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Sum Rules for Atomic Transition Probabilities
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Some new sum rules for atomic transition probabilities are developed; they are
similar to the well-known rule of Kuhn, Reiche, and Thomas. They give, if unpolarized
light is incident on any gaseous element in any given discrete energy level, the total
absorption, excitation plus ionization, with various types of frequency weighting.
The results are similar to those of Dirac and Harding, but are more general in that
they apply to any discrete state of any atom, rather than to the ground state of hydro-
gen only. The method differs from that of Dirac and Harding,

INTRODUCTION

'HERE are well-known relations connecting the coef6cients of spon-
taneous and induced transitions in atomic systems (the Einstein A's and

8's) with the matrix components of electric moment between the initial and
final states and the corresponding frequency differences. Ap„,the spontaneous
transition probability from a state n to a lower state 0 is equal (in the dipole
approximation) to a universal constant multiplied by the cube of the fre-
quency difference and the square of the absolute value of the matrix com-
ponent of electric moment, e'(~xo.
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so„~'), where ex, ey, es, are

the rectangular components of electric moment, so that e.g. , x is equal to the
sum of the x coordinates of all the electrons. Bp„,the induced transition
probability, is proportional directly to e'(~ xo
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so ~'), where in
this case, either 0 or n may be the lower state.

x, „
is given by an integral of the form fpo(Z„Px,) pod=r, where $0 and ll'„

are the wave functions of the atom for the states 0 and ri, N is the number of
extranuclear electrons in the atom, and the integration is extended over the
coordinates of all the electrons. We see, then, that in general one must know
the wave functions of the atom for the states concerned in order to calculate
A p and Bp . One, can, however, give some general relations satisfied by the
A's or 8's without knowing any wave functions, or knowing at the most the
wave function of one discrete state only.

The sum rule of Kuhn, Reiche, and Thomas' is an example of the type of
thing one can say about the matrix components, and thus about the A's and
8 s, without knowing any wave functions. Using atomic units, and letting
x denote ZPx„,the sum of the N cartesian coordinates, S' the energy of the
state n with reversed sign, this rule can be expressed in the form Z„(Wo —W„)
~x&„~' = X, where the state 0 denotes an arbitrary state of the discrete spec-

trum, and the summation is understood to include a summation over all the
discrete states that have dipole combinations with the state 0, and an integral

~ W. Kuhn, Zeits; f. Physik 33, 408 (1925).F. Reiche and W. Thomas, Zeits. f. Physik 34,
5&0 (&925).
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over the continuous spectrum. (Similar relations hold for the y and s com-
ponents of electric moment. ) This rule is directly deducible from the commu-
tation rules and the relation connecting the matrix components of momentum
and coordinate. In terms of the A's it enables us to evaluate at once 2„
Ao (vo„',where vo„is the frequency of the spectral line associated with the
transition from a running state n to the base state 0. Furthermore, Wigner'
has shown that this rule may be sharpened by dividing transitions into three
classes: +, —,and 0, + transitions being those in which the total azimuthal
quantum number J increases by 1—those in which it diminishes by 1, and 0
those in which it does not change. Wigner's rule then gives the sum g+(I-) Z+

+g, (L)Z' in terms of the L-value of the state 0, where g+ and go are simple
functions of L, and the summands are the f values Ao„)vo„'.We wish to men-
tion at this point that all the sum rules developed in this paper can be
sharpened in a similar way.

Matrix multiplication of the simple type xx = x' furnishes another general
relation connecting the matrix components:

&On = & 00 ~

n

Here, as above, 0 means a discrete state and the summation is to be extended
by means of integration over the continuous spectrum. This relation can also
be looked on as a sum rule, although of a less general type, since the evalua-
tion of the sum depends on a knowledge of the wave function of the state 0.
It gives directly Z„B,„,if one knows lf, .

The above rules tell us how to evaluate Z„(WO—W )
~

xo
~

' when j has
the value 1 or 0. We develop in this paper other rules of the same general type,
letting j take on the values 2, 3 and 4. They constitute rules for the summa-
tion of the A 's and 8's (of a given base state) over all the states of the atom,
with various kinds of frequency weighting.

