as make ft„*ta, p~„homogeneous in (rc„*, g~*) to the same degree as in

($a, ps). The most satisfactory operators fulfilling this requirement are ob-
tained from the formula

Both sides are rotation-invariant and the xk'+& yI,' & are uniquely defined by
comparison of terms with the same powers of A and B. We may remark that
the order of the factors on the right hand side of (17) is arbitrary since we
have the same thing still after exchanging them. (17) is the special case p = 0
of the more general formula

6.
THE CONFIGURATION: TWO ELECTRONS) ONE IN AN S-STATE

We shall now see how this symbolic method works as applied to spectra
involving two valence electrons, of which one is in an s-state. '

The two electrons have angular momentum quantum numbers respec-
tively f for the orbit, 1/2 for the spin and 0 for the orbit, 1/2 for the spin. The
21+1 wave functions of the orbital coordinates of the first particle, which
transform irreducibly under rotation, may be represented symbolically by
the 2l+1 monomials $'+ g' . Likewise we have two monomials S+ and 5
(the two components of a spi nor; hence the name) to represent the spin func-
tions of the first particle and two monomials 5+ and 5 to represent the spin
functions of the second. From the spinors ($, q), (5+, 5 ), (S+, S ), and (a, b)
we form the six invariants:

(ag —bt), (a5 —bS+), (aS —bS+), (5+g —S f), (5+q —5 $), (5+5 —5 Sp) .

' Houston (Phys. Rev. 33, 297 (1929)) has treated this case, using the explicit wave func-
tions and energy operators. The present treatment takes account of the interaction of the spin
of each electron with the orbit of the other, which Houston did not consider. As we shall see
in Part II, this interaction is not negligible.
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These must be multiplied together to form polynomials homogeneous in

((, il) to the power 2/, in (S+, S ) and in (5, , 5 ) to the power one, and in
(a, b) to the power 2j.

We find (as we should expect from the vector model) that the only pos-
sible values of j are I+1, l, l —1. The symbolic functions for j=1+1 and

j=l —1 are uniquely determined but there are three functions for j=l, of
which two are independent. Thus our multiplet will consist of four levels (a
triplet and a singlet in case of pure Russell-Saunders coupling). We form the
symbolic functions:

j =1+1

j=/ —1

I = A I(aq

II = A I (aij

IIp = A I (sq

II~ = A ((aq

III = A I (ag

b$)"(S+b —S a)(5+b —5 a) I

bt)"-'(5,&
—5 ~)(S, b —5 &) I

b()" '(Spy —5 f)(S~b —5 u) I

b$) "(S+5 —5-Sp) I

b$) " '(Spy —5 $) (Spy —S () I .

The symbol A in front of a bracket means to subtract from the expression
in the bracket the same expression with (S+, 5 ) and (5+, S ) interchanged
and (t, if) replaced by ((, j). Expressions in ($, j) refer to functions of the
coordinates of the second particle. Thus our wave functions are made to
satisfy the Pauli principle requirement of antisymmetry.

Of all the terms in the interaction energy of two electrons, ~ we shall neg-
lect, to begin with, all except Qi, the electrostatic interaction, ' e'/r, ~, Qu,

the leading terms,

in the interaction of the spin of each electron with its own orbital motion;
03, the leading terms,

in the interaction of each spin with the orbit of the other electron. In 02 and
Qi we have neglected all terms but the first in the expansion (3) of l/ma.

To find the symbolic representation of Qi, we must use the expansion (3).
Qi then assumes the form g„a~(ri r2)", where the n„are functions of the in-

variants, r1 and r2. Then the symbolic representation is

gu„(xy —yx)' .
n

(20)

7 See, for example, Heisenberg, Zeits. f. Physik 39, 499 (1926).
8 Of course, the term e2/r» does not properly constitute a small perturbation, since it is of

considerable importance in fixing what one should like to consider as the Nnpertlrbed orbit.
However, the true perturbation may be considered to be the difference between some well-

chosen central geld Hamiltonian and the true Hamiltonian in which e'/r» appears. The sym-
bolic representation of this perturbation is the same as that of e2/rl2.
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In the matrix integrals which we wish to calculate, the factors coming from
the wave functions will give us either ($*, tl*) and ((, rL) Ior (f*, g*) and ((,
q)] to the same power 2l or (p, tl*) and ((, r)) Ior (p, g*) and ((, q)] to the
same power 2l. Consequently, only the terms x, =0 and n =/ in (20) will yield
integrals different from zero. The term from n =l is the so-called resonance
term. Thus, for our purpose, the operator may be represented by'

