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The probability of a configuration is given in classical theory by the Boltzmann
formula exp [—V/kT] where U is the potential energy of this configuration. For high
temperatures this of course also holds in quantum theory. For lower temperatures,
however, a correction term has to be introduced, which can be developed into a power
series of k. The formula is developed for this correction by means of a probability func-
tion and the result discussed.

"N classical statistical mechanics the relative probability for the range'. p~ to p&+dpi, p2 to p2+dp2, , p to p„+dp for the momenta and x&

to x~+dxl, x~ to x2+dx~,', x„to x„+dx„for the coordinates is given for
statistical equilibrium by the Gibbs-Boltzmann formula

P(xt, , x„;pt, , p„)dxt dx,dp, dp„=e t'dxt -dx„dpt dp„(1)

where e is the sum of the kinetic and potential energy U

= p" p" p'
s = + + + —+ V(xt x„)

2m~ 2m2 2m

and P is the reciprocal temperature T divided by the Boltzmann constant

P = 1/kT.

In quantum theory there does not exist any similar simple expression for
the probability, because one cannot ask for the simultaneous probability for
the coordinates and momenta. Moreover, it is not possible to derive a simple
expression even for the relative probabilities of the coordinates alone —as is
given in classical theory by e &~( 1' ' ' * ', One sees this by considering that this
expression would give at once the square of the wave function of the lowest
state

~

Ps(xt x„)~' when P = oo is inserted and on the other hand we know
that it is not possible, in general, to derive a closed formula for the latter.

The thermodynamics of quantum mechanical systems is in principle,
however, given by a formula of Neumann, ' who has shown that the mean

a

value of any physical quantity is, (apart from a 'normalizing constant de-
pending only on temperature), the sum of the diagonal elements of the matrix

where Q is the matrix (operator) of the quantity under consideration and II
is the Hamiltonian of the system. As the diagonal sum is an invariant under

J. von Neumann, Gott. Nachr. p. 273, 1927,
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transformations, one can choose any matrix or operator-representation for
the Q and H. In building the exponential of H one must, of course, take into
account the non-commutability of the different parts of II.

It does not seem to be easy to make explicit calculations with the form
(4) of the mean value. One may resort therefore to the following method.

If a wave function )P(x) x„)is given one may build the following
expression'

&(») ' '
) x ) p&)

' '
) p )

n

Jt dye dy)P(xi+ yi . *.+ y)*
hx

)p(x& y&. . . x y ) (2 &p&& )&(+ +pnvn& III (5)

and call it the probability-function of the simultaneous values of x& x„
for the coordinates and p) p„for the momenta. In (5), as throughout
this paper, k is the Planck constant divided by 2z and the integration with
respect to the y has to be carried out from —0() to ~. Expression (5) is,
real, but not everywhere positive. It has the property, that it gives, when
integrated with respect to the p, the correct probabilities ~f(x) x„)~'

for the different values of the coordinates and also it gives, when integrated
with respect to the x, the correct quantum mechanical probabilities

p &&0 2

~ ~ ~ ~

~
~ ~ ~

J (P(x, x„)e'&»*~+" +»*"&'"dx'& dx„

for the momenta p&, . , p„.The first fact follows simply from the theorem
about the Fourier integral and one gets the second by introducing x I, +y I,

= u&„x), y), ——v), int—o (5).
Hence it follows, furthermore, that one may get the correct expectation

values of any function of the coordinates or the momenta for the state &P by
the normal probability calculation with (5). As expectation values are addi-
tive this even holds for a sum of a function of the coordinates and a function
of the momenta as, e.g. , the energy H. In formulas, it is

=f
+(x1' ' ' xnj pl ' ' ' pn)

f h h 8
)p(x, x„)*f-

1 Bxy z 8x~
(6)

+ g(x) x„))P(x& x„)dxg dx„

for any lt', f, g, if P is given by (5).
' This expression was found by L. Szilard and the present author some years ago for another

purpose.
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Of course P(x), , x„;p&, , P„)cannot be really interpreted as the
simultaneous probability for coordinates and momenta, as is clear from the
fact, that it may take negative values. But of course this must not hinder the
use of it in calculations as an auxiliary function which obeys many relations
we would expect from such a probability. It should be noted, furthermore,
that (5) is not the only bilinear expression in P, which satisfies (6). There
must be a great freedom in the expression (5), as it makes from a function

P of n variables one with 2n variables. It may be shown, however, that there
does not exist any expression P(x~ x„;p~ p„)which is bilinear in

P, satisfies (6) and is everywhere (for all values of x), , x~, P), , P~)
positive, so (5) was chosen from all possible expressions, because it seems to
be the simplest.