SEcnoN I

We begin with the case j=2, and attempt to evaluate p„(IIo —W„)'
(~ &o

~

'+
~
yo ('+ )so

~

') (We abbreviate expressions of this type hereafter
to p, y (Wo W ) xo

~
'). Let x„,y„,s„denote the coordinates of the pth

electron, N the total number of extranuclear electrons in the atom, p,„,p»,
p, „

the components of momentum of the pth electron, and p,„(0n)the matrix
component of P „between the stationary states 0 and n. Also, we shall use the
contractions:

N N

Qx, = x, gp,„=p„and IVO —W = Wo .

Now
8

p.„(0e)= (h/2zi) J rjo—. p„dr,
8Xp

2 E. Wigner, Phys. Zeits, 11, 450 (1931).
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and it is well known that when at least one of the states 0 and n is a discrete
state (to insure the vanishing of surface integrals at infinity which occur in
the derivation), this can be thrown into the form m(2ori/Io) Wo„oo„(0oo),where
x„(0ro)is the matrix component of x„between the states 0 and rr, and m is the
rest mass of the electron. On summing over the index p from 1 to N, we
obtain the relation:

Similarly
p, (ON) = m(27ri/h)Wo xo„

P,(e0) = p, (0ro) = m(2ori/h)W„ox o, (2)

(since p, is hermitian, and W„o———Wo„).On multiplying (1)by (2) we obtain:

P,(«)P, (n0) = rrr'(2or/ir)'Wo„' oo„I'.

Summing (3) over all states n (complete set), and making use of the simple
rule for a matrix product, vis:

pp, (oe)p.(no) = (p.o)„,

we obtain the relation:

so'(27r/h)o two. o
I

oo- I' = (p

Similar relations hold on replacing x by y or s. Adding,

m'(2m/h)' QWo„'I xo„I' = (p, '+ p„'+p, ')oo.
n, ayz

(5)

We next attempt to give the right hand side of (5) a physical meaning.
Since

p.'= Z Z~.„p., = Zp.„'+ZZ~.„p.
„

(p')oo = Z(p.„')oo+ Z Z(p* p*)»

The right side of (5) thus decomposes into two parts:

Z(p, + p,. + p.. ) ~ -d Z Z(p..p., + p,.p,.+ p..p.,) '
The former term is recognizable as 2mTOO, where Tao is the diagonal compo-
nent of kinetic energy in the state 0. By the virial theorem, making use of the
fact that the interaction potentials in the atom are all Coulombian, we can
equate Too to —8'0. The cross-product term is expressible as

—(h/2~)' jI 4o'7, V,hodr,

g P(p„'p„)o„wherep„=(p,„,p„„,p,o),
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Then

n, zyz

where
~

Wo~ is the energy necessary to strip the atom of all its electrons when
in the state 0.

Eq. (6), then, is the general sum rule for the case j= 2. If the wave func-
tion of the state 0 is simple enough so that+ g„~„(p&' p„)oo can be evaluated,
it is of use. For states like the ground state of helium, where one can assume
separability to a good approximation,

(p.,p.,)oo = p.„p.,
where the tilde indicates an average with respect to the wave function of that
electron alone. But

P ~=P*. =0

In such a case, and for one-electron atoms, the rule becomes

QWo„'
( xo„(' = —(Io'/27r'm) Wo.

n, xyz

For those cases above mentioned in which the cross term vanishes, it is
of interest to express the rule in terms of the A and j3 coefficients:

3211 8

3mc'h'

47re'
Q oo '&o =, Wo~

3mb'

the Kuhn-Reiche rule (j= 1) being expressible as

or

Ap„

» I'p»

8' e~
E

SEC

7re'
goo.Bo. = ——AT

3m

Alternative method

The sum Q„Wo„'~xo„~' can be expressed alternatively as P„P,Wo 'xo

(Ooo)g„x„(n0).(In the rest of the paper matrix components of coordinates and
momenta are understood to have time factors of the form exp [(2oro/k) Wo„t].)
As before, P, (On) =m(2oro/h) Wo„x„(0n),and making use of the above con-
vention as to the time factor of a matrix component, we have, letting the dot
denote differentiation with respect to time:

p,„(0e)= os(2orf/h)'W „oxo„(eO)

so that

Wo„'x„(00)= (1/sz)(h/2oro)op, „(0e).
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The sum then becomes (1/I) (lr/2prz) ' g g„g„p,„(0tt)x„(tr0). We now make
use of the fact that j,„(0tr)= —(r) V/8 x) p, where V is the potential energy
of the atom, ' and of the rule for a matrix product, obtaining for the sum the
expression

