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Equivalent Chemical Bonds Formed by s, p, and d Eigenfunctions*

By RaLrpH HULTGREN
California Institute of Technology

(Received April 25, 1932)

1. The work of Pauling on the linear combinations of eigenfunctions to form bond
functions has been extended.

2. A theorem concerning the maximum strength in a given direction of a bond
function orthogonal to existing bond functions has been derived. It is found that the
strongest bond functions must lie at such angles to one another that the maximum
of each coincides with a node of each of the others.

3. A general expression for equivalent Pauling bond functions formed from linear
combinations of s, p, and d eigenfunctions has been derived.

4. By assuming thebond functions to havecylindrical symmetry, like the best pos-
sible bond functions, the equations can be readily solved. It is found that equivalent
cylindrical bond functions will be orthogonal if the angles between every pair have no
more than two values. The angles must be greater than 54°44’ and their sum must be
greater than 180°; otherwise they are unrestricted. No more than six such bond func-
tions may be formed. Solutions for six and less equivalent bond functions are given.

5. There are only four possible configurations for six equivalent cylindrical bond
functions. Two of these are much weaker than the other two and so are improbable.
The configurations for the stronger bond functions are in striking agreement with the
only two structures, the octahedron and the trigonal prism, which are found exper-
imentally.

6. A discussion of the factors influencing bond energies is made and examples of
chemical compounds cited. It is predicted that the structure of P4 is that of a tetra-
hedron with a P atom at each corner.

I. INTRODUCTION

N THE theory of directed bonds of Pauling and Slater the bonds formed

by a given atom tend to assume certain directions relative to one another;
namely, those in which the single electron eigenfunctions of the atom have
their maximum concentration, permitting maximum “overlapping” with the
eigenfunctions of the other atoms with which bonds are formed. The predic-
tion of bond angles is reduced by this theory to the determination of these
directions; moreover, some information regarding the strength of a bond
can be obtained from the consideration of the amount of concentration of
the bond eigenfunction in the bond direction.

In the simple approximate treatment given by Pauling,’ it is assumed that
the bond eigenfunctions are formed by linear combination of a set of eigen-
functions

Voin(r, 0, ¢) = Rou(r) Py ™ (cos 0) { A cos m¢ + B sin me |

(Py™ (cosf) is Ferrer’s associated Legendre polynomial)

* (Contribution from Gates Chemical Laboratory, California Institute of Technoiogy, No,
317.)
! Linus Pauling, J. Am. Chem. Soc. 53, 1367 (1931).
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which have approximately the same energy. The coefficients in the linear
combinations are determined by a consideration of the 6, ¢ parts of the func-
tions only, it being assumed that the 7 parts are similar (though not identical)
in all of the functions. Neglecting the » part, the eigenfunctions with 7=0,
1,and 2, - - - normalized to 4, are:

s =Py(cos 6) =1

p. = (3)Y2P,%(cos 0) =(3)Y2cos 0

P =(3)V2P(cos 0) cos ¢ =(3)2 gin 0 cos ¢
Py = (3)V2P(cos 0) sin ¢ =(3)'2 sin 6 sin ¢
d. = (5)Y2P,"(cos 8) =%(5)"2(3 cos?0—1)

doyo=|(15)Y2/3]Py}(cos 6) cos ¢ = (15)"2sin O cos 6 cos ¢
dyi.=[(15)12/3]Pyl(cos 6) sin ¢ = (15)%sin @ cos 6 sin ¢
d. =[(15)42/12]Ps*(cos 0)cos 2¢ =2(15)"2%sin% cos 2¢
doyy=[(15)V2/12] Py(cos 0)sin 2¢ =2%(15)Y2sin20 sin 2¢

The maximum values of these eigenfunctions are 1.000 for s, 1.732 for pa, py,
and p,, 2.236 ford., and 1.936 for the other d eigenfunctions. For polar graphs
of these see reference 1. (More bond functions of the same shape and strength
as the d, function can be formed by linear combinations of the other d func-
tions.) These values are called the “strengths” of the bond functions, inas-
much as they indicate the amount of concentration of the functions in partic-
ular directions and hence give a rough measure of the bond-forming power of
the functions. The meaning of the sérength in terms of energy units has not
been determined, but the resonance energy undoubtedly increases rapidly
with the strength.

In certain cases, as in C (1s22s2p2p2p), the s-p quantization may be
broken and stronger bond functions can then be formed using linear com-
binations of s and p eigenfunctions. The strongest possible s-p bond functions
have a strength of 2.000 and are directed to the four corners of a tetrahedron,
in agreement with the tetrahedral carbon atom long known to organic chem-
ists and accounting for many other bond angles of about 109°28’.1

For elements of the long periods, the d eigenfunctions probably play an
important part in bond formation, since, for example, the 3d term value for
elements of the first long period has probably not a greatly different energy
from that of the 4s level. Just as in the case of s and p eigenfunctions the
quantization may be broken and s-p-d, s-d, or p-d combinations may be
formed.

