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The Dirac Electron in Simple Fields*

By MILTON S. PLESSET

Sloane. Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If' the potential is a polynomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron; values
of the energy numerically less than the rest-energy are barred. When the potential
is a polynomial of any degree in r, all values of the energy are allowed. For poten-
tials which are polynomials in 1/r of degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

'N HIS treatment of the reflection of the relativity electron at a potential
-- jump Klein' found a paradoxical behavior of the Dirac electron associ-
ated with the possibility of the existence of states of negative kinetic energy.
He showed by an ingenious treatment that the reflection coefficient for elec-
trons incident upon a discontinuous potential jump of height P varied with
P from the value zero for P = 0 to the value unity for P = W —mc' (W being
the energy of the incident electrons). For this last value of P the momentum

P associated with the transmitted beam had the value zero, and as I' was
increased beyond t/t' —nsc' this momentum became imaginary and the reHec-
tion coefficient remained unity until I' attained the value t/t/'+mc'. The re-
sults thus far are exactly what would be expected. If I' is increased further
one enters the domain of negative kinetic energy wherein the group velocity
and the momentum in the transmitted beam are oppositely directed; also the
reflection coefficient falls off from the value unity and approaches the value
(W—cp)/(W+cp) as P is indefinitely increased. Thus by a transition to a
state of negative kinetic energy the Dirac electron has apparently an appreci-
able probability of penetrating a barrier of infinite height. Bohr suggested
that this peculiar result might be due to a jump in potential of the order of
mc' over a region of the order of the Compton wa've-length k/mc. It is within
a region of the order of h/mc ths. t the internal structure of the Dirac electron
and the accompanying "trembling" phenomenon' manifests itself. This
supposition of Bohr was verified by Sauter' who treated the problem of the

* The results of this paper were presented at the Washington meeting of the American
Physical Society (April, 1932).

' O. Klein, Zeits. f. Physik 53, 157 (1929).
' E. Schrodinger, Preuss. Akad. Wiss. Berlin, Ber. 24, 418 (1930).
3 F. Sauter, Zeits. f. Physik 69, 742 (1931).
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DIRAC ELECTRON IN SIMPLE FIELDS 279

Dirac electron passing through a potential barrier in which the rise of poten-
tial was taken to be linear. Sauter then showed that the transmission co-
efficient was very small for a rise in potential P & 9'+mc'.

Here we shall discuss analytically the nature of the stationary solutions
of Dirac's equations for continuous potential functions of a more general type
than those heretofore considered. A simple familiar method of treating these
equations will be used. The results secured are perhaps unexpected on the
basis of the corresponding results for the nonrelativistic treatment.

The relativistic equation of Dirac4 for an electron of charge —e is

—+ —~o+ ~. p. + —~ ~ + ~, py+ —~y

+ n, p, + —3, +p3mc 4'=0.

We shall suppose that A = 0; then Eq. (1) may be expanded as follows

(W/c —U/c + sic)%, + (p, —ip„)%4+ p,@, = 0

(W/c —U/c + mc)4'2 + (p, + ip„)%'3 —p,+4 = 0

(W/c —U/c —mc)%3 + (P. —iP„)+2+ P,+& = 0

(W/c —U/c —mc)+4 + (p, + ip„)4 —p,@2 = 0

(2)

where we have put U for the potential energy —eAp. The expansion of (1)
into (2) corresponds to these choices of the n's and p3
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Ke shall consider first the case for which V is a polynomial' of any degree in x,

U = ga„x",
n=a

(«v& ) (3)

' P. A. M. Dirac, The Princi p/es of Quantum Mechanics, p. 243.
' The case of a uniform field, V=ax, has been treated by Sauter, Zeits. f. Physik 69, 742

(&931),and that of the simple harmonic oscillator, V=ax, by K. Nikolsky, Zeits. f. Physik 62,
677 (&930); the methods used in these cases differ from that used here and are perhaps not so
readily capable of generalization as the present method.
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and we shall seek solutions of the form

4 = (exp 2mi(p„. y + P,s —IA)/h)P(x)

so that the components of P(x) satisfy these differential equations

ipyfi —P,P2 + ————mc f 4

P,lt I
—iP„$2 + ————mc

diat 3 2vri O' U———+ mc P2 + iP„P3 —P,$4
ds h c c

diat 4 2 vari H/ V
+ RZC Ii|'1 + Pz$3 ZPy$4

dx h c c

(5)

(i = 1, 4) (6)P; = e«'u, (x),

where u, (x) is assumed to be regular in the neighborhood of ~x
~

= ni, and

Q(x) = nx"+'/(q+ 1) + Px'/q+ + Xx.