If )}I(x), , x,) changes according to the second Schrodinger equation

Bf " h' O'P
ih —= —g + V(xg, , x„)}t

Bf }}s y 2m' Bxg

the change of P(x&, , x„;p~, , p„)is given by

BP

Bt

n P BE gag+ +xn V (h/2 i)x )+ +) n—1 (}),+ +)nP
Z —" + Z „„„„(8)

I mA, BXls Bg&)'~ . Bx n )g~ . ) ~ Bp)~ -. Bp)n

where the last summation has to be extended over all positive integer values
of ) I, , X„for which the sum ) I+)2+ +X„is odd. In fact we get for
8P/Bt by (5) and (7)

BP 1 }I.. . J)py~. . . dy &2~(n&))&+ +en))n)}&

Bt (hx)" J
ih O'P(x& + y), , x + y )*

—P(xi —yi, , x- —y-)
k 2mk- BSA,

8')h(x) —y), , x —y )+ P(xi + y), , x. + y )*
Bx@

+ —[V(» + y), , xo+ y )

—&( —), , *.—)"))4)* +)', , *.+&)*k(* —x, ". )")[.
Here one can replace the differentiations with respect to xA, by differentiations
with respect to yI, and perform in the first two terms one partial integration
with respect to yx. In the last term we can develop V(x&+y&, , x +y )
and V(x) —

y&, , x„—y„)in a Taylor series with respect to the y and get

BP 1
dyI. . . dy P»(u}OI+ +@nun) I &

Bt (xh)"

P ~ ~0(xi+ yi, , x. + y.)*—P(x, —y), , x„—y„)
k mk BQA;
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+ 4(»+ y), . , x. + y.)*
8

+-
h BXP1 8X ~

$1 ' ' ' ' Pn "
0(» + y), , x. + y.) *

(( —)', , *.—y.) ),
which is identical with (8) if one replaces now the differentiations with respect
to y), by differentiations with respect to x),. Of course, (8) is legitimate only if
it is possible to develop the potential energy V in a Taylor series.

Eq. (8) shows the close analogy between the probability function of the
classical mechanics and our P: indeed the equation of continuity

BP P), BP BV BP
+

rs): Bxu a Bxs Bpa

differs from (8) only in terms of at least the second power of I) and at least the
third derivative of V. Expression (8) is even identical with the classical when
V has no third and higher derivatives as, e.g. , in a system of oscillators.

There is an alternative form for BP/Bt, which however will not be used
later on. It is

8 Pa—P(x„,x„;p(, , p.) = —Q — P(x), , x; p), , p )
Pals 8XA;

(11)

+ djl djnI' ~lp ' ' ') ~njI'1+ jlp ' ' yI'n+ jn~ &lp ' ' 'p~nj

where J(x), , x„;j), , j„)can be interpreted as the probability of a
jump in the momenta with the amounts jl, , j„for the configuration

xl, , x„.The probability of this jurnp is given by

J(xl, y xnj ply y jn)

~n hn+1

V(x( y) . . . x y ) ](,
—(2(l &) (((&)&+ +((n('n) (11a)

that is, by the Fourier expansion coefficients of the potential V(x„,x„).
This form clearly shows the quantum mechanical nature of our P: the mo-

menta change discontinuously by amounts which would be half the momenta
of light quanta if the potential were composed of light. '~ To derive (11) one
can insert both for P and J their respective values (5) and (11a) on the right
hand side of (11). In the first term one can replace PLe"&"'"'+' ' ' +""""&+by

"Cf. F. Bloch, Zeits. f. Physik 52, 555 (1929).
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(k/2~)(~/'yq) e"&"»"»+'' +& ""&/" and then perform a partial integration with
respect to y&. Then one can replace the differentiation with respect to y by
differentiation with respect to x, upon which some terms cancel and the rest
goes over to

h
Jfdy,

I, 21m

'V(x&+yl» ' ' '» xn+ym)
P(x,—y&, , x„—y )

t3XJs

O'P(x& —
y&, , x —

y )+ y)
' '

s ~f&u, »,+ +u»»»&/& (l2)
Bxp

which is just what we need for the left side of (11).By integrating the second
term on the right side of (11)

)fdy& dy P(x&+ y& x + y )*P(x& —
y& x„—y„)

~ ~ ~ ~ djy - ~ ~ dj„g("~»&(»+21»1+ "+(»+~~»~&

z
Jfds&. dz„[V(x&+s, x„+s„)

~nhn+1 J
—V(x& —sz ~ . . x„—s„)]s—'«», /»+" +» /»&I&

with respect to s and j one gets because of the Fourier theorem'

(i/k) Jf . Jfdy, dy„P(x&+ y, x„+y„)*P(x,—y& x„—y„)
e'&"'"'+'' +"»"»&/" [V(x'&+ yz x„+y„)—V(x& —

y& x„—y )] (12a)

and this gives the second part of the left side of (11).