In this paper a method for finding the best equivalent s-p-d bond func-
tions will be developed. The equations prove to be too complex to be solved
in the general case, but by making the reasonable assumption that the bond
functions have cylindrical symmetry (the best possible bond functions do
have cylindrical symmetry), solutions are obtained which cannot be far from
the best.

II. THE MAXIMUM STRENGTH OF BOND FUNCTIONS

It has been shown by Pauling (reference 1) that the strongest bond func-
tion ¥; =ka=1aik\bk(0, ¢) which can be formed in the direction 6y, ¢ has a
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strength in that direction ¥;(85,¢0) = {D sey [¥1 (8o, o) ]2} V2. If it be required
that this bond function be orthogonal to # pre-existing bond functions
W0, ¢) =D pmiaibi(0, ¢), it can be shown (See appendix I) that the maxi-
mum strength is reduced to

m n

1/2
‘I’j(oo,‘d’o):{ S Wil 601 — [0, m)]?} .

k=1 1==1

When the range of summation m comprises only completed subgroups, the
first term is equal to m, and the formula becomes

n

¥i(00,60) = {m - Z[%(eo,m)]z}m.

t=1

If some of the eigenfunctions of the subgroups are excluded from bond for-
mation, as is the case when they are occupied by an unshared pair of elec-
trons, the formula still holds, providing these excluded eigenfunctions are
treated as pre-existing bond functions.

This theorem gives us several important conclusions at once. The strongest
bond functions lie at such angles to one another that the maximum of each coin-
cides with a node of each éof the others. In general, only three such bond func-
tions are geometrically possible. For s-p bond functions, however, as we have
seen, the nodal angle of 109°28’ allows the construction of four.

The best s-p-d bond function (reference 1) (with the maximum along the
z axis) is

v 1 + 1 n (5)1/2
= 3 § (3)1/2 pa 3

d..

It has a strength of (9)'/2 and has nodes at 73°09’ and 133°37’. We may con-
clude that s-p-d bonds tend to form at angles of 73°09" and 133°37'. The closer
the bond angles approach these values, the greater will be the resonance energy of
the bond. Only three of these bonds are geometrically possible and, as will be
shown later, these angles may be modified considerably in the case of larger
coordination numbers by orthogonality conditions.

In the same way it may be seen that the best p bond functions have a
strength of (3)2 and are formed at angles of 90°; the best d bond functions
have a strength of (5)¥2 and angles 54°44’ and 125°16’; the best p-d bond
functions have a strength (8)'/2 and angles 65°44’ and 144°12’; and the best
s-d bond functions have a strength (6)/2 and angles 63°26’ and 116°34’,

I1I. EQuivALENT BoND FuNcTIONS

Two bond functions may be defined as equivalent when they differ from
one another by a rotation only. A method of finding equivalent bonds is to
set up the most general s-p-d eigenfunction containing shape parameters and
orientation parameters. Two eigenfunctions with the same values of the
shape parameters will be equivalent.
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Denoting the generalized eigenfunctions by capital letters, we have:

3 1/2

P=apz+bpx—l—cp,,=( (ax + by + ¢2).

7

But by a rotation transformation P can be expressed as a’z’/7, with 2’ meas-
ured along an axis with direction cosines a :b :c. Hence a, b, and ¢ are orien-
tation and not shape parameters, and the most general shape of P is P=p,.
It may also be shown (See appendix II) that the most general D eigenfunc-
tion has the shape of a linear combination of d, and d,.

We can now express the most general s-p-d bond function as a linear
combination of arbitrarily oriented S, P, and D eigenfunctions. The most
general shape of the function, that is, the shape of the polar graph of strength
against direction, will be determined by five parameters; three of them de-
termine the relative amounts of s, p,, d,, and d, which are in the bond (there
are not four because of the normalization condition), and two the relative
orientation of P to D. The orientation parameters may be determined by
carrying out a rotation transformation on these eigenfunctions. This may be
most conveniently done by rotating the axes as follows: Rotate through an
angle ¢," about the z axis, then through 6, about the v axis, then through ¢,
about the gz axis. The behavior of our functions under these transformations
is discussed in appendix III, in which the following expression for an s-p-d
bond function of arbitrary shape and orientation is obtained:

¥ = sin a sinf s -+ sin « cos 6{ [cos 8, cos B4 — sin 6, sin 84 cos (¢, + ¢d)]p:
+ [cos 8, sin 84 cos ¢a + sin 8, cos 84 cos (¢, + da’) oS da
— sin 8, sin (¢, + ¢4’) sin palp. + [cos B, sin 8, sin ¢4
+ sin 6, cos 04 cos (¢, + ¢4’) sin ¢q + sin 0, sin (¢, + ¢4) cos ¢d]py}
~+ cos a{ [(3/2) cos v cos? B4 — % cos vy + 2(3)V/2 sin v sin? B4 cos 264’ |d.
+ [£(3)/2 cos vy sin2 8, éos 2¢ 4 + sin vy cos 2¢ 4 cos 2¢ 4
— 1 sin y sin? B4 cos 2¢ 4 cos 2¢4’ — sin v cos 64 sin 2¢ 4 sin 2¢4 |d,
+ 1(3)12 cos v sin? 0,4 sin 2 ¢4 + sin «y sin 2¢4 cos 2¢ 4
— 1 sin v sin 204 sin 2¢4 cos 264 + sin v cos 8, cos 2¢ 4 sin 2¢4’ |d oy
+ [3(3)12 cos v sin 204 cos ¢pa + sin y sin O sin ¢4 sin 264"
— 1 sin v sin 20, cos ¢a cos 2¢4 |d oo + [2(3)1/2 cos v sin 20, sin ¢4
— sin vy sin 04 cos ¢g sin 2¢4" — L sin v sin 204 sin ¢g cos 2¢4’ |dy ..

a, B=shape parameters determining relative amounts of S, P, and D
used; v =shape parameter determining relative amounts of d, and d. used;
0,, ¢,=shape parameters determining relative orientation of P to D; 84, ¢a
=direction of z axis after rotation; ¢4’ =rotation of bond function about new
2z axis.
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The eigenfunction is normalized as written and the only restrictions on
the values of the coefficients are the orthogonality conditions. For # bond
functions these give $n(n—1) equations containing 5 shape parameters and
3n—3 arbitrary orientation parameters (three may be arbitrarily chosen
without loss of generality). The equations are not necessarily independent.
If the number of independent equations exceeds the number of unknowns,
they are said to be over-determined, and there is no solution. If the numbers
are equal, there will be one or more single points in the hyper space which
satisfy the equation; while if the number of equations is less, there will be
sets of continuous solutions. For certain values of some of the parameters the
number of independent equations may be reduced.

From other considerations it seems probable that nine equivalent bond
functions (36 equations, 29 unknowns) cannot be formed. The existence of
solutions for eight bond functions, having 28 equations and 26 unknowns, is
doubtful; but for seven or less bond functions there probably should be con-
tinuous solutions.

Unfortunately the orthogonality equations are extremely complicated,
each equation containing 46 terms and involving 11 parameters. But by
making certain reasonable approximations, we can reduce the equations to
a readily soluble form. The best possible s-p-d bond function is symmetrical
about the direction where it has its maximum value and has the following
values of the shape parameters:

6, = 0 (then ¢, may be arbitrary),  a = cos™! (5)!/2/3,
v =0, 8 = cos~! 1(3)12,

An increase in v will quickly reduce the possible bond strength by scatter-
ing the d eigenfunction, so any really strong bond function must have ~y
nearly equal to zero. We may therefore set v =0 with a feeling of considerable
confidence that this arbitrary restriction has not eliminated any important
bond eigenfunctions which are not rather closely approximated by one of
those remaining. The same argument applies to 0, except that the decrease
in strength is not rapid. We shall assume that the p part of the bond func-
tion has its maximum in the same direction as the d part (6,=0).

These assumptions enormously simplify the orthogonality equations; the
number of terms is reduced from 46 to 9 and the number of parameters from
11 to 6. Furthermore the direction of the maximum value of the bond func-
tions is easy to find; it is 0, ¢ =04, ¢pa. These are the only s-p-d combinations
with cylindrical symmetry, and will be referred to as cylindrical bond func-
tions.

It

IV. CyrLiNnDRrRICAL BoND FUNCTIONS

The above treatment gives us the following expression for the general
cylindrical bond function

¥ = sin a sinf s + sin a cos B[cos Bap, + sin 04 cos dap, + sin 04 sin dap, |
+ Lcosal(3cos?0y— 1)d, + (3)1/2sin26 4 cos 2¢ ad ; + (3)1/2sin? 0 45in 26 ad o1y
4+ (3)V/2 sin 204 coS ad prz + (3)1/2 sin 204 sin G adyy:].
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If we place one bond function with its maximum along the z axis, all bond
functions orthogonal to it must obey the equation:

sin? o sin? B + sin? « cos?B cos 04 + 3 cos? a(3 cos?f; — 1) = 0.