The permissible values of n are determined by the characteristic equation

0 0

0 —a = 0; a = 2xia, /hc.

In view of (3) it m'ay be said that every finite value of x corresponds to an
ordinary point of the system of differential equations (5); hence for all finite
values of x the solutions of (5) are not only finite but analytic. The points
at infinity, x=+ ni, are, however, irregular singular points of Eqs. (5) of
rank q+1. The behavior of the solutions of (5) in the neighborhood of these
singular points will now be investigated.

We consider the possibility of formally satisfying Eqs. (5) by a set of
normal solutions of the type

0 0 —a
The roots of this equation, which are both double, are

n=+ a=+2xi a, /hc;

the fact that there are only two distinct roots of Eq. (8) indicates that there
are only two independent sets of solutions of the system of Eqs. (5). We trans-
form Eqs. (5) into an analytically symmetrical form by the simple trans-
formation

4i' = (1/2'")Qi+ lf'4)'

4' = (1/2'")82+ A)
A' = (1/2"')(A —6)'
lf 4' = (1/2"')(ki —0'4).

(10)
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The matrix of the constants in the linear transformation (10)

281

( 1/2&(2

0

0

1/2'"

0 0

1/2'(2 1/2&«

1 /21/2 1/21(2

0

0
—1/2"'-J

generates a unitary transformation of the matrix of the determinant of the
characteristic equation into the diagonal form

( —n+ a

0
(12)

The "canonical" form of the system of Eqs. (5) is

v———( —P.( '+ '
( ~ + &.)&

' );dx h c c

d$2' 2vri 8' V———
&

' + ( ~ — &.)6' + &.&
' {dx h c c

dg3' 2vri V
P.&

' —( + P)6'
dx h c c

d&4' 27fi (( — )1' —.(
dx h c c

(13)

We are assuming solutions of this system of Eqs. (13) of the form (an ad-
ditional subscript s is introduced to distinguish the two sets of solutions)

where

P„' = e&& &*&x)'8„(x);

p„' = eo &*&x"B„(x);

P„' = e&& &*&x"B&,(x);

p„' = eo & &x"8 (x).
(s = 1, 2) (14)

Q, (x) = e&, x'+'/((f + 1) + p, x&/q + + l&.x; (15)

8„(x) = 8„,'+ 8„,«&x '+ 8„"&x ' j
The constants of the solutions (14) are evaluated by direct substitution into
Eqs. (13).Of the two sets of formal solutions the first may be written as

eQ&&z& {2l&&0 + 2l ( g
—&&/xq —1 +

1i2&' .
—esg&*& {21 0 + 21 (s—&&/xa —& +

y, „' = eo, &*&{23„&&/x

eQi&~& {2l4 &a&/xe +. . .
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where
2vri ' u„x"+" 2)&iWx

Q, (x) =
hc „=0 e + 1 hc

(17a)

It may be shown by examination of the recurrence relations which determine
the B's that p')( and f»' are linearly dependent as are also lt"e( and lt'4&. The
second set of solutions is

where
p4S' =

eQ, (~) {B2(s)/xe +
eQ, (~) {B»( q)/x v +. . .

eQ~" {Beg'+ B « "/x' '+ }
eQ~(z) {B420+ B (Q—1)/xQ —1 +. . . }

(18)

Q~(x) =—

�

2~ i & u„x"+' 2'-i5'x
+ 0

hc „ o e + 1 hc
(18a)

P, ' = eQ~&*&«((x); Pg' ——eQ &'Ng(x);