(21)

The operator Q~ is in the form to be represented symbolically by

C~ I (&X —»)' + (Xv —»)'}
where (x, y) is associated with the orbital coordinates and (X, I') with the
spin coordinates. We find the representation of 02 in terms of the spinors
which occur in the wave functions by a double use of (17):

(xy —r )' = (xg —YJ)(x—+ r

x'= —$—;xy= —(——
p—;y~=p-

Bg 2 B$ Bg 8(

8 8
(Xy —yx)' = (xS —yS~) x—+ y

85+. BS

8X'= —S+ XV=-,'S+ —5 V'=5
85 85+ 85 85+

Substituting these expressions, we obtain

Cg 5+v —5

$—+ q
— S+—+5

(22)

where the symbol S in front of the bracket means to add to the expression in
the bracket the same expression with barred and unbarred symbols inter-
changed.

The operator 03 differs from 0& only in the interchange of (5+, S ) and
(S+, 5 ).

Og ——C35 (S~q —5 $)
85+By BS 8(

(—+q 5+ +5
(23)

' The term for n =l comes from (18) with v =l and p = —7..
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Applying the operator

Q = Qi + Q2 + Q3 (24)

to the wave functions (19), we find

QI = {Ao + Ci —l(Co + Co) II
QII» = {Ao —lC, + (l + l)Co }II» + {C,+ Co }IIp

QII, = {A, + (l+ 1)C, —lc, }II,+ {C,+C,}11.
QIII = {Ao + Cy + (l + 1)(Co + Co) }III

The multiplet energy levels e& and e3, defined by

(25)

I*I = I*QI; c3 III*III = III*QIII, (26)

are given immediately by (25) without integration:

oi = Ao + C& —l(Co+ Co)

oo = A o + Ci + (l + 1) (Co + Co) .
(27)

To find the other two energy levels and to find the linear combinations
of I I and IIp to represent the stabilized zero-approximation wave functions,
we must solve the second order secular perturbation problem. The stabilized
functions may be written in the form

Q2 = y2II~ + 52IIp

Q4 = y4II + 84IIp

Then our y2, 82 and p4, 84 are the two solutions of

7'(Q —oA ) + 8(Q p
—oA p) = 0

V(Qp —o~p ) + b(Qpp —o~pp) = o

(2g)

(29)

corresponding to the two roots ~2, e4 of the determinant of the coefficients in

(29). Here we have defined

Q p
= J) II *Qllp, 6 p =

Jt
II *IIp', etc.

Making use of (15) and of the integration formula

(50)

(a*a* —b*k*)'+'(at*+ be*) ' '(an —b5) '+'(a*i + b*n) ' '
2g= const. 5l~ (a*a+ b*b)", (51)

g
—t

which is obtained by replacing a by a+fb* and b by b fa" in (15) and eq—uat-
ing the coefficients of like powers of ff* in the result, we proceed to carry out
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the integrations (30). It is convenient to integrate first over the spin variables
and then to make use of the relation

(a*a + b*b)($"f+ ii*i1) = (a*re* —b*$*)(ag —bf) + (a)*+bil*)(a*)+ b*il), (32)

which leaves us integrals of the type (31).We find

g„, = Dps = const. (2l + 1)(a*a + b*b)" (1/l)

6 p
= Ap = const. (a"a+ b*b)" (1/l).