This is a quadratic in cos 6, and so has two solutions in terms of @ and S.
Hence the equivalent cylindrical bond functions orthogonal to a function
of a given shape must have the loci of their maxima in two cones, which are
determined by the shape parameters. Conversely, any two angles will de-
termine the shape parameters.

. <(1 — cos )(1 — cos 0') — %)1/2
sina =
(1 — cos6)(1 — cos §)

. < cosf cost + 3 >1/2
sin f = .
(1 — cos )(1 — cos 0') — 2

In order to have real solutions, the angles must be restricted as follows:
6,0 = 54°44’ 9+ 6 = 180°.

Then all bond functions having their maxima at angles 6 or 6’ to the maxi-
mum of the given bond function will be orthogonal to it, providing the shape
parameters are chosen correctly. This can easily be extended by symmetry to
include all bond functions of the set, giving the general theorem: The neces-
sary and sufficient condition for a set of equivalent s-p-d cylindrical bond func-
tions to be orthogonal is that there be no more than two different values for the
angles between the direction of the maximum of any given bond function and the
direction of the maxima of all the other bond functions. The shape parameters
must be chosen and the angles restricted as given above.

This theorem reduces our problem to the purely geometrical one of find-
ing the ways that # vectors may be oriented such that the angles between all
pairs obey the above restriction. It can be easily shown that no more than
six vectors may be so placed: No more than six equivalent cylindrical bond
functions can be orthogonal to one another.

For any values of the angles which satisfy the orthogonality conditions,
the strength will be found to be ‘

(cos 6 cos ' + )12 ++ (— 3(cos 8 + cos 0;))1,2 + (10/3)1/2
((1 — cos 6)(1 — cos §))1/2

Strength =

Six equivalent cylindrical bond functions

If we place one vector along the 2z axis, there may be as many as five in
the 6 cone, if they are evenly spaced; thatis, A¢ =72° or 144°. If we now make
the angles between the vectors equal to 0 or 8’ by use of the distance formula
of spherical trigonometry: cosd =cosf; cosf,+sinf; sinfy cos(¢p1—¢s) where
in this case =460 or 8’; 6; and 0:=0; and ¢ —p=72° or 144°, we get two
similar solutions. Placing four bonds in the 6 cone and one in the 6’ gives us
another solution, the octahedral configuration discovered by Pauling.! There
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is only one more solution; in which the vectors point to the corners of an
equilateral triangular prism with square sides.

The first two solutions contain no p eigenfunctions. They are the strongest
s-d bond functions that can be formed.

The six equivalent octahedral eigenfunctions! are:

1 1
v, =—61—/28+ﬁ?z+mdh
1 1 1
¥, —'617;8— '2-1'7;17:+§1—/;dz,
1 1 1 .
¥; = 6T/28+51—/2Pz“‘1—21—/2dz+7dz,
1 1 1 )
v, —gl—l—zs*mpz—mdz-l-idz,
1 1 .
Yo = Gt T gty T gt T 3
1 1 1
Vo= —5——py— ——d, — s,

- 61/2s 21/2 121/2
with three pure d eigenfunctions orthogonal to them
V7 = doyy; Vs = dore; Wo = dyya.

The trigonal prism eigenfunctions are:

w= b g, +———d,+ }d.
18~ 6l 6(3)1/2
1
o e
L L O SR L L)
18~ 62 612 6(3)112 6
1 1
- W Aoy — W Aot + 3dyye
S L S O
18~ e2’” R TE)
+ Nt e d1+11 - -_‘1— dx+z - %du-i—z
2(3)112 2(3)12
T, = 511/23 — *1_ 191/2 1
4 18 o P.+ 521%p, + O d, + 3d.
1

z+z

O
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st - 1 )
Vs = ETR L Pz‘*‘m;ﬁu +EE3)7dz — §ds
1
—_— - — 1
2(3)172 oty + 2(3)172 Cos = 3duis
5112 1 1o/ 1 1 .
Vo= oS~ t T 521, — @;Pﬁ-a&; d: — §ds
- - 1
+ 2(3)1/2 d-‘“’” 2(3)12 dore + 30y

with the following eigenfunctions remaining.