Again P»' and f»' are linearly dependent as are also )&t3,
' and P4&'. We have

further that only the constants 8»", 8»', 8»', 842' are arbitrary.
We wish to use the solutions (17) and (18),which we have found to satisfy

the canonical equations (13) formally, to discuss the behavior of the true
solutions for values of x numerically large; this use requires a rigorous justifi-
cation since it follows from the recurrence relations for the 8's that the infi-
nite series B„,(x) do not in general converge for finite values of x. This justi-
fication might be carried out by eliminating as follows from the canonical
Eqs. (13).Put

P3' ——eQ &*&«,(x); P, ' = eQ~&')e, (x);

where Q&(x) is the polynomial given above in (17a). Then the simultaneous
Eqs. (13) give readily

d'u3 47ri dS3
{V(x) —W}

dx' hc dx

471- d V 71-c

+ — ———&&.'+ P.'+ "')},= O:, &2O)
hc dx h

n4 satisfies the same equation as F3. We get also

d2NI 47f-i dl, 4w'—+ {I'(x) —W} — {P„'+p.'+ nz'c'}m, = 0;
dx hc dx h'

(21)

and 02 satisfies the same equation as z|I. The symmetry and simplicity with
which elimination can be accomplished to give Eqs. (20) and (21) show the
analytical advantage of working with the canonical form of Dirac's equations.
If elimination were attempted directly upon Eqs. (5), the result would be an
extremely unsymmetrical set of equations. ' Eqs. (20) and (21) show that the

0 This analytical lack of symmetry holds also for Weyl"s expansion of Dirac's pqUation.
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points x =+ ce are irregular singular points of the functions u;(x) as well as
of the functions f (x). Instead of proceeding further with Eqs. (20) and (21),
it is more convenient to treat the canonical Eqs. (13) directly. These equa-
tions, now considered in the complex plane, have as solutions the generalized
Laplace contour integrals

P„,' = (exp tl, s&/q +
—(p +&) /(q+&)

+ X,s) (exp s'+')
e, /+1

8

+sky (g)

Ic=o ft+ 1

(22)

The contour C, is a loop circuit about t'=cs, /(q+1) such that the real part
of [s'+'{t'—cr, /(q+1) I ] is negative along its ray. The functions @I&~ are
analytic functions (determined by (13)) in the neighborhood of I' =cs,./(q+1).
These contour integrals (22) are precise solutions of the canonical equations;
the asymptotic expansions' of these contour integrals, valid in certain sectors
of the s-plane which may be so taken as to include the real axis, are exactly
the formal solutions (17) and (18) written above. ' Therefore these formal
solutions have significance as the asymptotic solutions of Eqs. (13). Their
use in discussing the behavior of the solutions of (13) for numerically large
values of x is thus justified. The importance of using the canonical form of
Dirac's equations is here apparent; for, if formal solutions of the type (6)
were attempted with the original Eqs. (5), a divergent expansion would re-
sult which would be meaningless.

We may now say from Eqs. (17), (17a) and (18), (18a) that the com-
ponents of the Dirac wave function, remain finite as x becomes infinite;
further we have

a 4

QPyP;*dx ( c(a),
—a 1

(23)

where c is a finite number, since the functions f; are finite and analytic for
all finite. values of x. And if the constant a is sufficiently large (b )a),

4 —5 4

Qf,f,*dx ~ (b —a); ggyP;*dx ~ —(b —a); (24)
~a —a 1

that is, the integral square becomes proportional to the domain of integration.
The wave functions exhibit, therefore, quite common characteristics of the
wave functions associated with a continuous energy spectrum. It is thus clear
that the Dirac electron possesses a continuous spectrum with all values of
t/V allowed for a potential field which is a polynomial of any degree in x.

(0 ( q ( ~ ) (25)
n=O

7 Asymptotic expansions in the sense of Poincare.
Cf. E. L. :Ince, Ordinary Differential Equations p. 484.

Let us now consider potential fields which are polynomials in 1/x,

V(x) = Pa„x ".
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It is evident from the discussion given above that we may make the simplify-
ing assumption p„=p, =0 in Eqs. (5) without affecting the generality of the
results secured. Then Eqs. (5) become

dPg

dx

2' i
(W —mc' —V)Pg,

hc
(26a)

F2
dx

2vri
(W —mc' —V)f&'

hc
(26b)

F3
dx

27ri
(W + mc' —U)fs;

hc
(26c)

dg4

dx

27ri
(W + mc' —V)P&

hc
(26d)

The complete behavior of this system of equations may be determined by
considering only Eqs. (26a) and (26d) since this pair of equations has the
same form as the pair of Eqs. (26b) and (26c). For the potential function
given in (25) the system of Eqs. (26) has an irregular singularity at x =+ ~
of rank unity and an irregular singularity at x = 0 of rank g —1.

