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The Infiuence of Crystalline Fields on the Susceptibilities of Salts
of Paramagnetic Ions. I. The Rare Earths, Especially Pr and Nd
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The paramagnetic susceptibilities of the salts of the rare earth elements Pr and
Nd are considered on the assumption that it is permissible to represent the potential
of the electric field of the atoms surrounding the metallic ion by a Taylor's expansion.
This amounts to applying to the whole crystal the method of the "self-consistent
field, " and consequently neglects exchange effects between different crystal atoms.
Hund has calculated the susceptibilities on the assumption that the ion can be re-
garded as free and that the multiplet intervals are so large compared with k 1that
only the lowest level need be considered. The introduction of an electric field causes a
splitting of the levels and a redistribution of magnetic moment, with a consequent
change in the susceptibility. The theoretical interpretation of the Curie-Weiss law

y = C/(T+6) is considered. At temperatures so high that kT is large compared with
the splitting produced by the crystal field, the susceptibility can be expanded in the
form of a series of inverse powers of T. It is shown that the susceptibility of a crystal
powder, or the average susceptibility over all directions in a single crystal is of the
form x=C/T+C2/T3+ ~ ~ ~ the term in 1/T~ vanishing rigorously. Thus at suffi-

ciently high temperatures, the susceptibility of a crystal powder obeys the simple
Curie law up to and including terms in 1/T . However, the curious result emerges
that at ordinary temperatures k T is of the same order as the energy separations pro-
duced by the crystal field, and the behaviour of the susceptibility actually simulates
the Curie-Weiss law closely over a large range of temperatures. The hydrated sul-

phates of Pr and Nd are considered in detail, Excellent agreement is obtained with
the experimental results of Gorter and de Haas for the variation of susceptibility with
temperature on. the assumption that the crystal field has cubic symmetry, and can
be represented by a potential D(x'+y'+s4). In this connection the matrix elements
of the squares and fourth powers of the coordinates for a many-electron system are
given. The over-all splitting produced by this field in the hydrated sulphates is 389
cm ' for Pr and 834 cm ' for Nd, the detailed appearance of the energy spectrum be-
ing shown in Fig. 1.A comparison of the constant D in the two cases gives a value for
Nd nearly four times that for Pr.

'HE theory of paramagnetic susceptibilities as developed by Uan Uleck'
and others has been applied with considerable success to the calculation

of the Curie constants of salts of the rare earth group on the assumption that
it is legitimate to regard the metallic ion as free. At ordinary temperatures,
the theory then leads to an expression for the susceptibility of the Curie form
g= 0/T. Experimentally the Curie-Weiss law

x = ~l(~+~), (&)

where 6 is a constant over a wide range of temperature, frequently gives a
good representation of the results. It very often happens that at extremely

~ Commonwealth Fund Fellow.
J. H. Uan Uleck, Theory of Electric and Magnetic Susceptibilities, Oxford, 1932.
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low temperatures, neither law will fit the experimental measurements. It has
been suggested' that the deviations from the simple Curie law are due to the
influence of the electric fields of the surrounding ions, which remove, wholly
or partially, the spatial degeneracy of the energy levels of the free ion, thereby
modifying both their positions and magnetic moments. Fields of this nature
have already been postulated by Becquerep and by Kramers, 4 in connection
with the Zeeman effect and paramagnetic rotation in crystals, while Bethe'
has worked out by group theory the energy spectrum of ions in fields of
various symmetries. In an ionic crystal, such as nickel chloride, it seems likely
that the crystal field will have the same symmetry as the crystal, but in a
molecular crystal, such as hydrated Prm(SO4)„ there is no reason why this
should any longer be true. In the absence of definite knowledge of the electric
field to which an ion in a given crystal is subject, the only possible procedure
is to find the simplest field which will give agreement with the experimental
results.

