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The system of a particle moving in a potential field containing two equal minima
is treated by the Wentzel-Kramers-Brillouin method of approximation. The energy
levels are grouped in pairs and the object of the computation is to find the separation
between two levels forming a pair. This is accomplished by connecting the oscilla-
tory and exponential approximate solutions of the wave equation by means of the
Kramers connection formulae. If 6 is the separation of a pair and kv the distance
between two pairs 6/kv=1/xA' where A =exp [(2x/h)fv'[2m(V —8}]'&'dx]. A par-
ticular potential curve is chosen consisting of two equal parabolae connected by a
straight line. The expression for 6 may then be evaluated explicitly as a function of the
length of the joining line, 2(xp —n) and the distance between two minima, 2xp. These
formulae may be applied to determining the form of the ammonia molecule. Substi-
tuting the experimental values for b, p and 2 &, it is found that xp =3.161 and a =1.916.
An exact solution for this particular potential curve may be found by joining Weber's
function D„(x—xp) and D (x+xp) to a hyperbolic sine or cosine. This process also
leads to expressions for 6 which may be equated to the experimental values yielding
xp =3.182 and a =1.930, in good agreement with the earlier determination. Finally
xp is used to compute 2qp =0.760 X10 ' cm, the distance between the two potential
minima, and the following dimensions of the ammonia molecule, H —H =1.64X10
N —H=1.02X10 'cm.

$1.
'HE one-dimensional system of a particle moving in a potential field con-
sisting of two equal minima was first treated qualitatively by Hund'

who showed that the vibrational energy levels which lie below the potential
maximum will occur in pairs. The distance between two pairs is roughly equal
to hvo where vo is the normal frequency of oscillation, while the separation of
the two levels forming a pair depends upon the height and nature of the
barrier between the minima and is in general very small. We propose to
compute the level separation using the Wentzel-Kramers-Brillouin method
of approximation and then to compare this solution with an exact solution
based on a particular potential field. Finally an application of the results
will be made to the ammonia molecule.

f2.
The W. K. B.method yields an approximate solution of the wave equation

whose form depends essentially upon whether the region being considered
lies within or without the region in which the classical motion might take
place, that is, the region where the kinetic energy is positive. In the first case
the solution is oscillatory and has the form

P, ,&

——(c/I"") cos (2x//t) ~l
Pdx + y

' F. Hund, Zeits. f. Physik 43, 805 (1927).
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where x is the coordinate of the system, c and y are arbitrary constants, and

P = + [2m[ 8 —V[ j'".
In the second or non-classical region the solution consists of a linear com-

bination of an increasing and a decreasing exponential' which has the form

+ (b/P"') exp —(2x/b) JI Pdx

At each boundary or critical point there will exist two conditions upon
the arbitrary constants c, y, a and b which arise from the fact that each func-
tion must approximate the same exact solution of the wave equation. These
relations between the constants are the so-called Kramers connection for-
mulae. ' The increasing exponential connects with the oscillatory solution so
that c =a and y =+x/4 while for the decreasing exponential c =2b and

y = —x/4.

-X -X 0 +X X~
Fig. 1.

These formulae furnish a method by which we may approximate to any
solution of the wave equation. When however one wishes to approximate
the eigenfunctions, namely those functions for which f PPdx is finite,
one must let f be represented only by the decreasing exponential as x ap-
proaches + or —infinity. Thus in a region from +~ to —~ which has n
critical points, there will exist 2n+2 conditions arising from the connection
formulae.

The n+1 regions will furnish 2n+2 constants but one of these, the multi-
plicative one, must be kept arbitrary in order later to normalize the wave

' By increasing or decreasing exponential we will always mean increasing or decreasing
when we proceed a@ay from the boundary point between the classical and non-classical regions
into the non-classical region.

3 H. A. Kramers, Zeits. f. Physik 39, 828 (1926), H. A. Kramers and G. P. Ittmann, Zeits.
f. Physik 58, 217 (1929), A. Zwaan, Utrecht Diss. , 1929. These formulae are collected in a
paper by L. A. Young and G. Uhlenbeck, Phys. Rev. 36, 1154 (1930).
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function. Thus there is one condition remaining and this just serves to 6x the
value of Z, that is to determine the eigenvalues of the problem. When we have
a system in which the potential has only a single minimum this procedure
leads to the well-known half integer quantization of the phase. integral.

Pd x = (pp + —',) fd.