To investigate the behavior of the solutions in the neighborhood of the
origin we proceed by the method given in f2 above. The transformation to
the canonical form of (26a) and (26d) is given by

k~' = (1/2"')(4'~+ 0'4)

A' = (1/2'")(ki —6),
(27)

so that Eqs. (26a) and (26d) become

dfg'

dx

dp2'

dS

27ri

I IW —V(x)]gg' + mc'Ps'};
hc

2' j
Imc'fg'+ IW —V(x)]Ps'I.

hc

(28)

To make the analytical procedure of f2 completely applicable we need only
put x = 1/y in Eqs. (28) to get

O' —V — pg' + mc'f2
dy hc y'

gP I y gr t/

(29)

ti„,' = co*(r&yu. 73„,(y) (r, s = 1, 2) (30)

We now consider the behavior of the solutions of Eqs. (29) for values of
y numerically large. We assume, as before, formal solutions of the normal
type
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where now

and as before

ny& ' Py' '
Q(y) = + + + l y

1 q
—2

(y)
—2l 0 + 2l (l)

y
—). +

By direct substitution it is found that the asymptotic solutions have the
form

27lZ Gq Cq
(-'(v) =—)- n& [(—()' — )" '+ — )" '+ + ) gy I(»)

hc q
—1 q

—2

where 5„ is the Kronecker delta. From Eq. (31) it is clear that the solutions
of Eqs. (29) remain finite as y approaches infinity for all values of W; that
is, the solutions of Eqs. (28) remain finite in the neighborhood of x =0. The
origin, x=0, does not, therefore, give any limitations on possible allowed
solutions of Eqs. (28) or (26).

We must now investigate the behavior of the solutions of Eqs. (26a) and
(26d) near x = + ~ . The characteristic equation for (26a) and (26d) is

2' i
(W —mc' —ao)

hc

so that

27ri
(W + mc' —ao)

hc

c)( = + (27r/hc) Im'c' —(W —ao)'j '('.

= 0'
) (32)

(33)

We may secure a canonical form of Eqs. (26a) and (26d) by putting

0'i = ai'"5 i' —A')

4'4 = aa"'(4i'+ 6')
where

1—= (W + mc' —ao); —= (W —mc' —ao)
Cy C2

Eqs. (26a) and (26d) then become

diP)' 2m (W —a,)
] ' ' —()(' — )']"'+— ——((' — ))( '

dx hc, [m'c' —(W —ao)']"'
2' mc'

(& —ao)A;
hc [m'c' —(W —ao)']'"

(34)

(35a)

dp2' 2m-

dx hc

mc' —(& —ao)4)'
[m'c' —(W —ao) '] '"

2' (W —ao)+ — ] ' ' —(R' — )']"'+ —-(( — )]A' ()~~)
hc [m'c' —(W —ao) '] '('
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The formal substitution into Eqs. (35) of solutions of the normal type gives
the asymptotic solutions of these equations. The asymptotic solutions are
readily found to be

where

eel' s Ã gP s$ (r, s = 1, 2) (36)

2'
n~ ————[tN'c4 —(W —uo)']'" = —a2

hc
(37)

and

2~ (IV —ao) ai

hc [m'c4 —(W —ao) '] '" P2. (38)

If (W —ao)') m'c4, it is evident from Eq. (36) that the solutions of Eqs. (35)
are all finite at infinity; all such values of 8'are allowed so that a continuous
spectrum arises. If, however, (W —ao)'(I'c4, Eq. (36) shows that it is not
possible to find solutions of (35) which remain finite both at x =+~ and
at x= —~. Hence there are no proper solutions in this band; these energy
values are barred.

