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The theory proposed by E. Fermi of the energy levels of molecules of the CO2

type is discussed. Et is shown that this assumes a particularly simple form when ex-
pressed in the coordinates used by Dennison for describing such molecules. When
there exist no integral or nearly integral relations between the vibrational frequencies
the first order energy correction X W& caused by the anharmonic forces vanishes leaving
only the second order term X'W2. When, however, two of the fundamental frequencies
are commensurable, certain of the energy levels coincide thus becoming degenerate.
This degeneracy may be removed by the anharmonic forces in which case there appears
a first order energy constant XW& different from zero. The value of XW& is computed ex-
plicitly for certain of the lower energy states and it appears that the only levels
which interact under the influence of the resonance are those having the same value
of the azimuthal quantum number /. From this it follows that the selection rules
are not affected by the existence of the resonance. Finally it is shown how the first
order term 'A W~ goes over into the second order term X'W~ as the resonance between the
frequencies becomes less and less exact. When these results are applied to the CO2
spectrum it is found that the resonance between v~ and 2v2 is almost perfect and
consequently the energy levels can only be ordered with the help of the first order
term XW~. For CS2 on the other hand the difference between v~ and 2v2 is so large
that the effect of the resonance on the positions of the energy levels may be disre-
garded.

ITHIN the last few months two important contributions have been
made to our knowledge of the carbon dioxide molecule and its infrared

spectrum. The first of these was contained in a paper by E. Fermi' and was
intended in the first instance to explain the Raman spectrum of CO2.The
second, by P. E. Martin and E. F. Barker, ' is reported in the foregoing paper
and consists of an experimental study of the fine structure of certain of the
infrared bands. It is proposed in the present paper to discuss Martin and
Barker's results in the light of Fermi's theory and to relate both to the earlier
work of Dennison' on the general properties of symmetrical molecules of the
type F'X&.

It can no longer be doubted that the carbon dioxide molecule in its nor-
mal electronic state possesses a form which is both linear and symmetrical.
Two sets of independent data prove this. The fact that the fine structure
lines of the parallel type band at 4.3p and of the perpendicular type band
at 15p, both are linearly spaced in frequency and have the same spacing con-
stant shows that the CO2 molecule must be linear. The fact that alternate
fine structure lines of these bands have zero intensity shows that the mole-

' F. Fermi, Zeits. f. Physik 71, 250 (1931).
' P. Martin and E. F. Barker, Phys. Rev. 41, 291 (1932).
3 D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931).
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cule must have the form O=C=0 and not O=O=C. The second reason
for believing that CO2 is both linear and symmetrical is that it has been
shown that the vibrational levels of such molecules are connected by rather
unusual selection rules which permit only certain of the overtone bands to
appear. A study of all the known infrared bands of CO2 reveals that just
the permitted overtones and no others are observed.

In discussing the positions of the vibrational levels of the molecule YX2,
the notation proposed by Dennison' will be used as well as the same coordi-
nates. The internal or vibrational degrees of freedom are four in number
since of the total 3n or 9 degrees of freedom, three may be associated with
translation of the system as a whole and two (not three, since the molecule is
linear) with rotation of the system. The coordinates of the vibrational mo-
tion are chosen as s, q, r and P. s is the displacement of the V atom along
the figure axis relative to the center of gravity of the X atoms. q is the dis-
placement of the X atoms, from their equilibrium position, relative to each
other. r is the displacement of the Y atom J to the figure axis relative to
the line joining the X atoms and P is the angle this latter displacement makes
in a plane J to the figure axis.

The kinetic energy of the system (internal) may be readily computed
and is,

where I is the mass of an X atom and p is the reduced mass 2&nM/(&+2m).
We assume that the potential energy U possesses a symmetry which cor-

responds with the geometric symmetry of the molecule. That is, U must be
an even function of s, an even function of r and independent of the angle @.

We assume that the potential function may be developed after ), a param-
eter of smallness so that U= Up+XUy+X U2. The function Up contains
all the permissable terms which are quadratic in the coordinates, U~ all the
cubic terms and U2 all the quartic terms. It is usual to let the constants of
Up contain the normal frequencies v~, v2 and v3 so that it has the form,

Up
—~ V&2~q2 + 27f-2V22+p2 + 27i-2V32+~2 ~

The wave function which results from using a wave equation based on 1
and Up has been already described by Dennison.