1 17112 1 212 1 212

\I,7=_ S — 23 ‘II8 dm, \Il9=—_~Py+

TR BRI gl g e

Five equivalent cylindrical bond functions

Solutions may of course be obtained by leaving out one bond function of
our six-bond solutions. There is also a solution obtained by placing four bond

3.0 8.4
.
28 8.0
©le.
T w
26 H76
G 8
4] z
o« o
haa 1725
o)
a
&
2.2 L 68
20 ‘ 6.4
63°26' 69°46'  72°00'(1) (2) (3) (4)

Fig. 1. Strengths of five equivalent cylindrical bonds for all possible configurations. The
dotted curve represents a quantity proportional to the energy of possible electrostatic repulsion
between the atoms surrounding the central atom. The configuration of maximum strength and
minimum repulsion is favored. (1) §=81° 47/; ¢'=135° 35/, (2) §=90°; ¢’=180° (3) 9=120°;
9'="75°31'(4) 6=63°26";0'=116° 34",

functions equally spaced in a cone 120° from the fifth bond function. These
bond functions have a strength of 2.968, with 8’ =75°31’. The conditions are
also satisfied by the following relation between 6 and 6’.

cos @ = 1(3 + (5)1/2) cosf — 1(1 £ (5)1/2).

In these solutions the five bonds are equally spaced in a cone. The strengths
are shown as a function of the angle 6 in Fig. 1, the maximum strength being
2.994. The energies of steric repulsion are qualitatively indicated by the dot-
ted line.
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Four equivalent cylindrical bond functions

In this case there are six sets of continuous solutions, which include all the
previously given solutions for a greater number of bond functions.

cos 0’ = (3 cos?f — 1) 1
4 cos? 0

cosf = ——— —1 (2)
14 cosé

cos @ = cos?f + (1 — cos6)(cos?6 + (3/2) cos 6 + 3)1/2 (3)

cosf = £ 2cosf — 1 4)

cos 0’ = 3(3cosf — 1 4 (5)Y2%(cos  — 1)) (5)

cos® = 3[1 — cosf — (5+ 2cosf — 3 cos?)!/? (6)

The strengths of bond functions for these solutions are shown in Fig. 2. The
strongest bond function is obtained from solution (a). It has angles of
136°06’ and 73°49’ and a strength of 2.9992. Single points on two of the curves
represent bond functions which contain no s, that is, they represent p-d bond
functions. These are at the largest angles of solutions (a) and (d). The
strengths here are respectively 2.828 and 2.817, only slightly weaker than the
best p-d bond function, which has a strength of 2.8284.

V. DI1sCUSSION AND APPLICATION OF RESULTS

The configuration assumed by an actual molecule is not, of course, deter-
mined solely by the resonance energy but, rather, by the position of minimum
potential energy. If the bond is to a considerable extent ionic in character,
the resonance energy may become unimportant. In any case forces between
the atoms surrounding the central atom, if they are large, will be expected to
deform the bond angles from the positions where the bond functions are a
maximum. These forces? may result from interaction between the dipoles of
the bonds (electrostatic forces), from interaction between dipole and bond
by induction, or by steric hindrance when atoms or groups are close together.
For equivalent bonds, these forces will always tend to make the bond angle
larger. The bond energy will also be influenced by the term values of the
eigenfunctions used in the bond function and by the term values of the non-
bonding electrons. If we neglect the energy of the perturbation caused by
bond formation, that set of bond functions will be favored which allows the
maximum number of electrons to occupy eigenfunctions of low term values.
The energy of eigenfunctions occupied by unshared electron pairs will be more
important that the energy of a bond eigenfunction because two electrons are
involved compared with one in the bond. Unshared pairs are apt to occupy
the eigenfunctions of lowest energy, so that these eigenfunctions cannot be
used in the construction of bond functions.

2 H. A. Stuart, Phys. Rev. 38, 1372 (1931).
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Six equivalent bonds

The first two solutions in Table I have an advantage only in case the p
levels lie considerably lower than the others, in which case unshared pairs
might occupy them and exclude them from bond formation; or if the p levels

3.0 56
_\_
"1
281 \ 52
\\\ el‘_
=26 \ 48 4
S N 8
: N 5
524N y N -144 3
N / AN =
S d AN &
22 \L ,/ N 40
\\N\ r, \\ 7
Seo = Seallot
20 _ To== 1 1] | A =mrt] 03
B ® T3F B ¥ ERS
e <> 3 833 N s 822
Fig. 2a Fig. 2b
3.0, 5.6
| — I \
28 5.2
©le
x
528N 748 g
] \ A
Eaal O N g
& 2. F\ AN -4.4 a
22| S \ . Aao =
\‘x\ 4 N [
\~~___’! \‘~___ ____"’
20 _ 1= 1 r-=-r L3
5 ¥ EPED B LB B
3 pa g 2] = R s 8 23
Fig. 2¢ Fig. 2d
30 5.6
28 JS.Z
Ol
52.6- 4.8 ‘g
&
= =z
G4\ {44 3
y a
\, t =
o 4 &
22F So 1440
S e
20l L L e 36
& 38 83 F 88
B B e 2 53
Fig. 2e Fg 2f

Fig. 2. Strengths and possible electrostatic repulsions of four equivalent cylindrical bonds.

lie considerably higher (with no unshared electron pairs present) so that it
would be advantageous not to include them in the bond. There do not seem
to be any atoms with large enough separations of energies to compensate for
the much weaker bond functions of these solutions.