&y 00 ~

Summing on x, y, s, we get

1 h 2

QIVp„p
)

xp„p = —— Q Q(~7„UR,)pp
~yz 812% p y

where g„is the gradient operator in the coordinates of the p, th electron, and
E.

„
is the radius vector to the vth electron. This expression can be split into the

parts
2 N 1 h

Q( V,V. R,) pp and — Q Q( i7„VR„)pIi.
m 2'

„
I m 2'

The first part can be transformed by Euler's theorem (since V is a homo-
geneous function of the electron coordinates of degree —1), and becomes
( —1/m) ()r/2pr) ' Vpp. Application of the virial theorem, according to which
Vpp = 2 Wp, gives finally for the first Part —(/r'/2zrzttr) Wp, agreeing with the
non-cross term of the first method. The cross term (1/ttt) (h/2pr) pg g„&„
( 7„V'R„)pp must thus be equal to that obtained by the first method,
(1/rn')()r/2pr) g g„z,(~, ttp„)pp. It does not appear that this equivalence
could be shown in any other way. The new form for the cross term is more
useful for calculation, since it does not require us to diA'erentiate a wave
function which may be unwieldy. For an atom of atomic number Z with
electrons it becomes

e' h
pp Z g g (r ~ + rp —r „z)—

2m 2' l p Ay ~p
1+ZZZ(. -"+,—~ )~d

3
2 +fj

For the special case of a two-electron atom the cross term becomes

1 h ' 1 1 e2

PO Ze fIf2 COS 0I2 —+ —+ —POET
m 2' ~1 ~2 ~12-

where 0~2 is the angle between the radius vectors. If this is calculated out with
a separated wave function, the term e'/rtz leads to a nonvanishing result, in
contrast to the first method, which gave zero. This discrepancy is un-
doubtedly due to the inaccuracy of the assumption of separability.

3 The proof is like that given by Sommerfeld, Wellenmechanischer Erg', nzungsband, pp.
288, 289 for a diagonal component of momentum. The operators div, grad, and 6, however,
are now operators in 3 X-space, rather than 3-space, and with us the time component of a wave
function of a stationary state 0 is exp [ —(2zi/h)IVpt] rather than exp [+(2xz/)r)IVpt], so that
sp =fppzP„dr, rather than fgpsg dr, as with Sommerfeid.
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SEcTioN I I

437

We continue with the case j= 3. The problem is to evaluate Q„WO '~ xo
~

'.
First, Wo„'~xo„~', because of the hermitian character of our matrices, can be
expressed as —(Wo„'xo„)(W„,x„,). The factor W„ox 0 can be then placed
equal, as before, to (fz/2zrzzzz)p, (no). Also, as before,

27ri 2

p, («) =I —&Uo„'xo.
h

Thus
h '1

Wo„'xp, —— ——p, (ozz)
2~i m

and
h h'

W,„~x..
~

= —— P,(0~)P.„(~O).
27t-Z

Now

p, (0 )zz= Qp,„(ozz)

and

Thus p, (ozz) = —g„(BU/Bx„)0„,so that

h h' 8 t/'

iU, „'~x,„~z =— p,„(~o).
27l z 47l 7' ~ z 0x~ o~

Upon summing on n, making use of the rule for a matrix product, we obtain

h h' BV
ZWo. 'I"-I'= — . , —, Z Z —p..

27l Z 47l 17Z p y l3 Xy oo
(10)

Eq. (10), then, is the rule for j=3 in the general case of an X-electron
atom. (The i, of course, is cancelled on performing the indicated operations. )
We next consider the special eases X= 1 and X= 2.