V,P V g V, t&+ t', lg

where pc,&r& and pu&rp are the well-known Hermitian orthogonal functions.

Vg—l

vpl —p&s p /2 Qg pl-
k=p

where
2k + 2l —2V2

(k + 2)(k + 2 + 21)

The dimensionless variables 0, & and p, replace the coordinates q, s and r
and are related to them by the following expressions,
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1r = 22r [v1233/2h]'~Otal

g
= 22r[v3p/h]'~22

p = 22r[v2p/h]'"r.

It will prove convenient to write the energies T and U in terms of these
variables.

Z' = (h/82r ) [o /v1 + t /v3 + (p + p' l1')1/v2}

U, = (h/2) [v,o' + v3$' + v2p'}

XU1 ——)1h(aa3 + hop' + co/2)

X'U2 = )'h(d~'+ cp'+ fV + gx'P2+ 3& + JP 5 )

The quantities 'A, u, j are constants which characterize the anhar-
monic nature of the potential function. It will be noted that the condition
that U must possess a symmetry which corresponds to the geometric sym-
metry of the molecule, greatly reduces the number of terms appearing in U1
and U2. Thus of the ten cubic terms which may be formed with three varia-
bles, only three actually appear in U1.

The energy constant W of the system may be developed in powers of )
so that W= Wo+XW1+X'W2. The zero'" order term Wo has of course the
form,

1UO/h = v1(V1+ 2) + v2(V2 + 1) + v3(UO + —,')

where V1, V2, and V3 are the quantum numbers appearing in the expression
for the wave function. Since the number l does not appear in Wo, the system is
in this approximation (V2+1) fold degenerate.

The terms W1 and W2 which arise from the anharmonic nature of the
potential function may be readily computed using perturbation theory meth-
ods. In the usual case when the frequencies v1, v2 and v3 are incommensurable,
this leads to the following result.

)IV1= 0

W2/h XO + X1V1 + X2U2 + X3U3 + X11V1 + X22V2 + X11t

+ &33~3 + &12~1~2 + &13V1V3 + &23V2~3

xo, x23 are a set of constants4 which are related to the anharmonic con-
stants a, j.

The important contribution of Fermi consists in an investigation of the
system when two of the frequencies bear a commensurable or nearly com-
mensurable relation to each other. He has been able to show that when

v1 —2v2 the first order energy constant X W1 no longer vanishes and may exert
a very considerable inHuence in the energy levels. We propose to make clear
just how this result obtains and how it may be correlated with the observed
infrared spectrum of CO2.

4 Dennison (reference 3) in giving the formula for X'W2 stated that the constant xgg was
equal to —-', x». Unfortunately this statement is incorrect except in the special case where
'AU1 =0. In general an independent constant x~~ must be introduced.
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It will become evident from the analysis that when v» —2v2, X W» depends
solely upon the anharmonic term bo p' while if v» were approximately twice v3,

XW» would depend entirely upon co('. For CO2 as well as CS2 it is the former
condition which holds and we may therefore confine our attention to the
term bo.p'.

We shall first carry out the computation, assuming first that no com-
mensurable relation exists between v» and v~. It is possible to ignore the exist-
ence of the vibration v3 since its coordinate ( does not enter the part of U»

we are considering. In fact we may without loss of generality confine our-
selves to the case where ) U»=)kbo. p' and 'A'U2=0. The usual methods of
perturbation theory then give

V ~V2l
XS'» = 'AU»vp, )

2

X'O' =X' ~ U ~ ~ 8' ~2 —S'V qV2l

1 2

V~'V2'

where U» &,'q,'& is the matrix element of U».

The general expression for the perturbation energy has been slightly sim-
plified since we take only those matrix elements of U» which are diagonal in I
and omit the corresponding integration over @. This is permissible since the
function U» is independent of @ and therefore all the matrix elements which
are nondiagonal in / automatically vanish. It is supposed that Pr& and Rr2'
are properly normalized.

It is clear that the matrix elements of U» which are diagonal in V» must
vanish since (fr~)' is an even function of o while the function Uq is odd. Evi-
dently then 'A W» = 0. The computation of ) 'W2 is somewhat tedious but quite
straight-forward and leads to the following result.