This leaves for consideration only two configurations, the octahedron and
the trigonal prism. As a matter of fact, these are the only two structures
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known experimentally, the former being found in the great majority of cases.
The trigonal prism is found in molybdenite, MoS,, and in tungstenite, WS,.
The quantitative experimental data for molybdenite® are in striking agree-
ment with the theoretical structure. Each Mo atom is at the center of a tri-
gonal prism whose six corners are occupied by sulfur atoms, the ratio of alti-
tude to base of this regular triangular prism being 1.007 £ 0.039 compared to
the theoretical ratio of 1.000.

TaBLE L. Sets of six equivalent cylindrical bond functions.

Angles between blonds No. of angle’s Bond strength Remarks
0 [’} 0
(1) 63°26’ 116°34’ 10 5 2.449 Five bonds in cone. s-d bond fns.
(2) 116°34’ 63°26' 10 5 2.449 Five bonds in cone. s-d bond fns.
3) 90°00’ 180°00/ 12 3 2.924 Octahedral bonds
(4) 81°47’ 135°35’ 9 6 2.983 Trigonal prism bonds

The trigonal prism configuration has greater resonance energy per bond,
but the octahedron has smaller repulsive forces between the surrounding
atoms. The octahedron will be preferred for bonds which are appreciably
ionic in character, or for large atoms surrounding the nuclear atom. Since it
contains a smaller amount of d, it will also be favored where the d level lies
highest, as in elements of the second period. Where the d level lies lowest, the
trigonal prism will be favored, unless there are unshared electron pairs. One
such pair can be accommodated in the second ¥y eigenfunction given on page
898 which contains 17/18 d. But the second pair will have to be excited up to
the W level. The fact that molybdenite is diamagnetict indicates that in
molybdenum this level is higher than ¥; by an amount greater than the
singlet-triplet separation. Hence, where the d level lies lowest, two or three
unshared electron pairs strongly favor the octahedron, in which the pairs may
all be placed in d levels. ’

Five equivalent bonds

The continuous solution gives a slight increase in resonance energy over
the trigonal prism solution with one bond left out, but is considerably poorer
sterically. The other new solution is poorer than the trigonal prism with one
bond missing, both sterically and in bond strength. PCl;, the structure of
which is unknown, would be expected to have s-p-d bonds. It is difficult to
estimate the magnitude of steric forces, but they are certainly much larger
in PCls than in molybdenite. Probably the octahedral configuration with one
bond missing (square pyramid) of some sterically more favorable configura-
tion involving non-cylindrical bonds is assumed by this molecule.

Four equivalent bonds

Neglecting a few exceptional regions, where other solutions give slightly
better results, the solution shownin Fig. 2a is best both sterically and in bond

3 Roscoe G. Dickinson and Linus Pauling, J. Am. Chem. Soc. 45, 1466 (1923).
4 E. B. Wilson, Jr., private communication.
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strength. Bonds of this type will then lie at the configuration for maximum
resonance energy, or will be deformed toward the tetrahedral configuration,
the most favored sterically, along the curve given. If only one d eigenfunction
is available, the best bonds are directed to the corners of a square, as shown
by Pauling.!

As previously mentioned, three equivalent bonds of the maximum strength,
3.000, may be formed at angles of 73°09’ and 133°37’. For the configuration
most favored sterically, three bonds in a plane at 120°, the strength is 2.881.

Two bonds of strength 3.000 at 133°37’ may be deformed to 180°, reducing
the strength slightly to 2.96. This latter configuration will be expected when
only one d eigenfunction is available. The functions are

Wy = (1/12V2)5 + (1/2172)p, + (51/2/12112)d,
Wy = (1/1212)5 — (1/21/2)p, + (51/2/121/%)d,

with the unshared pair of electrons occupying
Uy = (5/6)12s — (1/6)'2d,

These are probably the bonds formed by silver in Ag(CN),~(4d5s5p bonds),
which is known to be linear.’ Here the s and d levels have nearly the same
energy, with the p level higher.

Other types of bonds

It may occur that the s level, when it lies lowest, will be occupied by an
unshared pair of electrons, and p-d bonds will be formed. In order for p-d
bonds to be orthogonal, the angles between them must satisfy the equation:

sin? & cos 6 + % cos® @(3 cos?d — 1) = 0.