So far we have defined orily a probability function for pure states, which
gives us the correct expectation values for quantities f(p& p„)+
g(x& x ). If, however, we have a mixture, ' e.g. , the pure states P&, P2,

with the respective probabilities w&, w', ws, (with w&+wq+w'+
= 1) the normal probability calculation suggests a probability function

&(», ', x, p&, , p„)= Qw), Eg(x&, , x„, , p„) (13)

where Pz is the probability function for fz This probab. ility function gives
obviously the correct expectation values for all quantities, for which (5) gives
correct expectation values and therefore will be adopted.

For a system in statistical equilibrium at the temperature T = 1/kP the
relative probability of a stationary state fz is e 's" where Zz is the energy of
tP&, . Therefore the probability function is a part from a constant

' Cf. e. g. , R. Courant und D. Hilbert, Methoden der mathematischen Physik I. Berlin
1924. p. 62, Eq. (29).' J &. &eumann, Gott Nachr. 245, 1927.L. Landau, Zeits. f. Physik 45, 430 (1927).
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I'(x( x„;p) p„)

Now

P&t )p(x) —y&. . . x —y ) v&((P&u&+ ' ' '+vnvn) I & (14)

is that matrix element of the operator f(H), (H is the energy operator) which
is in the» u„row and v) v„column. Therefore (14) may be written
as

P(x, x„;p, p„)

J
. Jf dy). . . dy v([(*l+u&)n&+

+(*n+un)un[i�&[v

—PH] 1+V» ' &n+'un &1—l» ' ' ' ~n—&n

. v ~ [(z,—w, ) u, + +(*n—wn) vs[ I& (1$)

so that we have under the integral sign the x»+y» x~+y~; x» —y»

x„—y„element of the matrix e '&~ transformed by the diagonal matrix
e'(&»»+''' +& )~" . Instead of transforming e !' we can transform H first and
then take the exponential with the transformed expression. By transforming
H we get the operator (the p are numbers, not operators!)

h 8
g&(&tent+' ' '+&nun) I & —W . ~ 't("FX ~ . X l g

—&(&1P1+' ' '+&nun) /&»' '
v[g

25$Iv 8XIv

which is equal to

ihpI, 8 h'
H=~+

m@ BXIv 2mlv t3$@
(16)

where
Pk

e = Q + V(x(, , x„).
k=» 2mk,

So we get for (15)

I'(x). . x„;p(, , p.)

I —al«y„.. . «y [v
—

] „,„,„.(18)~ ~ ~ ~ ~

By calculating the mean value of a quantity Q =f(p), , p„)+g(x), , x~)

by (18) one has to obtain the same result as by using the original expression

(4) of Neumann.
If we are dealing with a system, the behavior of which in statistical equilib-

rium is nearly correctly given by the classical theory, we can expand (18)
into a power of h and keep the first few terms only. The term with the zero
power of i[ is g, ( P) 'v") r! Now v" is the op—erator of multiplication with the r
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power of (17). Its xi+yi, , x„+y„;xi —yi, , x„—y„element is con-
sequently

&(xi + yl, , x- + y.)"~(» + yi, xi —yi) &(x. + y., x. —y.)

As 5 (also 5', 5", ) only depends on the difference of its two arguments,
one can write 5 ( —2yi) 8( —2y„) for the last factors and perform the
integration by introducing —2yl, , —2y„asnew variables. The terms
with the zero power of fi, arising from the first part of (16) only, give thus

(1/2") Q( —P) "e(x x„)"/r! = e
—&'/2" (19)

which is just the classical expression.
The higher approximations of the probability function can be calculated

in a very similar way. The terms of e t'~, involving the first power of the
second part of II only, are

( —P)' ' ihpi, 8 fi' 8'—1 gr—p

r=o r J p=l Is m/, Bx/ 2m/, 8g/,
(20)

By replacing all operators by symbolic integral-kernels one gets for the
xi+yi, , x„+y„;x, —yi, , x„—y„element of the operator (20)

(- c)Z Z&(xi + y&~
' ' '

) xn + ym)~
r f 0 p=l

ihp/,
5(—2yi) . 5'( —2y&) f( 2y„)—

h2———5(—2y,)
2m Jg

fi"( 2yi, ) —8(—2y„) e(x, —y.. . x„—y„)"—~.