) 'b'h Vg' + 4V»Vg —l' + 4V» + 4V2 + 4
X'5'

8 p» + 2v2

V2' —4V, V2 —/' —4V& 4(V2 + 1)'
+ +

p» 2p2

The expression for VW2 which has been obtained is valid except in the
region where v» and 2v2 are approximately equal. In this case VW2 becomes
of higher order of magnitude and the whole method of the perturbation
theory which has been used breaks down. A new method must then be em-

ployed which leads to the result that when v» —-2v&, a first order perturbation
energy ) W» exists. '

We begin by letting the unperturbed system be one where v» and 2v2 are
exactly equal, thus making a number of the previously distinct energy levels
coincide. It is possible as before to ignore the vibration v, and its coordinate $
a.nd to introduce the single anharmonic term ) U»=Xhbop'. To this however

' We may remark that ) W& and 'A'W'2 will be given by the above expressions even when

v& —2v& for the particular states where the quantum numbers bear the relation V22 —4V&V&
—P —4 V& =0. This conclusion is borne out by the results of the ensuing investigation.
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must be added a term involving 5 = v~ —2v2 to take account of the fact that
in the final or perturbed system v& is only of the same order but not neces-
sarily equal to 2v2. The problem may then be treated in a manner similar
to that used by Fermi, namely by the standard method of perturbations of a
degenerate system. '

The unperturbed system may be characterized by To and Uo and the
effect of the perturbation grouped into the two terms T& and ) U&.

To = (h/8a2v2)(o2/2 + p' + p2$2)

Up
——(hvo/2) (2o' + p')

T& = (Ah/32~'vg')o' = —(&h/2)(&'/8 )o

XUg = ) hbop' + Dho'/2.

The unperturbed system having the kinetic and potential energies To and
Uo respectively possesses an energy constant Wp/h = vo(2Vi+ Vo+2). The
unperturbed system is thus degenerate in two ways, first because as before
t/I/'0 is independent of the quantum number / and second because the energy
does not depend upon V& and V& separately but only upon the function
2 Vi+ V2.

To find the first order perturbed energy of a degenerate system, the secu-
lar determinant must be constructed and set equal to zero.

~~, —lWb, = 0.

The roots of this determinant ) T/t/& furnish the required perturbed energies.
The quantity A," is the matrix element of the perturbing function T&+'AU&.

T'he quantum numbers for any one secular determinant must belong to
the same value of 8'o, that is 2V&+ V2 ——a constant. We may simplify the
expression for A, " by noting two properties of the system. (a) All the elements
which are nondiagonal in 1 vanish since Tl +),Ul is independent of the angle p.
(b) The wave function pv' satisfies the differential equation (d'pv'/do')
+ (2 V + 1 —o')P ' = 0 and therefore (Tj+XU&)P ~ = lhhbo'p'+Ah(Vq+ —',) I P '.
Combining these properties with the other known properties of the unper-
turbed wave functions, we may express all the nonvanishing elements of A,"

as follows,
VtVgt

&v,v, &
= Ah(V& + o)

Av yv 2E
= —Xhb(vl)'"I(V2+ 2)' —&']"'/2"'.

The secular determinant may now easily be constructed for any value of
2 V&+ V2. The coordinate system we have used allows the determinant to be
evaluated very simply since, because the elements A,"which are nondiagonal
in / all vanish, the determinant may be factored into a set of determinants
each corresponding to a particular value of l. Thus if 2 Vj+ V2 equals 4, the

' While our computation is quite equivalent to that performed by Fermi and leads to
the same result we feel that a real advantage is secured by our use of the coordinates 0-, p and p.
Not only is the calculation much simpler but it is found that the final results may be presented
in a very natural form which allows a clear understanding of their interrelations.
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original determinant is of 9th order. It can be factored into three determi-
nants of order 3, 2, 2, 1 and 1 corresponding to l =0, +2, —2, +4 and —4
respecti vely.

The explicit solutions of the secular determinant for the smaller values
of the quantum members are presented in Table I.