Although considerable experimental material is available, it is not as com-
plete as could be desired; in particular, accurate measurements at different
temperatures on single crystals are lacking. From the calculations given be-
low, there seems to be no doubt that the mechanism of crystal fields is compe-
tent to account for all the observed results. A summary of the results obtained
for Pr, Nd, Ni, and Cu has been given in a Letter to the Editor. ' In the pres-
ent paper an attempt is made to calculate the magnitude of the electric
fields necessary to account for the experimental variation with temperature
of the susceptibility of the rare earth elements Pr and Nd. In a second com-
munication we shall present the calculations for Ni, Co and Cr while those for
Cu will be given by Mr. Jordahl. We have considered only crystals of high
magnetic dilution. This is necessary in order that the influence of exchange
may be neglected. It has been found possible in these cases to represent the
variation of susceptibility over a wide range of temperature by an equation
of the form (1) although as will be discussed more fully below, this arises in a
peculiar way, and also to account for the deviations from (1) which occur at
very low temperatures.

The majority of measurements have been made on crystal powders, so
that the observed value of 6 represents an average over all 'the directions in a
single crystal. In such cases, the simplest assumption is that of a cubically
symmetric field, and this involves only a single parameter which must be
chosen to fit the experimental average A. With Pr and Nd it proves that a
cubic field is adequate to account for all the features which have been ob-
served up to the present. It is possible to fit the experimental curves very

' Reference 1, Chap. IX.
3 J. Becquerel, Zeits. f. Physik 58, 205 (1929).
4 H. A. Kramers, Proc. Amst. Acad. 32, 1176 (1929).
~ H. Bethe, Ann. d. Physik 3, 133, (1929); Zeits. f. Physik 60, 218, (1930).
' O. M. Jordahl, W. G. Penney and R. Schlapp, Phys. Rev. 40, 637 (1932).The af6x +++

for Pr and Nd, and ++ for Ni, Co, Cu, is to be understood throughout where the symbol of
the element refers to the ion.
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well, but owing to a discrepancy of some 16 percent in the absolute magnitude
of the susceptibility as measured by different observers, ' more refined cal-
culations seem out of place. However, when more detailed experimental data
are available it may be necessary to introduce fields of lower symmetry to ob-
tain agreement with experiment.

One may classify crystal fields as strong or weak according as they are
able or unable to break down the coupling between the total orbital and spin
angular momenta. It is assumed that the fields are never strong enough to
break down the coupling between the individual orbital or individual spin
angular momenta. Thus the crystal field is strong or weak according as it
produces a splitting of energy levels which is large or small compared with
the multiplet separation. The criterion that the ion can be considered as free
is that the work required to turn over the ion against the inHuence of the
crystal field should be small compared with kT. For the rare earths, it has
been shown that. the magneton numbers calculated on the assumption that
the ions are perfectly free agree closely with the observed values, indicating
that the crystal fields are weak. For the iron group, on the other hand, the
fields are so strong that the contribution of the orbital angular momentum to
the susceptibility is very much less than it would be for the free ion, although
the spin may still contribute its full amount. This difference in the crystal
fields is in harmony with the fact that in the rare earths the 4f electrons caus-
ing the paramagnetism are much more completely screened from outside in-
Huences than the 3d electrons of the iron group. Our quantitative results are
in excellent accord with the theory of Van Vleck and it was at his suggestion
that the detailed calculations given in this paper were made with the object
of testing numerically the general predictions of the theory.

THE CONSTANT 6 FOR THE RARE EARTHS

The fundamental expression for the susceptibility is

E BW
s—wikT/ Qs—wikT

II &II

the summation extending over all levels. Here H is the magnetic field, N
Avogadro's number, and 8' the energy levels in the presence of the magnetic
field. Let us assume that a certain number of the levels form a group having
a range of energy much smaller than kT, while the other levels are all so far
distant that on account of the Boltzmann factor, their contribution to the
susceptibility can be neglected. This state of affairs would presumably be
realized in the rare earths at high temperatures, the "low-frequency" group
comprising the components into which the lowest multiplet level is split by
the crystal field, the components of the other multiplets being much higher.
Let us take as origin the center of gravity of the low frequency group. Then,

~ The magneton numbers for the salt Nd24'SO4)3 8H20 at room temperatures according to
different observers are as follows. ' Cabrera 18.00, Gorter and de Haas 16.68, Zernicke and
James 17.50. The susceptibility is proportional to the square of the magneton number.
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if we neglect saturation, i.e. , retain only the part of y independent of IZ, we
find

x = C/T + C&/Ts+
where

BN2 BW'
C = N Q—2kH(2J + 1), Ci = —N Q—6H(2J + 1)