Case 1: %=1
Letting 0 denote any discrete state of an H-like atom

and

h 4

ZW«'1»~
I

' = —,—J, where ~ = j Po VU '7$0dr.
Iz;, xyz 82 27l

But U= U (r only). So that

d V ~go Ze' 8fo
'7~ '7&o =—

dr Or r Or
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(since V = —Ze'/r). Thus

1. Rift'PJ = Ze' Pp — dT
r Br

and since Po = R(r) 0(fl) C'(P),

dR 2~

J = Ze' E dr 0' sin gdg 4 Cd&.
p dr p p

Letting 8, 0™,and 4 be separately normalized,

dR Ze' ZeJ = Zoo
~

R d. = [R'(~) —Ro(O)] = — Ro(O)
dr 2 2

since the radial wave function always vanishes at infinity. Then, making use
of the properties of the Laguerre polynomials involved in the radial wave
function, we find:

5=0, t@0
= —(2e'/aoo)Z4/no) f = 0

where ap is the Bohr radius, n the principal quantum number, and l the
azimuthal quantum number of the state 0. Thus the cube sum vanishes for
l/0, and equals

h 42e' Z4—for l = 0.
'VZ 2' Cp

It is interesting to express these relations in terms of the 2' s.
Since

64vr4e'
-&o~ = — 1&ooo( roo '+ yoo

~

'+
)

soo
~

'),
3c'h'

Qo&oo = O, & & 0

Se4 Z4
3=0.

3m cgp 's

Expressed in words, in any hydrogen-like atom, the sum of the sponta-
neous transition probabilities from any state not an 5-state to all lower states
is equal to the sum of the spontaneous transition probabilities from all higher
states down to the given state. For an S-state they are unequal, the difference
varying inversely with the cube of the principal quantum number and directly
with the fourth power of atomic number; for S-states near the ionization
limit they approach equality. (By a state is here meant a level with given l
and rn; if one wishes to treat state as meaning a given / only, that is, to
average over diAerent orbital orientations, one must take into account such
orbital degeneracy in writing down the formulas for the A's or the B's in
terms of matrix components, The necessary quantum weight factors can be
found most explicitly in a paper by Y. Sugiura. ')

4 Y. Sugiura, Phil. Mag. [7] 4, 495 (1927).
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For example, the sum of the spontaneous transition probabilities from all
higher states, continuous included, to the state 2I' (with given m) in hydro-
gen-like atoms is equal to the spontaneous transition probability from that
state to the groundstate 1S. (m here means magnetic quantum number. )

Applied to the case in which 0 denotes the ground state of an H-like atom,
this cube rule furnishes an independent proof of a theorem familiar from
direct examination of the hydrogenic functions. We have shown that this
sum is of the order Z'/e' for S-states of H-like atoms, and zero for other states.
Since for the ground state all the Api, 's have the same sign, it follows that
their sum cannot vanish, so that we have: the ground state of an H-like atom
must be an S-state.

Case 2: N =2, helium-like atoms

On writing out the double sum, we obtain:

h h' BP BP' BP BV
P. + P.2+—P.2+ P.i

2FZ O'F f0 BXI BX2 BX1 C)X2 pp

Using V = Ze'/ri —Ze'/r2+ —e'/rjz, and carrying through the indicated opera-
tions in a straightforward way, we obtain:

h 4 Ze' 1 1
XII'.. l'..

l

= —,—2'.—,-+ —2"—. 3 3, zyz 27f m fl xyz uXI f 2 gyz BX2

1 8 1

& 1 xy ~X2 f2 xyz ~X1-00

Letting 1,„,10„,1q„be unit vectors along the radius, meridian, and pa-
rallel of latitude through the pth electron,

8
X ——= fiz V

ayz ~X@ ~fp

Also
l3gz„—= r,f„„g„

ayz 8 Xy

where g„is the gradient in the coordinates of the vth electron. Using these
abbreviations, we can write the cube sum for N = 2 in the form:

h 4Ze' 1 8 1 8 1
pp —+ ——+ 1„1T2 + —1„2 VI ppd7.