Let us now consider the case of two equal minima, (illustrated in Fig. 1)
where the energy level B is assumed to lie below the potential barrier at
x =0, Since the potential is an even function of x the wave functions will be
divided into two classes, those which are even functions of x and those which
are odd functions. We begin by assuming that the level in question corre-
sponds to an even eigenfunction, P+, and we denote the energy by Z+.

In the region from —xI to +xI the wave function will have the character
of an hyperbolic cosine and may be written in the following manner where C
is the multiplicative constant mentioned earlier.

g

p+ = (C/P'") cosh (22r/h) I Pdx —x, ( x ( x, .
0

It is now convenient to write f,*Pdx= f,*'Pdx f„*'Pdx F—urther le.t A =exp
[(27r/Id) fo'Pdx] We may . then express f+ as

S 1

=(C/2P'i')(A *p —(2 /2) Pd + ((/A) p (2 //) Pd

—xl ( x ( xI.

Applying now th, e connection formulae between the regions —x& to x&

and x& to x2, we obtain the following oscillatory solution for the latter region.

where

=2(C (2/2)f d* —P2

+1
(2)

and

tan HA.
——(2A2 —1)/(2A'+ 1)

R+ = (iAA + 1)"'/2A.

Now in the region x &x2 we must have the decreasing exponential, that is,

I

P+ = (cdC/P)/2) exp —(22r/h) Pdx
&2
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where o; is a new constant as yet undetermined. This connects in the region
x, tox, with

X2

P+ = (2nC/P'") cos (2x/fg) ) Pdx —m/4 (4)

Eqs. (2) and (4) must give identical values for P+ as a function of x and conse-
quently also of the first derivative of 10+. We may thus eliminate n by re-
quiring that p+'/f+ as determined from (2) shall be the same as p+//10+ de-
termined from (4). This gives immediately

t+ /2 /i) f /'d —0 = t (2 //) Jf /'d + /4
X 1 SQ

The two angles whose tangents are equal must differ by n~ where n is an
integer and this leads to the result,

Pdx = (r/+ —,
' + 0~/x)h.

From (3) one sees that 0+(vr/4 and in the limit of an infinite barrier where
A —+co, 0+—&x/4 and (5) reduces to (1).

The foregoing calculation is appropriate for a discussion of one of the
levels E+ where f+ is an even function of x. For the remaining levels E
where f is an odd function of x we must start in the region —x& to x~ with
the hyperbolic sine. We obtain in a similar manner,

where

Pdx = (e+ —,
' + 0 /x)h

tan 0 = (2A' + 1)/(2A' —1),

(6)

thus 0 ~or/4.
Let us now consider a pair of levels E+ and E which are dehned by the

same value of n. Subtracting (6) from (5) and writing out +Pdx we find.

&2

2 I [2m(E —U)]"' —[2m(E/ —U)]'"Idx = (0 —0/)h/7r. (7)
+1

A is usually a large quantity and when this is the case it will be seen that
0+ is nearly equal to 0 and consequently we may develop both and obtain
to a high degree of approximation,

0 —0~ ——1/A '.
Where |I —0+ is small, both E and E+ must lie very close to the energy Z
of a corresponding one minimum potential system. Calling the difference
E E+ for the eth pair of l—evels 6„,we find by developing (7)

&2 dx6„= h/2x-mA '
I

[2nz(E„—V) ]'"
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This expression may be somewhat simplified by remembering that

$2 dx2'
[2nz(E —V) ]"' v

where v is the classical frequency of oscillation. When the potential V be-
tween x2 and x& does not deviate too greatly from a parabolic form, hv may
be identified with the distance between neighboring pairs of levels.

6 /hv = 1/sA '

where

g 1

A„= exp + (2w/h) [2m(V —E„)]'t'dx
Jo

The expression (8) shows that the relative separation of a pair of levels
does not depend upon the form of the curve but only upon a square root area

+1

(2~/h) [2m(V —E„)] '"dx
0

in the non-classical region. This result might have been expected from con-
siderations analogous to the Gamow, Condon, Gurney theory of radioactive
disintegration.