BH BH

Thus to the approximation which neglects terms in 1/T' and beyond, the
constant 5 in the empirical formula (1) is given by

BW3 8W2Z-
BII BH

We shall now show that under the assumptions stated above the value of the
constant C is independent of the direction of the magnetic field, and that the
susceptibility averaged over three perpendicular directions follows the law
X= C/T+Cg/T'+ the term in 1/T' being absent. The Hamiltonian is of
the form 3C =3Co+BC'+IX:AC~ where 3CO is the Hamiltonian of the free ion, K'
is the potential of the crystal field, and K& is the component of the magnetic
moment p(L+2S) in the direction of the magnetic field. Using the property
of the invariance of the spur we have

QBW'/BH = Sp(8/BH)(XO + X' + HKi)'.
The spur of (Ko+X')Xi vanishes, since the terms contributing to this spur
have equal and opposite values for + M, so that the above expression is equal
to 2IISpK&'. Here Sp denotes summation over the elements diagonal in a
given value of J and in a11 possible values of M. Since the multiplet width is
large compared with kT we are concerned only with those elements of the
magnetic moment X& which are of the low frequency type, i.e. , diagonal in J,
the contribution of the off-diagonal elements to the susceptibility being inde-
pendent of the temperature. Now Sp Ki' —— 'g'PJ(J+1) (2J+1)/3 so that the
constant Chas the Hund value Ng'p'J(1+1)/3k for all directions of the mag-
netic field.

The value of C& for a crystal powder is the average of the three values ob-
tained when the magnetic field acts along the three axes x, y, s,respectively.
By an argument similar to that just given, we can show that the average C&

so defined vanishes. If we denote summation for three perpendicular direc-
tions of the magnetic field by g,„, the average is proportional to the term
independent of H in (1/H) Q„,QBW'/8H where the second summation
extends over all the levels t/I/'in the lowest multiplet level. Using the property
of the invariance of the spur, we have

1 8$'3 1 8—P P —= —P sp (K, + K'+Hx, )'
II „, BH H y, BH

=' 6 Q Sp (Ko + K') xis +

= 6 Sp (Ko+ X') QXi2
XQZ
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We may replace g,„, Xi' by (p, '+y„'+p, ')(J, 3l; J, 3f) =g'P'J(J+I)
(2J+1)where p,p„p, are the three components of the magnetic moment. Since
this is independent of 21/I, it may be taken outside the Sp sign, so that the
mean value of C~ is proportional to

6gsP'J(J + 1)(2J + 1) Sp (Xo+ X').

Since we have chosen the origin of energy at the mean centre of the unper-
turbed levels, Sp (X,+X') =0, and therefore the average value of Ci van-
ishes. Since we have shown that the value of C is independent of the direction
of the magnetic field, and since 6 = —Ci/C, this may be expressed by saying
that 6 for a crystal powder vanishes, and hence, neglecting terms of order
1/T', the susceptibility obeys the law g = C/T. ' It must be borne in mind that
in deducing this result we have assumed k T large compared with the splitting
produced by the crystal field. However, from our calculations it appears that
kT is of the same order as this splitting at ordinary temperatures. Under these
conditions, it is no longer permissible to expand the exponentials as we have
done, and on substituting the exact values, deviations from the law x = C/T
appear of such a kind that the susceptibility can be represented with con-
siderable accuracy by a formula of the type y= C/(T+6), where 6 is ap-
preciably constant over a wide range of temperature. It is to be hoped that
experimenters, after having devoted so much attention to these mysterious
6's will not be disappointed to find that in a sense they do not exist at all,
at least for highly hydrated salts. At very low temperatures there are further
deviations, and these will be discussed later.