We now turn to the case in which the potential function depends on r
alone. To examine the characteristics of the Dirac equations for this case we

may begin with the radial equations in the form in which they are given by
Dirac'

dR j 27'—R. + 4+ —v( ~))Rdr r hc

(j = + 1, + 2, )

(39a)

(39b)

where

b, = 2~(nsc'+ W)/hc) b2
——2~(mc' —W)(hc.

The type of potential to be considered first is that for which V is a poly-
nomial of any degree in r

V = Pu„r".
n=O

(«g& ) (40)

With V(r) given by (40) Eqs. (39) for R, and Rq have an irregular singu-
larity at r = ~ of rank g+1; the origin, r = 0, is a regular singular point; and
all other points are ordinary points. We consider first the nature of the solu-
tions in the neighborhood of r = ~ . The characteristic equation is

.' Dirac, The PrinciP/es of Quantum Mechanics, p. 252.
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—2&r&i,/hc

2&r&it&/kc 2%i
0; 0. = + —u, .

hc
(41)

The transformation to a canonical form is given by

R, = (1/2'&') Q, —iP,)
R&, ——(1/2"')( —iP, + P~)

and the canonical form of Eqs. (39) is

dP j 27' 2~me j—= —{W —V}li, + — —i-
dr hc h r

d$2 2vrmc j 2%i—-+ i —P, — {lV —V}Pg.
dr h r

~

~

hc

(42)

(43a)

(43b)

The asymptotic solutions of Eqs. (43) may be readily found to be

2mz ' a„P, —6, exp —1 ' — r+' —Wr . ms = 12. 4'.
hc „o ++1

From (44) it is seen that the solutions of Eqs. (43) remain finite as r ap-
proaches infinity and exhibit an integral square behavior like that discussed
above. The irregular singular point at infinity, therefore, does not contribute
any limitation on permitted energy values.

The singularity at the origin is regular so that in the neighborhood of the
origin solutions of the form

R„= r~'(B„+ Bg, &'&r + Bpg&'&r y )

R&„——r '(B&„+Bb, &'&r + Bb, & &r + ) (45b)

satisfy the radial Eqs. (39). From the permissible values of n, as determined
by the characteristic equation for this case, o. =+j, it is evident that there
is always one solution finite at the origin. Combining this result with that
given in (44) we may say that there is always a solution of the radial equa-
tions which for all values of W is finite everywhere and which possesses in
addition a well behaved integral square for large values of r. Hence for po-
tential functions which are polynomials of any degree in r the equations of
Dirac give a continuous spectrum with all values of W allowed.

Let us consider finally the case for which the potential function V(r)
is a polynomial in 1/r

V(r) = +&i„r
n=O

(O & q & ~) (46)

With this potential function the radial Eqs. (39) have an irregular singu-
larity at r = ~ of rank unity; the roots of the characteristic equation are

&&, = (2&r/1&r) [&r&'c' —(lV —
&&,)']'&' = —n, . (47)
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The transformation

R, = (b, + 22rao/hc)'(2Q, —$2)

R(, = (b1 —22rao/hc)' 'Q'1+ 1b2)

(48)

gives the canonical form

dpi 2x (W —ao)
( '" —Or — )'1'" + — (2 — )j 4

dr I'2c [m'c4 —(W —ao)']'"

j 2" saic
+ + ~ ' ~0 I|2j

r h [m'c' —(W —ao)']'"

F2 j 2~ mc
+ (2 ')I 4'

dr r h [m'c' —(W —ap)']""

(49a)

2 (W —ao)
( "' —jw — )')"'+ (2 — )[4; (4»)

hc [moC4 —(W —ao) ')((2

and the asymptotic behavior of the solutions of Eqs. (49) is given by

where

Prs —e s "r»5t s (r, s = 1, 2) (50)

220 (W —ap)
PI = . Qi = Pg.

hc [m'c4 —(W —a,)'J'(' (51)

It is evident from (47) and (51) that for (W —ao)2)moc4 all the solutions re-
main finite as r approaches infinity; and for (W—ap)'&m'c' there is one
finite and one infinite solution at r = ~.