The infrared spectrum of the ammonia molecule exhibits features which
may be directly related to the one dimensional problem of two equal minima.
The parallel type vibration bands for example are observed to be composed
of two nearly superimposed bands; a phenomenon whose existence depends
upon the fact that there are two equivalent positions of equilibrium for the
nitrogen nucleus. This problem has been treated by Dennison and Hardy,
who show that the normal coordinate x3 which is to be correlated with the
band at 20.5p, , may be identified with the coordinate x which we have been
using. (For a more exact discussion, see the paper just cited. )

The experimental work so far done on the ammonia spectrum presents us
with three data, the frequency vo and the separation between the two lowest
pairs of levels.

v 0 950 cm—i
~

~o = 0 8 cm—i
~ 6, = 32 . 2 cm

The estimated error of vo and A~ is less than a percent but the error in 60
may be as high as 10 or 20 percent.

We shouM of course like to be able to reconstruct the potential V as a
function of x using the known experimental data. Of the three facts we pos-
sess, vo is needed to determine the curvature in the region of the minima which
we designate by x =+ xp. Formula (8) now shows that if we know Ao and 5&

we can impose two and only two conditions on the curve, namely we can de-

4 D. M. Dennison and J. D. Hardy, Phys. Rev. 39, 938 (1932).
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termine the square root area from x = 0 to x = (x&)0 and from x = 0 to x = (xg)g
where (x&)0 and (x~)~ are the critical points for the two states m=0 and 1

respectively.
We shall therefore choose a very simple curve with two parameters which

will allow us to correlate the observed data. Let this curve be formed by two
equal parabolae joined by a straight line as illustrated in Fig. 2, The two
pairs of levels corresponding to n =0, 1 are shown in the figure but since the
drawing is to scale the separations ~o and A~ are much too small to be repre-
sented. The two parameters are (xo —n), half the length of the joining line
and xo, half the distance between the two minima. We do not mean that this
curve represents very closely the actual potential function, but it must pos-
sess the two properties as to square root area mentioned before, and these
are the only features of the potential curve which we can at present learn.
The parameter xo is of great physical interest and it turns out that this is

Fig. 2.

I
(x,), (x,]. X

very insensitive to the exact shape of V, provided only V has the general
form indicated in Figs. 1 or 2.

By use of this particular curve the quantities A and 6 may be readily
computed as functions of n and xo.

n+ [o,' —2& —1]'" '"+"
exp [—(2xo —a)(n' —2e —1)"']. (9)

hvp x L (2n + 1)'~'

Equating Do and 6& to their observed values we obtain a transcendental
equation which yields the values,

n = 1.916

xo ——3.161.

The physical significance of these will be discussed later.

(S.
One reason for choosing the potential function illustrated in Fig. 2 is

that for this particular curve we may also obtain an exact solution and thus
we are able to test, for one case at least, the accuracy of the foregoing com-
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putation. There are two reasons why we might doubt its validity. In the
first place the W. K. B. approximation is designed to hold best for energy
states where n, the quantum number is a large integer. We wish to apply the
formulae however to the two lowest states where n =0 and 1. In the second
place the W. K. B. method becomes inapplicable when the potential at the
critical point is too nearly equal to the potential throughout the non-classical
region. This obtains because in this case I"~' becomes very small and the
W. K. B.expression for P does not satisfy the wave equation at all accurately.
Fig. 2 is drawn to scale using the values for o. and xo obtained for ammonia
and it is seen that the highest critical point does not lie very far beneath the
potential in the non-classical region.

The exact solution is obtained in the following manner. The wave equa-
tion may be written,

(dog/dx') + (2N + 1 —2V/hop)P = 0

where x and 2n+1 are proportional to the displacement coordinate q and to
the energy Z respectively. (rp is not necessarily an integer here although it
will be nearly equal to one when the potential barrier is sufficiently high. )

q
—[Ip/4propp ]itox, E = (2rp+ 1)hop/2.

The potential may be expressed as follows

2V/hop = (x —xp)' from x = (xo —n) to + pp

= (x + xp)' from x = (n —xo) to

from x = (xp —n) to (n —xp).

(10)

In the region of the joining line, from x=(xp —n) to (n xp) the diR'er-

ential equation is satisfied by any linear combination of a hyperbolic sine or
cosine. (Assume that 2n+1 (np. ) It is known that the solutions of the total
wave equation may be divided into the two classes, P+ which are even func-
tions of x and P which are odd functions. It is clear that these must just
correspond to the hyperbolic cosine and sine respectively.

Thus from x = (xp n) to (n ——xo)

P+ = A cosh (n' —2N+ —1)"'x
= 8 sinh (n' —2pp —1)"i'x.