THE POTENTIAL OF THE CRYSTAL FIELD

Each ion is supposed to be subject to an electric field of force represented
by a potential Uof the form

V = A xs + Bys + Cz' + 0(3) + 0(4) + .

inasmuch as the first order terms vanish. If the field has cubic symmetry the
first nonvanishing terms are of the fourth order; with rhombic symmetry the
quadratic terms do not vanish and it is sufficient to consider these alone. The
terms of any degree in the expansion of the potential V must satisfy Laplace's
equation. For the quadratic terms this gives C= —(A+8). For cubic sym-
metry, it is sufficient to write the potential

V = D(x4 + y'+ z')

since this can be made to satisfy Laplace's equation by adding a function of
r' (viz. —3Dr') This correspo. nds to superposing a spherically symmetrical
field, and merely shifts all levels equally.

' This point was 6rst noticed in a particular case. We are indebted to Professor Van Vleck
for the general proof. Sommerfeld, Atornbau und Spektrallinien E (i931) p. 558, mentions that
Bethe has shown in unpublished work that at all but very low terTIperatures &hc; susceptibility
of a crystal powder is the same as that of the free ion,
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THE MATRIX ELEMENTS OF THE CRYSTAL FIELD

199

We require the matrix elements of the squares and fourth powers of x,
y and s, and shall retain only those elements which are diagonal in J. For a
one-electron system they may be calculated by quadrature alone, using the
usual form of the hydrogenic wave-function involving Pz~(cos 0). For our
problem we shall however use the more general method given by Wigner, ' in
which the 2J+1wave functions PJ ir of the atom in the sta.te J are expanded
in the form fq~=Pi D~ (n, P, y)xq (g), where xi (g) depends only on the
relative positions of the electrons, and D~i (cr, P, y) is the matrix element of
the M-th row and 7~-th column of the (2J+1)-dimensional representation of
the rotation group. The arguments (n, P, y) are Eulerian angles defining the
spatial orientation of the atom. The coefficients D~), satisfy certain re-
currence relations, ' by means of which it is possible, though somewhat la-
borious, to express the quantities D i' cos'P, D iir&, cos4P etc. , which occur in
the integrands of the required matrix elements, as a linear combination of the
quantities D~ i, . The integration over all orientations (n, P, y) is readily
effected by means of the orthogonal relations holding between the coefficients
D~), of a representation of the rotation group; the result is to give the
matrix elements in the form of a factor involving M, multiplied by a factor
depending on J and the y's, with the possible addition of a constant inde-
pendent of 3II. We find for the elements diagonal in J of the squares and
fourth powers of the coordinates of the i-th electron the following values.

s (M, M) = y —8M'+ eM4

x;4(M, M+4) = y;4(M, M+4)
= g [(J —M) i(J + M + 4) I/(J + M) t(J —M —4) I ]i/ /16

s (MM) = f'+ pM') (x;4+ y;4)(M, M + 2) = Op

x,'(M, M + 2) = —y;(M, M + 2)

= g [(J —M —1)(J —M)(J + M + 1)(J + M + 2) ]'"/4.

Here y, P, e, 5, g, are constants independent of M, y and f being merely ad-
ditive. To define the values of e, 5, g, we introduce the following abbreviations

F = [(J —1)J(J + 1)(J + 2)(2J —3)(2J —1)(2J + 1)(2J + 3)(2J + 5)1 ',

a = 6J(J —1)(J + 1)(J + 2), b = —10(6J2 + 6J —5),

c = 70, if = a(2J2 + 2J —5),

c = —(72J + 144J —132J' —204J + 190),

f = a(2J —3)(2J + 1)(2J + 5)/3, g = —3f/J(J + 1) .

E. signer. , Zeits. f. Physik 43, 624, (1927) and correction in 45, 601, (&92&).
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Then in terms of these

where we have written 7t' for y), (g)x), *(g) in the integrals. The matrix ele-
ments so defined su%ce to determine the elements 535=0, +2 of x y s,',
and the elements 6' = 0, +4 of x;4y,4s,', which are all that we require, since
x,4 and y;4 occur only in the combination x,4+y,' which has no elements
/). M= +2. From these we may pass to the matrix elements of P;x, P;x,4,

etc. , occurring in the Hamiltonian, by using relations of the form

Qx;4(J, M; J'M') = ex;4(J, M; J'M')

assuming that the n electrons are all equivalent, which is the case in our
problem. In this way we find for the matrix elements of g;(x +y~4+s,')
g(x~4 + y;4+ s )(J, M; J, M)

= E+ pM'I7M'+ 5 —6J(J+ 1)}
Q(x~4 + y;4 + s )(J, M; J, M + 4)

= —,'p [(J + M)!(J + M + 4)!/(J + M)!(J + M' —4)!]'"
where X and p are independent of M.