The integrals Q„„etc.are given in terms of these by (25).
For the secular determinant, we find

Ci+C, +(2l+1) [Ao —1Cz+(l+1)Ca —s}
(2l +1)C,+(1+1)(C&+C,)+A, —c

(2l+ 1)C,+(l+ 1)(Ci+Cs) +A p
—e

C,+Ci+(21+1)IAO+(1+1)Cs lC, —s}—
The solution is

(33)

= 0. (34)

= Ap+ (s)(Cs+Cs) + (l(l + 1)(Cs Cg) + [Ci+ (s)(Cs+ Ca)] )

If we de6ne the quantities p and 0 by

Ci + (-', ) (Cs + C3) = p cos 2bt

[l(l + 1)] '"(Cs —Cq) = p sin 20,

we have, as the roots of (33),

sx = As + (-', )(Cs + C3) + p

e4 ——As + (-', )(Cs + Cg) —p.

The complete multiplet, given by (27) and (36), is

si = Ao+ Ci —l(Cs+ C3)

ss = A s + Ci + (Cs + Cq) + 2p sin' ll

&3 A 0 + Cl + (l + 1)(C2 + C3)

64 = Ao —Cy —2p Sill 0.

(33)

(36)

(37)

We observe that, in the limit 0=0, e~, e2, e3 form a Russell-Saunders
triplet with the intervals in the ratio l+ 1 to l, while e4 appears as a singlet at
a distance proportional to the resonance energy, C~. Vsing these limit values
of ss and s4 in (29) and substituting in (28), we find for the Pure lnPlet and
pure singlet linear combinations of II„and IIp

Pi = Eg(II + IIp)

~b, = X.(II —IIp) = E,II7.
(38)
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From (33), we find for the normalizing constants

N~ ——const. E"'EtE = const. (E+ 1)'" (39)

P„ like I and III, is antisymmetric in the coordinates, symmetric in the spins;
P, is symmetric in the coordinates, antisymmetric in the spins.

Now, substituting for II and Iip in terms of Q, and P, in (28) and using
the values of y and 5 obtained by putting (36) in (29), we find for our stabil-
ized wave functions

Slngfs + COSOQE

Q4 ——cos 8 Q, + sin 0 Q&.
(40)

Here the normalizing factors have already been introduced.

J =1-i

Fig. 1.

Introducing the notation d» ——e& —e2, etc. and using the symbols 6 and D
to represent the distances from the normal position of the center triplet level
to s2 and e4 respectively (see Fig. 1) we find from (37)

sin' 0

CI

C2 + C3

C2 —C3

I
[(E+ 1)d2, —Ed, 2]/(2E+ 1)

(

[(E + 1)d23 —Ed(2]/[(2E + 1)d24]

(—',)(d„+d„—d„)

(d„+ d2g)/(2E + 1)

(E1D/E(E + 1))"'.

(41)

Since sin' 0 must be positive, the sign of (1+1)d2,—Ed» must be the same
as the sign of d24. This means that, if the singlet, e4, lies below the triplet, the
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center triplet level, e2, must lie above its normal position and vice versa. A
convenient way of stating this rule is that: tke center triplet level is rePelled

by tke singlet level. "
In (41), the quantities C& and C, are not completely determined since

we do not know the sign of C2 —C3. They become determined when we make
the physical assumption that the interaction of the spin of each electron with
its own orbital motion is larger than with that of the other electron, i,e. ,

C2
~
)

~
Ca ~. This is equivalent to making the sign of C2 —C, the same as the

sign of Cq+ C3. This determines also the sign in (40) of the angle, 8, which was
defined by (35). The sign of Ca+ C, (and so likewise the sign of C~ —C3) is
always the same. Since we can express C& —C3 in the form

C2 —C3 ——d&4 sin e cos 8/[t(I + 1)]'",
we must change the sign of 0 according as d24 is positive or negative, i,e. ,

according as the singlet lies above or below the triplet.

While e2 is regarded as a triplet level in spectral classification and e4

as a singlet, we observe in (40) that the wave functions for these states are
partly singlet and partly triplet in character so that we may expect transi-
tions between both of these levels and other singlet and triplet levels —i.e. ,

we shall expect forbidden intercombinations between singlet and triplet
systems as well as combinations within these systems —with relative inten-
sities determined by 0.