To investigate the singularity at the origin, r =0, it is only necessary to
make the transformation r = 1/y in the canonical Eqs. (43). If (I = 1, that is to
say, if the potential is a Coulomb potential, y = ~ is a regular singular point
and regular solutions may be found as follows

yes(21 0 + 21 (1)y 1 + II (2)'y 2 +, , )

where the exponent n, is fixed by the characteristic equation

(52)

42 —2 /orhoa(c
2j

2j

—co + 22roa(/hc
0 02

—+ (j2 42roa 2/h2C2)1/2 (53)

These values of the exponent o. are, of course, precisely those found in the
treatment of the hydrogen atom. "From (53) it is evident that there is one
finite and one infinite solution at r =0; also for r = ~ there is one finite and
one infinite solution for (W' —ap)'& m'c' (by Eq. (50)). These are exactly the
conditions which lead to quantization.

~0 DiraC, p. 253.
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Such is not the case, however, when g&1. For these potential functions
the origin, r =0, is an irregular singularity. The behavior of the solutions
may be investigated by means of Eqs. (43) by the same methods as those used
previously. The asymptotic solutions are readily found to be

~q—1+ y q 2 +
2

+g~]ogy . y= 1 r 54

From (54) it is clear that when q) 1 all the solutions of (43) remain finite in

the neighborhood of r = 0 for all values of W. From Eq. (50) it wa", s seen tha. t
there is always one solution finite at infinity for all values of W. Combining
(50) and (54), we see that a continuous energy spectrum always arises when
the potential function is of the form

U(r) = ap+ ai/r + ap/r' + + /arpp. (v»)
We may discuss briefly the analytical source of the difference in the

results found for the potentials V=1/x and V= 1/r. We note that for the
potential 1/x Eqs. (29) retain their canonical form; that is, the highest power
of y in the expression for dP, '/dy occurs in the coefficient of f . The general
result (31), therefore, remains applicable to this case also. For the potential
V=1/r, however, Eqs. (43) (transformed by r = 1/y and considered for y pp))

do not have the canonical form because of the presence of the terms involving

j; thus, this potential must be considered apart from those which contain
powers of 1/r beyond the first. The general result (54) is not at all applicable
to the Coulomb potential.

We may note further here that, if the potential function V(x) is of the
form

U(x) = ga„x", (0&p, q& )

a continuous spectrum arises with no values of W barred. Similarly, if the
potential V(r) contains direct as well as inverse powers of r, all values of W
are allowed.

6.
By writing the relativity equation of Dirac in a symmetrical canonical

form it has been possible to make deductions of a quite general nature re-
garding the characteristics of the stationary solutions for simple potential
fields. The results here presented for the potential fields which are poly-
nomials in x or r give an analytic generalization of the Klein paradox. We
may note also that these potential functions will rise by more than mc2 over
a region of the order of fi/mc if sufficiently large values of x or r are taken. "
Hence the hypothesis of Bohr advanced to explain the results of Klein is
analytically verified for these general cases also.

' We are referring now to polynomial potentials of degree higher than the first.
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Such an argument cannot perhaps be so clearly applied to explain the
results here presented for potential fields which are polynomials in 1/x or
1/r since with these potentials the steep rises occur toward the origin. For
the Coulomb potential by taking su%ciently small values of r a rise in poten-
tial of mc' in a region of the order of a Compton wave-length may be secured,
and yet this potential gives eminently satisfactory agreement with experi-
ment. If the potential contains higher powers of 1/r as well as 1/r, then, as
was stated above, continuous spectra result. Here there is striking disagree-
ment with the results of the nonrelativistic Schrodinger theory; for example
potentials of the type a/r —b/r' applied to oscillating rotator models have
been shown" to give a discrete spectrum in satisfactory agreement with
observed spectra.

We may observe, however, from a purely classical point of view that none
of the potentials here discussed (except the Coulomb potential and the linear
potential ux) satisfy Laplace's equation. Classically, then, these potentials
correspond to a continuous distribution of charge. The relativity theory of
the electron is not su%ciently advanced, possibly, to deal with such a com-
plicated physical situation. It should perhaps not be held at fault for giving
peculiar results for potential functions which are over-simplified and in that
over-simplification correspond to an over-complicated electromagnetic
mechanism.

In conclusion the writer takes pleasure in expressing his appreciation to
Professor Page for his kind interest in this work.

"Cf. A. Sommerfeld, S'ellenrnechanischer Erganzungsband, p. 24 ff.