In order to obtain an idea of the relative magnitude of the constant D
of the crystal field in different cases, it is necessary to examine the constants
p and E' in greater detail. Let us consider a two electron system such as Pr:
the analysis can easily be modified for systems with a greater number of elec-
trons. We will assume that L(=5) and S(=1) are good quantum numbers,
these two combining to give the various multiplet levels J( =4, 5, 6). We have

x4 + y4 + s4 = 4(7 sin4 8 —8 sins 8 + 4 —sin4 8 cos 44) .

The term independent of P gives the matrix elements diagonal in M, while
the term dependent on P gives elements 62UI= +4.

Consider the sum S for one of the permissible J values

S = g(x4+ y'+ s4)(J, M; J, M)
M

(4)

where for brevity we have written x' for P;x etc. Since all the wave func-
tions for a given I- and S have the same radial factor, the summation over 3EI

involves averaging (4) over a sphere. The result is clearly
~(2

S = a(2J + 1) f 4(7 sin48 —8 sin'8+ 4) sin 8d8 rsRs(r)dr
0 0

= 6I(2J + 1)/5
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with I=f2"r282(r)dr, n being the number of electrons, two in this case and
R(r) the radial wave function of one of the two equivalent electrons. The
quantity I is independent of J, L, M, S but it does depend on the total quan-
tum number and the effective nuclear charge. For elements so similar in
structure as Pr and Nd a good approximation is to assume I the same for
both. A better approximation is to take into account the small difference in
the effective nuclear charges. From the relations (3) and (4) it is immediately
possible to eliminate the constant k in the matrix elements and we obtain

(x4+ y4 + 24)(J M' J M) = 6I/S + Pr [7 M4+ SM' —6JM2(J + 1)
(5)+ 3J(J —1)(J + 1)(J + 2)/5]

the subscript J on P being used to denote that p depends on J. Transform-
ing from the J, M system to the MI„Mq system, we have from the invariance
of the spur in the two representations

Q(x4+ y4+ s')(J, M; J, M) = Q(x4+ y4+ s')(Mr„Ms; Mr. , Ms), (6)

with 2VI = 3III,+Mq, where the matrix elements on the right hand side of this
equation can be obtained from (5) by replacing pr by g, M by Mr. and J by
L. The quantity g depends on L, but since we are considering only one value
of L there is no need to indicate this dependence.

If we take M=6, then J=6, Mr, = 5 and Ms =1;Eq. (6) then determines
p& in terms of g. By taking in succession &=5, M =4, it is possible to find

p& and p4 in terms of q.
It remains now to determine g in terms of I. If we transform from the

(L, S, Mr. , Ms) system to the (ml„ml„m„, m„) system, we have another
spur relation,

P(x' + yl + s')(I., S, Mr„Ms; L, S, Mr„Ms)

(&)
Q [(xl + yl + sl )(ml„m. „.mi„m„) + (x2 + y2 + 22 )(ml„m„;ml„m. ,) ]

m ) 12rs )2

with M~=m, ,+I,, and 3II&=m~, +m~, . There is no need to include E~, s~,
etc. , since we are going to assume that these are always good quantum num-
bers. Let us take Ms=1; then we must have m„=1/2, m„=1/2. Further-
more, if we take Ml. = 5, the only possibility is L = 5, just the value we re-
quire. Moreover, we can evaluate the matrix elements of (x'+yl+s4) (ml, ml)
for a one-electron problem by quadrature alone. We find

(x' + y' + 2') (m l, m, )

7)4 + i4)3 23~2 30~ + i8 6~2~ 2 + 5~ 2 g)~ 2 + 7')4= 3I
2(2t —1)(2t —3)(2l + 3)(21 + 5)

Using this relation and the spur relation (7) one can obtain q and hence P4
in terms of I.
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Performing the calculations, we find for Pr

p, = 14'/33, p, = 2q/3,

and for Nd

p4 = 21'/ii) q = I/10395 (8)

pg5/2 33'/91, p13/Q 6g/13, piig2 = 799&/1001, p9~2 = 2380'/1001,
(9)

q = I/32670.