The intensities of transitions between levels are proportional to the
squared absolute values of the corresponding matrix elements of the polariza-
tion. Kramers has shown' how the symbolic method is adapted to calculating
the matrix elements. The operators for the components of the polarization
must have the transformation properties of the components of a space-vector.
These operators may all be represented symbolically by the spinor invariant

Q = (AV —BX)'

where we make the association, according to the transformation properties,

P, + iPy —+ X', —P + iP„—& V', P, —+ XI'.

Brinkman" has shown in detail that calculation with the wave functions
corresponding to Russell-Saunders multiplets leads to the well-known in-
tensity rules as given by Kronig and by HOn1. "Hence, for our purpose, we
may regard the matrix elements associated with the functions I, Q&, III, @, as

"We must not expect this rule to hold in case of very small displacements of the center
triplet from its normal position, since this may arise from cancellation of the opposite effects
of the perturbations 02 and 03, in which case the eEect of the other perturbation terms we have
left out may not be negligible in comparison."Brinkman, Dissertation Utrecht 1932.

"Kronig, Zeits. f. Physik 31, 885 (1925); 33, 261 (1925). Honl, Ann. d. Physik '79, 273
(1926).



MULTIPLET SPLITTING A XD I1VTENSITIES

known. We may indicate the matrix elements for the group of transitions
3+1—&l by

[ IQ4 (' ——Qg(, etc. (43)

where quantities referring to the Anal state are distinguished by a dash. We
shall make explicit use of the fact that all matrix elements Q~„Q,~, etc. , and
all matrix elements for ~hj

~

)1 vanish and that"

1+1
0 Q(g.

[l(1 + 2)]'t'

Then we obtain, for the actual multiplet, the matrix elements

(44)

EQI' = QIg

III@I' = n»

J
$4QI' = sin 0 Q]g

1+1
Jf s,ny, ' = ——~ s'+ ~ g ~ 9')n„

[l(l + 2)]'"

J[ IIIQPs' ——cos O' Q3&

J[ $4Q$2 —— — . cos 8 sin 8 + sin 8 cos 0 Q«1
l+ 1

1

[I(I +. 2)]~~2

1+1
f&Q$4' —— —— sin 0 cos 0' + cos 0 sin 0' 0&~

[I(I + 2)]"'

Jl IIIQ$4' ——sin O' Q3&

f y, ny, = —— —'& s'+ '
s 'oy)L,

[I(i+ 2)]~~~

jf IIIQIII' = Q, ,

The sum rules for intensity hold for the complete multiplet and not for the
singlet and the triplet separately. " In applying the formulas (45), we must
use the rule at the end of section 7 for determining the signs of 0 and 0'.

"This relation is given by carrying out the symbolic integrations. Apart from the sign,
it follows from the sum rules.

' Compare with Ornstein and Burger, Zeits. f. Physik 40, 403 (1926).
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9.
The formulas for the relative intensities of spectral lines, which are ob-

tained by squaring the expressions in (45) and substituting in the Kronig-
Honl values for

~

Qn ~',
~

A&i ~', etc. , hold only in a sort of first approximation,
i.e. , with neglect of quantities of the order of magnitude Av/v, where Av is the
interval between the frequencies of the lines compared. In many cases this
ratio is not small and the ambiguity may be correspondingly large. Thus we
should not attempt to compare our results with experimental intensity ratios
except for groups of lines of about the same frequency. The origin of this am-
biguity lies in the fact that the matrix elements calculated, while assumed to
be those of the polarization, might equally well be those of, say, the second
time derivative of the polarization; for this quantity has the same rotation
properties. But the squared matrix elements for these two quantities differ by
a factor v'.

As remarked at the beginning of section 7, we have taken account only of
certain selected terms in the interaction energy of two electrons as given by
Heisenberg (reference 7). With the exception of the leading term in the spin-
spin interaction, all of the neglected terms involve more than two vector-
frames. To show how the method is applied in such cases, we treat now the
leading term (i.e. , we take only the first term in the expansion (3)) in the in-
teraction

(46)

The expression ( [ri, v, ] si) involves the orbital motions of both particles and
the spin of one of them. To obtain a symbolic representation, we-associate
each of the vectors with a spinor:

zi~ (x, y); v2~ (X, 7); si (r, s),

We may make the association in this way. If (a, b, c) are the components of
a vector and (f, )l) are the components of a spinor, we may set"

z
a = s(P —n'); & = ——(8 + n');