Now in the region from x= (xp —n) to +no, one set of solutions of the
differential equation will be Weber's functions, D„(x—xo). These func-
tions~ converge properly for large values of x while for small values of x
(i.e. , (x —xp) large and negative) we may fit them by means of the param-
eter pp to any curve we please. Now if we join D„+(x —xo) to P+ or D„
(x —xp) to P so that their values and first derivatives agree at the point
x =xo —A, we shall have a complete and continuous solution to the wave equa-
tion, throughout this region. A similar process may be carried out for nega-

' See for example E. T. Whittaker and G. N. Watson, Modern Analysis, 4th Edition,
p. 347 (~927).
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tive values of x using D„(x+x//). The conditions necessary for joining these
curves will determine the n+ or n and hence the energy difference 6 . The
computation is straightforward and makes use of the asymptotic expression
for D„(y) given by Whittaker and Watson, for large negcti//e values of y.

D„/» ——e—&'/'(2'"y) "[1 —//(e —1)/4y' + //(I —1)(N —2)(z —3)/32y' ]

—[(2x)'/'e"~/e" /2/I ( r/)—(2//~y) ~+/] [1 + (z + 1)(z + 2)/4y2

+ (I + 1)(e + 2) (n + 3) (// + 4) /32y4 + ] .

It does not seem possible to give A„as an explicit function of n but the
two quantities we need 60 and 6I have been computed, '

/1p//s/jp = (2////7/ / ) exp [—n' —2(xo —o!)(n' —1)"']
g//gzpo [(4~3 40) /&1/2] exp [ &2 2(xo ~) (~2 3) 1/2]

It is interesting to compare formulae (9) and (11). When xo and a are
sufhciently large, the two values of 60 agree to within 7 percent and the values
of ~j to within 3 percent. This result is in accord with the work of Young and
Uhlenbeck' who found that the W. K. B. approximation for the hydrogenic
wave functions was surprisingly good even for the low quantum states. The
agreement of (9) and (11) for the particular values of xo and n found for
ammonia is somewhat poorer, being about 10 percent for both Ao and AI.
On the other hand we may equate (11) to the experimental data Ao and 4,
when we 6.nd,

n = 1.930 xo ——3.182. (12)

Thus the error in the determination of the constants n and xo is in each case
about 0.7 percent.

We shall adopt the values (12) and from these may compute the actual
distance between the two minima in the ammonia molecule. Substituting the
appropriate values for vo and y, the reduced mass, into (10) we obtain 2go
=0.760X10 ' cm.

The moment of inertia, A, about an axis perpendicular to the symmetry
axis is known from band spectrum measurements to be A =2.80X10 4'.

Combining this datum with the value for qo we may find C, the moment of
inertia about the figure axis and hence the normal distances between two
hydrogen nuclei and between a hydrogen and nitrogen nucleus.

C=4.42X10 4'

H —H = 1.64X10 'cm

X —H = 1.02 X 10 8 cm.

' These expressions have been calculated from the asymptotic expansion for D„(y) and
are consequently only asymptotically correct. The next order term would change 2u to 2~+a/n3
and 4n3 —4a to 4a —4a+3/4n+b/n in the numerators of A0 and AI respectively. These cor-
rections are insignificant in the case of ammonia.
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These values for C and the molecular dimensions are of considerable im-
portance since because of the interaction between vibration and rotation it
appears to be impossible to determine them from an investigation of the
fine structure of the infrared bands themselves. We feel that the value of C
is accurate to within 2 percent. The chief error in its determination probably
lies in the uncertainty with which 60 is known.

The results we have obtained may be compared with an exact solution of
a two minima problem by Morse and Rosen. ' The potential used by them
has the same general form as shown in Fig. 1 in the region between the
minima. For large positive and negative values of x however the potential
rapidly approaches a constant asymptote in a manner which is unlikely to
represent the true curve since it would predict far too low a heat of dissocia-
tion for the molecule. In spite of this difference between their potential and
the one used by us, they obtain 2go = 0.73)&10 ' cm, a value differing from
ours by only 4 percent. This agreement illustrates the qualitative result of the
W. K. B. approximation, namely that the magnitude of the splitting of the
levels depends only upon. the potential curve between the two minima. It
shows also how insensitive go is to the exact form of the curve in this region
providing only it has the general shape of Figs. 1 or 2 and contains a sufficient
number of disposable parameters which may be used to fit the observed data
AQ and A~ with their theoretical values.

P. M. Morse and N. Rosen, Phys. Rev. 40, 1039(A) (1932).