As in the case of the s-p-d bond, there are two angles for a given shape of
bond. But, since there is only one shape parameter, these angles are not inde-
pendent. The specification of one angle determines the shape and strength of
the bond and also the other possible angle.

Four p-d bonds. No more than four equivalent cylindrical p-d bonds may
be formed. The two configurations given on page 899, although quite strong,
are poor sterically. It is to be expected that SCls, which probably has this
type of bond, will form a non-cylindrical bond with better steric properties.

Three p-d bonds. Three strongest bonds with a strength 2.828 can be
formed at angles 65°44’ and 144°12’. In the molecule P, the phosphorus atoms
may be bonded by p bonds or by p-d bonds. In the former case the bond angle
would tend to be 90° and the most probable configuration would place the
four P atoms at the corners of a square, connected by alternate single and
double bonds. The single bond functions have a strength of 1.732, while the
double bonds have much less than twice the energy of a single bond. Much
stronger p-d bond functions can be formed if the P atoms are placed at the
corners of a regular tetrahedron, with bond angles of 60°.

5 J. L. Hoard, private communication
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Bonds may be hindered from their tendency to form in the direction of the
maximum of the bond function by steric or geometric factors, with an accom-
panying decrease in resonance energy. When this occurs, the bond function
will rearrange itself so as to give a maximum strength in the new direction.
The maxima of the rearranged bond functions will not lie in the directions of
the bonds, but will generally assume positions between the bond directions
and the directions of the undisturbed maxima. In this case, where the bonds
tend to form at 65°44’ but are required by geometry to be at 60°, the maxima
of the bond functions will be in directions 64°02’ apart, and their strength in
the bond directions is 2.819. The bond functions are then

¥, = 0.4520p, + 0.3500p, 4+ 0.3593d. + 0.2663d, + 0.6880d ...

Wy = 0.4520p, — 0.1750p, + 0.3031p, + 0.3593d. — 0.1332d, — 0.2306d .1,
— 0.3440d 4, + 0.59584,,.
Wy = 0.4520p, — 0.1750p, — 0.3031p, + 0.3593d, — 0.1332d, + 0.2306d.,

— 0.3440d ;4. — 0.5958d ..

Where the bond directions are (35°16’, 0°), (35°16’, 120°), and (35°16’, 240°).
The bonds are composed 32.67 percent of the p eigenfunctions. Bond func-
tions with their maxima at 60° have a strength of only 2.773.

Two p-d bonds. Two bond functions may be formed at 180° with a strength
of 2.806 as compared with the strongest bond functions at 144°12’ with a
strength 2.828.

I wish to express my appreciation of the assistance of Professor Linus
Pauling, at whose suggestion this problem was undertaken. I am also in-
debted to Dr. Boris Podolsky, now of Kharkov, for some of the rotation trans-
formation formulas.

APPENDIX [
Problem

To construct the normalized bond function ¥; = " a ¥, with maximum
value in the direction 8y, ¢o and orthogonal to n given orthogonal, normalized
bond functions of the same type,

v, = kilaikll/k (t=1,2,3,--,n)( # 7). (1)
The orthogonality and normalization conditions require
i aixa, = 8y (= 0 where ¢ [; = 1 where ¢ =1). 2)
k=1
Let

m )\ m n m
A= Daupr — ‘2‘[ Dant— 1] — > Dwanay =¥, 3)
1 1 k=1

k=1 =1
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¥; will be a maximum when

AA (0o, ¢ n
—“'(—O—l) =0 = \#k(eg, ¢ro) - )\a,';c - Z,uidik k = (1, 2, e, m) (4)

=1

Hence

Yo, o) — D midin
i=1

A = N . (5)

Multiplying this “y a;, (!5%7) and summing over & it is found that

wo= 2 auhr = V. (6)
k=1

By squaring (5) and summing over k we get

m

e[ - Zw]” @

k=1 d=1

Hence
Vi — Zdik\l’i
=1
ajk = m n 1/2 (8)
[ Dt — Z\I,z2]
k=1 i=1 9
m n 1/2 (
V; = [ Z\Pk? - Z‘I’i2:|.
k=1 i=1
Corollary

When the m original eigenfunctions comprise only completed subgroups,

m n 1/2
Zgl/ﬁ =m and ¥; = [m - Z\Ifﬁ] .
k=1

i=1

AprpENDIX II

Proof that the most general d eigenfunction (arbitrarily oriented) is a linear
combination of d, and d,. The most general d eigenfunction is

D = Ad, + Bd,ry + Cdyy, + Ddy, + Ed,
which in Cartesian coordinates is
D = 1/ra'x>+ b'y? + /32 4+ d'xy + 2z + fy3)

that is, the general quadratic. A rotation transformation will change the
general quadratic to one containing squares only.