TABLE I,

U2

0
+1

a/2
s/2

X W'1/h

r2

1
0

1
0
0

0—0—
+2

+1-+1—
+3

+2-
+2—
+4

b, + fa'/4+(Xb)'/2]'4
S/2

=g + [g2/4+ (yb)s]I/2

a/2

(XIV1)'—(9/2) Ah() IV1)'—[3(Mb)' —(2 3/4) (Ah)']) Wi—(1 5/8) (Ah)'+(1 1/2) ()bh)'b, h= 0

~+ [~2/4+(3/2) (Xb)~]~~~

W/2

The degeneracy that originally existed in the unperturbed system has been
to a considerable extent removed by the perturbing potential and the identi-
ties of the levels have been somewhat changed. When two or more levels are
connected by lines in the above table, we mean that the original degeneracy
of the levels has been removed. The wave functions which are appropriate
for describing these new undegenerated levels are linear combinations of the
wave functions of the degenerate levels. The coefficients in the linear com-
binations are given by the first minors of the secular determinant in question.

We should now like to show how the energy constant of second order
X'H/~ which is appropriate for the case vl/2v& goes over into the first order
constant) W~ when v~ =2m&. In order to compare these two expressions, values
of 6 =@&—2v& must be chosen which are small compared with v~+2@~ but
which are large compared with the anharmonic constant Xb. The leading term
of X'Wz is then h'b'k(V&' ——4V~V~ 4' P)/5 wh—ile th—e expressions for
XW& may be developed. Thus the energy levels of the states (100) and (020)
become (3/2)6k+X'b'k/2A and (1/2)hk —X'b'k/2A. The terms (3/2)hk and
(1/2)hk when added to the Wo of the degenerate system (v& ——2vz) are just
equal to the t/t/'o of the undegenerate system and the remaining terms
+ Vb'k/2A are just equal to X'Wq when we substitute the appropriate values
of the quantum numbers. A similar agreement is found between ) 8'& and
V W~ for all the other levels which have been computed.

This analysis leads to a criterion as to the method to be used in correlat-
ing the energy levels of such a system. When ~A

~

& ~Xb
~

we must treat the
system as degenerate and use the first order energy constant Xt/t/"&. A second
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order constant ) 'S'2 could also be added and would probably have the usual
form (i.e. , a quadratic function of the quantum numbers). When 6 ~&& ~Xb ~,
'A W'& becomes equal to one of the terms of )'S'2 and consequently we may
order the levels with the aid of the second order constant X'8 ~ alone. The
difference between these cases will be brought out in our discussion of the
CO~ and CS2 spectra.

Finally it will be observed that the selection rules proposed by Dennison
for the symmetrical triatomic molecules apply equally well to the degenerate
system and to the nondegenerate system for which they were derived. The
states of the degenerate system which combine and lose their identity possess
wave functions having the same quantum numbers l and V3 and having num-
bers V2 which differ by an even integer. The selection rules depend upon
whether the changes AV2, AV3 and Dl are odd or even integers and these
changes will be the same (i.e. , odd or even) for all the levels of a related
group. The wave functions of a related group all have the same symmetry
character with regard to an interchange of the two equal atoms.

DISCUSSION OF THE COg SPECTRUM

Let us now consider the energy levels of the CO2 molecule as determined
by the observations of Martin and Barker. If the assumption is made that
the system is nearly degenerate ( 5 ~&& ~) b ~), the energy may be expressed
as 8'0+) W& and the second order terms VR"2 may be neglected. This identi-
fication will allow us to compute from three of the levels 6 and Xb (thus
checking the assumption as to the degeneracy) and then to predict the posi-
tions of the remaining levels. The difference between the predicted and ob-
served positions of these levels will be a measure of the neglected term VIV~.
The results of this correlation are collected in Table II where the lowest
state (000) is taken to have zero energy.

TABLE II.

v2 =667,5 cm ~

V2

OI

2

Kb=+72.5 cm '
Observed level

0
667, 5 cm '

1285.8
l 1388.4

1336.2
( 1933.5
l 2077. 1

6=+4.2 cm '
Computed level

1335.0
1932.1
2077. 1
2004 ~ 6
2548. 0
2675 ' 6
2799.0

it appears that in CO2 the resonance between v~ and 2v2 is almost exact
so that their difference is small, 6 =4.2 cm '. The accuracy with which this
constant has been determined is not great, %e estimate the error to be of
the order of 50 to 100 percent. The value of ~Xb

~

on the other hand may be
fixed with considerable precision since it depends essentially on the distance
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between the two strong Raman bands or between certain of the infrared
bands. It is probably accurate to at least 1 percent. It will be noted that the
sign of M cannot be determined through the positions of the energy levels.