These relations enable us to find the ratio of the magnitudes of the electric
fields in similar salts of these two elements.

PRASEODYMIUM

The normal state of Pr is 'II4,' the multiplet separation between the levels
J=4 and J=S is about 2100 cm ', and hence in calculating the suscepti-
bility the higher multiplet levels may be neglected. This corresponds to dis-
carding off-diagonal elements in J in the magnetic moment and in the crystal
field. Good experimental data have been given by Gorter and de Haas" for
the variation of the susceptibility of a crystal powder of Pr2(SO4)3 8H20.

As has already been explained, the simplest assumption is a cubically
symmetrical field. The Hamiltonian is

D Q(x + y + s~4) + PPp„

p, being the component of magnetic moment along the s-axis, which is also
taken to be the direction of the magnetic field. The diagonal elements arising
from the magnetic field are simply gi8H3EI, where g is the Lande g-factor
(=4/5 for Pr), 3II is the component of J along the axis and P is the Bohr
magneton. Bethe' has shown that in the absence of a magnetic field the level
J=4 splits up into a single level, a doubly degenerate level and two triply
degenerate levels. In virtue of the selection rule obeyed by the Hamiltonian,
the secular determinant factors into a cubic and three quadratics, two of the
quadratics being identical since there is degeneracy as regards the sign of 3'.
Hence at least one root of the cubic must be identical with one of the roots
of the repeated quadratic, while another root must be the same as one of the
roots of the remaining quadratic. Thus the determination of the levels in the
absence of the magnetic field involves only the solution of quadratic equa-
tions. When the magnetic field is present the secular determinant still breaks
up into a cubic and three quadratics, the factors being

&G —96a —8' s 0

—4G —96a —8'

' + 3G —936a —8'
+ G —216a —8".

2G —696a —8'
360u

3600
—2G —696@ —8"

"C, J. Gort, r and W. J. de Haas, Leiden Comm. 218b.
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where
s = 24a(70)", t = 120a(7)'I G = gPH

and a =pD, p being the coefficient in the matrix elements (3). Since the roots
without the magnetic field are known there is no great difficulty in finding the
roots in the presence of the field IIas a power series in II. For convenience, we
choose as origin of energy the centre of gravity of the unperturbed levels.
Then the levels in the presence of the field are

Wi = 672a+ 5G'/252a, W2 ——336a + G/2 + 7G'/3840m)

W, = 336a+ 2G2/105a, W4 = 336a —G/2 + '7G'/3840a,

We = 96a+ Gs/180a, Wq = 96a —180aGs/,

W7 = —624a + 5G/2 —7G'/3840a, Ws ———624a —G2/180a,

W9 ———624a —5G/2 —7G'/3840a.

E

0
Cv

Pr f J-Cl
Fig. 1.

The susceptibility per gram atom is then

x = (2Xgsp2/a) [53ei3~/5760 + e s~/30 —61e '&/2688 —Se '4&/252
(10)

+ ti(25e "& + e—'&)/192 j —: (3e"& + 2e & + 3e '" + e '+')

where ti=48a/teT. The constant a is chosen so that this formula gives the
value of xo, the susceptibility at the absolute zero of temperature, extrapo-
lated from the experimental data. This gives ate

———10''p'/a, since a must
be negative in order that xo may be finite. From this we obtain the value
a = —0.293 cm ' which corresponds to an over-all splitting produced by the
crystal field of 389 cm —'. Fig. 1 gives the way in which the crystal field splits
the lowest multiplet level of Pr. The same figure gives similar results for Nd,
and the inHuence of the magnetic field in removing the degeneracy is also
shown. The curve 1/X against T is given in Fig. 2 and on it are marked the ex-
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perimental values for Pr2(SO4)3 8H20 as measured by Gorter and de Haas. "'
The agreement is extremely good. In order to show the sensitivity to varia-
tions inc we have plotted the curves (1) a= —0.37 cm "(2) a= —0.293 cm '
(3) o = —0.30 cm —', while the straight line (4) through the origin gives the
asymptote for all values of a at very high temperatures (but not high enough
for the higher multiplet levels to count). This straight line represents the
Hund formula for the susceptibility x =XP'g'J(J'+1)/3kT, obtained on the
assumption that the ion is perfectly free. It should be explained that the ex-
perimental values are given per gram ion. The molecular weight of Pr&(SO4)3

~ 8H20 is 714, and since there are two Pr atoms it is necessary to divide g as
given by Eq. (10) by 357 in order to give the g used by experimenters and em-

ployed in Fig. 2. In the temperature range 100'K to 300'K the experimental

i/x x fP

Fig. 2.