D = 1/r(ax?® + by* + c3?).
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The coefficients are restricted by the fact that D, to be an eigenfunction,
must satisfy Laplace’s equation; and also must be normalized, so that

a+b+c¢c=0

fDZdT = 4.

The normalization equation when evaluated gives the relation
3(a® + 8% 4+ ¢*) + 2(ab 4+ ac + bc) = 15.
From the two relations we get

D = ax? — 3(a + (15 — 3a®)V2)y? — L(a F (15 — 3a?)1/%)z2.

But this may be obtained from
D =dd,— (1 — a'?)2d,

by setting
a = }(15)12" — J($)12(1 — a2

ArPENDIX 111
Problem

To determine the behavior of S, P, and D under the general rotation trans-
formation. If the coordinate axes are rotated for an angle ¢4’ about the 2 axis,
then an angle 8, about the y axis, then again ¢4 about the 2 axis, the coordi-
nates of the point P, 8’ and ¢’ appear as shown in Fig. 3, where all lines drawn
are arcs of great circles.

0:0 g.g,  °¢
Fig. 3. Rotation of axes on the unit sphere.
By spherical trigonometry we have
cos 6" = cos B4 cos 6 + sin 6, sin 6 cos (¢ — ¢q)
sin § sin (¢ — ¢a)

sin ¢’

sin (¢' + ¢4') =

cosBgsinf cos (¢ — ¢pg) — sinfgcosd

cos (¢" + ¢d) =

sin ¢’
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We may easily solve these to get sin ¢/, sin 2¢’, cos ¢’, cos 2¢’ in terms of
07 ¢1 6d; d)dy ¢dl'

We also wish to evaluate
Py'ml(cos ') = Pyl™[cos 84 cos 8 + sin 8, sin 6 cos (¢ — ¢a) .

This may be done by use of Gegenbauer C functions.*
(zm) ! m+1/
P,Im(cos §') = ——sin™ 0C 2(cos 0.
2mm !
But:
mt1/2 T'(2m)

Ci_m (cosfgcosf ~+ sinfysin b cos (¢ — ¢q)) = E:(—_‘i‘ 0T
m 2

[Cm + 2+ D] X

(D20 —m =2 1)
{ Tl +m+N+1)

A=0

(2m + 2\) sin® 4 sin? BC:nj,,t:r;/?(cos 02) C7_+2f;'/2(cos 0)C;n(— cos (¢ — ¢a)) } .

Making the following simplifications since /, m, and \ are integers

I'(n) = (n — 1)!
2n)!
T(n+3) = é;%ww

where # is an integer
mANE1/2 27N m 4 N)!
l—m—\ (COS x) = N
(2m + 2N\) ! sin™th g

Or(= %) = (=) (2)

we obtain
m!2msin™ @ =m (I —m — N)lim +N)
sin™ 04 sin™ 6 \_p +m+Nm
Pylm+Mcos 84) Pyl ™1+ cos 0)Ch 11 (cos (¢ — ¢a).

Pl (cos ) =

Using these formulas we get for our general expressions of eigenfunctions ro-
tated through arbitrary angles '

s = Py%(cos ) =1
p. = 312P%cos 0") = 3'/%(cos 0, cos 8 + sin 0, sin @ cos (¢ — ¢,))
d, = 5'2Py%(cos 0') = i(5)1/2{ (3 cos?28y — 1)(3cos?8 — 1)

* See Whittaker and Watson, “Modern Analysis’’, Chap. XV for most of the formulas in-
volving the Gegenbauer function.
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+ 3 sin 204 sin 260 cos (¢ — ¢q) + 3 sin? 84 sin? 6 cos 2(¢ — qbd)}
1
d, = -13(15)1/2P22(cos 0") cos 2¢' = %(15)1/2{sin2 6 cos 2(¢p — ¢g) cos 2¢4

4 3(3 cos? 6 — 1) sin2 0, cos 2¢4’ — % sin? 0 cos 2(¢ — ¢4) sin?pa cos 2¢4’
+ sin? 6 sin 2(¢p — ¢4) cos B4 sin 24 — sin 20 sin (¢ — ¢q) sin 04 sin 2¢ 4
— 1 sin 20 cos (¢ — 4) sin 204 cos 2¢>d'} .

By carrying the transformed p, through a second rotation ¢4’, 04, ¢4 and ex-
pressing all angles 6 and ¢ in terms of the original s, p, and d eigenfunctions
we arrive at the expression given in the text for the most general eigenfunc-
tion.