27r m2 f1 Bf1 f2 Bf2 f1 f2'

Knowing the wave function of any discrete state of a helium-like atom,
we have here a rule for the evaluation of g„A0„for the atom. We might men-
tion that for S-states (e.g. , (Is)' or (1s)(2s)), an approximate function of the
form fo = fe(rq, rq) (no angular dependence) is often used. In such a case
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&r1' V2PO = COS 012
Bf2

8
~r2 ' V 1/0 COS 012 $0p

Bt']

where 0~2 is the angle between the radius vectors r", and r, Bu. t icos 0»
sin O,d9&dg& sin 9~de~dg~=0. Thus if fo = Pp(r], r2), the terms involving both
electrons drop out of the integrand and the cube sum reduces to the integral

+ — lt/Odr.

In applying this to the ground state of helium, it is convenient to express
the cube sum in atomic units, in which case the factor in front of the integral
becomes 8Z. Using a simple screening constant wave function Po ———(n'/s )"'
e I:"~+"2& where n =Z —5/16, the cube sum becomes —32Z(Z —5/16)'.

SEcTiox III j=4

To evaluate P„,.„,WO„'~x,„~'. Taking the general case of an iaaf-electron

atom, we begin as before:

P~f 0~

Thus

= rs(2x/h) 'Wo. 'x, (0~) .

BV = m(2x/h)'Wp 'xp„
p 8Xp On

and

BV 8V
m'(2~/k)4W, „4 x,„~' =

v ~&p On ~&v no

Summing over all the states n,

BV BVg (2~/h) 4m'Wg„4 xo„
n ~&v OO

fO 1PPdT
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For a hydrogen-like atom, N= 1, we obtain for the fourth-power sum:

~here
3 ' l(l + 1)—Z'
2 3e2

sp'I'(&+ 3/2)(f + 1)(f + p)f(f —
p)

This fourth-power rule gives a rule for summinggzvpkApp. The presence of f

in the denominator of the above expression leads to the result that a sum of
transition probabilities with this sort of frequency weighting diverges for
S-states of hydrogen-like atoms.

For a helium-like atom, this rule takes a simple form. Using

ZC Z8 8
+ )

~2 ~]2

we And

Z2g4 + +

Summing over x, y, s,

where O]2 is the angle between the radius vectors r], s2, from which is obtained
the fourth-power sum:

h 4Z2e4 L i 2
PP —+ —+ — &os H].2 4'Pd7.

27r 1%2 f] f2 F] 12

Going back to H-like atoms, we can use the cube and fourth-power rules

to deduce the asymptotic behavior of the A's between the ground state and

the continuous spectrum. gpvppA pz diverges for S-states, and therefore for the
ground state. For this state the apl,A pA, all have the same sign. For the discrete
sPectrum (Lyman series), vppApp is asymPtotically of the order 1/n&P, and

since P&"1/pr&' is known to converge, it follows that the sum PpvppApp over
the discrete spectrum only must converge. Thus fv(dA p„/dv)dv over the con-
tinuous spectrum must diverge, In a similar manner; using the cube rule, it
follows that f(dA /dv)pdv over the continuous spectrum must converge.
Writing dAp, /dv asymptotically (large v) as c osnt. v/' +we see that f„,"dv/v'+'

must converge and f„,"dv/v' must diverge, (where vp
——frequency of Lyman

series limit). The first requirement gives p)0, the second s 1, so that
0(p ~ 1. Thus the f-value dfp„/dv(=v ' dAp„/dv) is of the order 1/v&, where
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3 (j~4. This example serves to illustrate how the sum rules can be used to
obtain information about the intensity distribution in the continuous spec-
trum without knowing anything about the continuous wave functions.

It should be mentioned that Dirac and Harding' have already obtained
the sum rules of this paper for the special case when the state 0 is the ground
state of hydrogen. Besides this restriction, their method encounters an
ambiguity of a peculiar sort, in that part of an operator may operate back-
wards and part forwards; this ambiguity has. to be removed by a special
investigation.

The author is indebted to Professors J. C. Slater and M. S. Vallarta, who
have read the manuscript and offered suggestions, and especially to Professor
P. M. Morse, who has taken a very helpful interest in the paper and oAered
many valuable suggestions.

5 Dirac and Harding, Proc. Camb. Phil. Soc. 28, 209 (1932),