200 300 K

6 is 32', while the theoretical value is about 25'. The difference is too small to
show in the figure. More wi11 be said about the agreement with experiment
when we have considered Nd.

Before it was realized that a field of cubic symmetry would give such a
good account of the experimental results, a field of rhombic symmetry was
tried, but with little success. A simple assumption in this case is that the po-
tential of the field is of the form A (x'+y' —2s'). Since the measurements were
made on crystal powders, it is necessary to average over all directions. This
can be accomplished by first solving the problem where the magnetic field

acts along thea-axis, the axis of symmetry, and then when it acts perpendicu-
larly to the axis. The average susceptibility will be the average of these two,
taken with the weights one and two respectively. The problem bears a formal
resemblance to the problem of the symmetrical top; the group J=4 of energy
levels are all doubly degenerate except one which is single and which must be
taken as the lowest in order to fit the observed susceptibility at low tempera-
tures. However the temperature dependence of the susceptibility calculated
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on the assumption of a "symmetrical top" field bore very little resemblance
to that observed and it was necessary to reject it. If data were available on
single crystals one could tell immediately by comparing the three principal
susceptibilities and 5's how good an assumption a field of cubic symmetry is.
If the three are equal, everything would be very satisfactory; if not, then one
would have to introduce a small field of rhombic symmetry to account for the
differences. The effect of introducing a field of rhombic symmetry would be to
give three principal Curie constants and three principal 6's, and the 6's
would not vanish even at high temperatures although the Curie constants
would then all become equal and the mean 6 would vanish. Nothing further
can be said until experiments have been made on single crystals.

NEODYMIUM

The normal state of Nd is «Kei2 (X states have L = 6). The multiplet sepa-
ration between J= 9/2 and J = 11/'2 is about 1800 cm " and at room tempera-
tures one ought not to neglect the higher multiplet levels. |A'e are indebted to
Miss Frank for the information that the correction for the other multiplet
levels is to add about three percent to the susceptibility at room tempera-
tures. "However we make no attempt to apply this correction, since the dis-
crepancy between different observers is considerably greater than this. Since
the ground state has J=9/2, so that J is a half integer, the electric field, as
shown by Kramers, "will be unable to remove all the spatial degeneracy of
this state; each level will be at least doubly degenerate and will have a Zee-
man effect of the first as well as of the second and higher orders. It is known
from the work of Bethe' that in the absence of the magnetic field the ten com-
ponents of J=9/2 fall into two coincident groups of five on account of the
Kramers two-fold degeneracy, and each group of five levels will split up into
a single level and two doubly degenerate levels. In the presence of the mag-
netic field, the factoring is into a quadratic and a cubic, given by

9G/2 + SAv —W 6A

6A. G/2 + SAv —W 10A

10A —7G/2 —3A v —W

SG/2 + 2Av —W SAN

5AN —3G/2 —2A v —W

» Miss Frank has shown, Phys. Rev. 39, 119 (1932), that it is very important to take into
account the off-diagonal elements in J in the magnetic moments for Eu and Sm, since for these
the separation between the two lowest multiplet levels is not small compared with kT. For Eu,
the lowest level has J=O, the next lowest J=1 and neither of these breaks up under the action
of a. crystal field of cubic symmetry nor is their relative position altered to a first approximation;
and since they belong to different representations of the cubic group, the field does not introduce
elements of magnetic moment between them. From analogy with the conclusions given in the
present paper, one would expect the crystal fields in the rare earths to have cubic symmetry.
If this is so, Miss Frank's calculations for Eu still apply. For Sm, whose two lowest levels have
J=$/2 and J= 7/2 as normal states, it may be necessary to amend the results given in her pa-
per. Further calculations will be made on this point."H. A. Kramers, Proc. Amst. Acad. 33, 959 (1930).