The overtone bands of CO2 which have been observed by Barker' and
others to lie in the region of 2.7p must be correlated with the sum of the levels
(100), (020) and the level vq

——2350 cm '. The computed values of these over-
tone frequencies are therefore 3636 and 3738 cm —' while their observed posi-
tions are 3610 and 3717 cm '. The differences, 24 and 21 cm ', are due to the
fact that in the computation we have neglected the second order energy con-
stant )'W2. In a similar way the three overtone bands observed by Schaefer
and Philippss at about 2p, arise from a combination of the level v3 with the
levels (200), (120), (040). The computed values of the frequencies are 4898,
5026 and 5149 cm ', while their observed positions are 4780, 4890 and 5010
cm '. The differences, which are also due to the neglected second order
terms, are 118, 136 and 139 cm ~ respectively. We should expect these differ-
ences to be larger than those for the lower overtone bands but only by a
factor of about two. The solution of this di%culty must await the results of
further analysis.

DISCUSSION OF THE CS2 SPECTRUM

According to Krishnamurti' the Raman spectrum of CS2 gas consists
principally of two strong lines with an intensity ratio of about 5:1 lying at
655.5 and 795.0 cm respectively. These may be identified with transitions
from the normal state to the two combined levels (100), (020). The frequency
v& has been found by Dennison and Wright ' to lie at 396.8 cm '. Combining
these three data and neglecting as before the second order constant VW~ we

may compute Xb = + 19.7 cm ' and 6 = —136.7 cm '.
These results for Xb and 6 show that we are in the region where the reso-

nance between v& and 2v2 is very poor and where) W& is equivalent to one of
the terms of VW'. (Since for these values of V and 6, the expression
[6'/4+ @.b)'/2]"' does not differ appreciably from 6/2+(Xb)'/2A. ) Conse-
quently we may not neglect VW2 in computing the energy levels. In fact
we may consider that ) W~ is included among the terms of X'W2 and thus use
the general expression Wo+'A'W& alone for correlating the energy levels. This
expression involves ten constants while there have been observed only eight
Raman and infrared bands. Thus only certain of the anharmonic constants
may be obtained and no independent relations are available with which to
check the theoretical formula. (Those constants which may be computed are
all small and of the correct order of magnitude). These considerations show
that our initial computation of M and 5 was somewhat meaningless. That is
to say, while we can determine with accuracy the value of 6, the difference
between v~ and 2v2, the positions of the levels will not furnish us with any
clear information as to the value of ) b other than its order of magnitude.

' E, F. Barker, Astrophys. J. SS, 391 (1922),
' Cl. Schaefer and B. Philipps, Zeits. f. Physik 36, 641 (1926).
' Krishnamurti, Ind. Journ. Phys. 5, 109 (1930).
1' D. M. Dennison and N. Wright, Phys. Rev. 38, 2077 (1931).
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In a recent note S. Bhagavantam" calls attention to the fact that the
Raman line at 795.0 cm ' possesses properties which are characteristic of the
inactive frequency v& and which have nothing in common with the frequency
v&. He therefore prefers to designate this level with the symbol v&' rather than
with 2v& as do Dennison and Wright. This remark by Bhagavantam illus-
trates very clearly the nature of the line in question. As a Raman line its
existence depends wholly on the fact that the level must be described partly
with the wave function (100) of the unperturbed inactive frequency v&. T'hus

its character in the Raman spectrum must be similar to v~ and there is some
justification for calling it v~ . However, in ordering all the vibrational levels
of the molecule, we have shown that since 6 is large compared with ~M

~

we may disregard the fact that v& —-2v&. Therefore in speaking of the positions
of the levels it is more appropriate to speak of this level as 2&~. The level
possesses a wave function partly characteristic of v& and partly characteristic
of 2v& and consequently its proper designation will depend upon what prop-
erties of the spectrum are being considered.

"S.Bhagavantam, Phys. Rev. 39, 1020 (1932).