This gives us, as the syinbolic representation of (Ir~, v, ].s,),
(rV —sX) (ry —sx) (Xy —Vx) . (47)

We proceed to replace each of these spinors by operators involving the
spinor representing the corresponding vector-frame in the wave functions.
Thus we substitute

for (x, y) expressions involving (, )l, 8/8(, 8/Oil;
for (X, I ) expressions involving $, il, 8/8$, 8/Bil;
for (r, s) expressions involving S+, S, BS+, 8/BS

We observe that, in general, it will not be possible to find an operator repre-
senting this interaction term whose matrix elements do not vanish identically.
Only in case 1 = 1 do we get integrals different from zero. The operator may be

' (, g are the coordinates by stereographic projection of a point a, I7, c on the zero sphere.
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put into a form where it contains first derivatives with respect to 5+ and 5
and either second derivatives with respect to ( and ti and no derivatives with
respect to j and j or second derivatives with respect to $ and j and no deriva-
tives with respect to $ and q We. then obtain nonvanishing resonance in-

tegrals when 1 = 1.
To get (47) into a form where we can use (18), we introduce a symbol T~

which means to pick out the coefficient of f in the expression following.

(ry —sx)(Xy —Fx) = ,'Tg{(X +—fr)y —(y+ fs)x}'
o{—& —If X+ r —+ V+ s — = r—+s— X—+V—

8( B$

Applying (18) a second time"

( F — X)( —+ —
) = —', Tp{(F+f—

)
—(X —f )—

—+ —', Tf V+ —5+ — X — —5 X — — + V+

S+V —5 X — + 5+—+S — X +V—

In the final step, we have simply X~), I'~f). This gives us the symbolic
operator for (47) in the form

5+g —5 (

+ 5+—+5= ( +8— k +8-
The other usable form of the operator differs from this only in the interchange
of ($, g) and ($, g). The term ([rz, v(] sz) yields operators which di&er from
these two by a complete interchange of barred and unbarred quantities. Ob-

taining symmetrical operators by lumping together those operators that
differ from each other by a complete interchange and putting them in a
somewhat different form, we find as the operator representing the leading
term in (46),

(v = C4.$ (—+ g
— 5+v) —S (

(—+q— 5+ +5

(:+p— S+ +5

"8/d( transforms like q and 8/cia like —(.
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In the special case I = 1, we apply the operator (48) to the wave functions (19)
and find

cvI = (C4+ Cg)I

coII = —C4II + (C4 —2Cg) IIp

~IIp = —CgIIAi + (Cg —2C4)II

~III = (C4 + C;)III.

In addition to neglecting what we believe to be the unimportant terms in

the interaction energy, we have made another omission which may in some
cases completely invalidate our results. We have assumed in our treatment
of the interaction of two electrons as a perturbation that each electron con-
figuration (defined by the e and / values for the two electrons) may be
treated quite by itself. This treatment is valid only so long as there are not
similar terms of nearly equal energy arising from different configurations. "
As we follow through a series of terms from configurations differing in the n
value of one of the electrons, irregularities in the values of n* reveal the pres-
ence of perturbing terms arising from other types of configuration. Shen-
stone and Russell" have shown that perturbations of this sort are common.
We cannot expect our formulas (41) for the energies of the different inter-
action terms as functions of the multiplet intervals to have much meaning
for a configuration which is much perturbed by a neighboring one.

'

Part II of this paper, containing the application of the theory developed
in Part I to observed spectra, will appear later. The relative energy values
of the different types of interaction will be calculated for many spectra. The
calculated intensities of certain multiplet lines in the spectrum of mercury
will be compared with the experimental values.

The writer wishes to express his thanks to the Lorentz Foundation for
the grant of a fellowship and to Professor Kramers for suggesting this prob-
lem and for many discussions while the work was in progress.

'7 This was erst emphasized by Condon, Phys. Rev. 35, 1121 (1930).
"Shenstone and Russell, Phys, Rev. 39, 415 (1932),.