206 mLLIA3f G. PENNEY AND ROBERT SCHLAPP

where n=(6)" v=(14)'" G=gPH (g=8/11 for Nd) and A=12aP(14)'".
The origin of energy has been chosen to make the spur of the quadratic zero,
a device which greatly simplifies the algebra. The cubic and quadratic arising
from the other quintic can be obtained from those above by changing the sign
of G. The roots in the absence of the magnetic field can readily be obtained,
since then the roots of the quadratic must also be roots of the cubic. Solving
these equations up to terms in II', we find for the ten energy levels

Wi = 20.95A+1.833G+ 0.3879G'/A, Wg =9.11A + 2. 788G —0.3411G'/4

Wg ——9.11A —0.542G+ 0. 101~G2/A W4= —19.59A —3.121G—.00468G'/A

W5 = —19.59A + 1.542G —0.1015G'/A

and five more obtained from these by changing the sign of G.

Fig. 3.

200

The expression for the susceptibility per gram atom is

x = (2g P X/A) [(0.1483e" ""+0..2396e ' "' —0.3879' "'"")
+ p(6. 065s" "' + 4.031e "'"+ 1.680e ""')]

[2/19.59JI+ 2s—9.11/l + s—20.95Jl]
J)

where @=A/kT. To obtain the susceptibility per gram ion it is necessary to
divide by 361. As with Pr, a is negative, and its value is about —0.458 cm '
(A = —20.6 cm '), which gives an over-all splitting of 834 cm '. The splitting
of the lowest multiplet level produced by the crystal field is shown in Fig. 1.
Curve 2 in Fig. 3 gives the theoretical variation of 1/x with T, while on it are
marked the experimental results of Gorter and de Haas. "The agreement is
extremely good. Curves 1 and 2 in Fig. 3 show the sensitivity to A and are for
the values A = —36 cm ' and A = —12 cm —' respectively, while the straight
line 4 gives as before Hund's law. The measurements of Cabrera" at 290'K,

"8, Cabrcra, C. R. 180, 669 (1925}.
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and of Zernicke and James'4 at 293'K, and of St. Meyer, "which agree almost
exactly with Zernicke and James, are also marked and are seen to fall con-
siderably below those of Gorter and de Haas. If, on account of some error in
calibration, it should prove necessary to reduce the experimental values by a
constant factor, D can still be chosen to fit the results. Exactly the same dis-
crepancies appear with Pr. Again, the susceptibility as measured by Cabrera
is 11 percent higher, and that measured by Zernicke and James and also by
St. Meyer is 2 percent higher, than that obtained by Gorter and de Haas, all
at room temperature. The disagreement in this case is not quite so bad as
with Nd.

Using the relations (8) and (9) we can compare immediately the values of
the constants D of the crystal Acids in the two salts Pr&(SO4)3 8H&O and Nd&

(SO4)3 8H~O, on the assumption that the integral I is the same in both cases.
This is not quite accurate and rather favors Pr, but it is suSciently close for
our purpose. The constant D for Nd is found to be about 3.9 times that for
Pr. One would expect the electric fields in two salts so similar in every way to
be of about the same magnitude. It should be remembered, however, that
we determine this magnitude from the difference between the observed mag-
neton number and the Hund value, and a small change in the observed mag-
neton number will make a considerable difference in the calculated field. For
example, the difference between the magneton number of Nd as measured by
Cabrera, and the Hund value, is 0.08, while Gorter and de Haas obtain 1.24.
For Pr the corresponding figures are 0.17 and 0.76 respectively. The electric
fields calculated from Cabrera's values are much less than those given here.
More accurate data on the susceptibilities, even at one temperature, would
allow this question to be settled satisfactorily.

In conclusion we desire to express our sincere thanks to Professor J. H.
Van Vleck, whose advice and criticism during the course of this work have
been invaluable.

I4 J. Zernicke and C. James, Jour. Am. Chem. Soc. 4S, 2827 (1926).
", Stefan Meyer, Phys. Zeits. 26, 51, 478 (1925).