Now

r r p 1

p—I& r-p 6 r—1

p=l p=l

so that the summation over p and r can be performed in (21). By introducing
again new variables m», , m„for —2yl, ,

—2y and performing the
integration one has

1 ihp/, 8 h'—„Z2 /, m/s 8 wA; 2m/s O'N/s

ps (X1 ' ' ' Slr, XOk/2 ' ' ' &n, ) g
—p& (~p &Irl+~a/2

6(xi, ', xk —2wk, ' ' ', x~) &txiq ' ' '
~

xi T 2&4 ' '
y 4)1 r i 1

where mk ——0 must be inserted after differentiation. The first differential
quotient vanishes at m& =0, as the expression to be differentiated is an even
function of m I,. The second part gives
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(21)

In principle it is possible to calculate in the same way the terms involving the
higher powers of the second part of H also, the summation over r and the
quantities corresponding to our p can always be performed in a very similar
way. In practice, however, the computation becomes too laborious. Still it is
clear, that if we develop our probability function for thermal equilibrium in
a power series of h

P(xi x„Pi P„)= e
—e'+ hf, + h'f, + (22)

(we can omit the factor 1/2" before e e', as we are dealing with relative prob-
abilities anyway) all terms will be quite definite functions of the p, V and the
different partial derivatives of the latter. Furthermore it is easy to see, that
f q will not involve higher derivatives of V than the k-th nor higher powers of p
than the k-th. These facts enable us to calculate the higher terms of (22) in a
somewhat simpler way, than the direct expansion of (18) would be.

The state (22) is certainly stationary, so that it would give identically
BP)Bt =0 when inserted into (8). By equating the coefficients of the different
powers of h in BPfBt to zero one gets the following equations:

(23, 0)

pi, Bf, iIV Bf,+ = 0
a ma elxa a ~xi ~pa

P, af, aV af, a'V h' a'e-e
+

a elxi iIpa i elxi 24 ~ps

(23, 1)

(23, 2)

and so on. The first of these equations is an identity because of (17), as it
must be; (23, a), (23, 2), will determine f„f&, respectively. All Eqs.
(23, a) are linear inhomogeneous partial differential equations for the un-
known f. From one solution f, of (23, a) one obtains the general solution by
adding to it the general solution F of the homogeneous part of (23, a), which
is always

= 0

This equation in turn is the classical equation for the stationary character of
the probability distribution F(xi, , x„;pi, , p„).It has in general
only one solution which contains only a Rnite number of derivatives of V,
namely

In fact, if it had other integrals, like
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F(pg, , p„;V, BV/Bug, BV/Bx2, . )

757

(24)

then all mechanical problems would have in addition to the energy-integral
further integrals of the form (24) which, of course, is not true.

One solution of (23, 1) is f& = 0 and the most general we have to consider is
therefore f~= F(e). We have to take however F(e) =0 as f~ has to vanish for
a constant V. So we get f& =0, as we know it already from the direct expan-
sion of (18).Thc same holds consequently for f„f„,as the inhomogene-
ous part of the equation for f3 only contains f&, the inhomogeneous part of the
equation for f, only f& and f3, and so on.

For f& one easily gets

(25)

as a solution of (23, 2) and it is also clear, that this is the solution we need.
The first two terms of f2 we have already directly computed (21), the third
arises from terms with the second power of the second part of II. Similarly
f4 is for one degree of freedom (n = 1)

64m'P ' e 'f = H4(q) [P'V"'/72 —PV""/120]

+ Hg(q) [l3'U"V"/18 —2P'V"'/15 —P'V'V"'/15 + PU""/15]
26

+ Ha(g)[p'V"/18 —22/'V"V"/45 + 2p'V"'/5 + 8p'V'V"'/15
—4PU""/15]

where H„is the r-th Hermitean polynomial and g =P'"P/(2m)'".
It does not seem to be easy to get a simple closed expression for f&, but it is

quite possible to calculate all of them successively. A discussion of Eqs. (23)
shows, that the g in

E(xg, , x„;pg, , p„)= e t"(1 + h'gg + h'g4 + ) (27)

are rational expressions in the derivatives of V only (do not contain V itself)
and all terms of gj, contain k differentiations and as functions of the p are
polynomials of not higher than the k-th degree. The first term in (27) with
the zero power of k is the only one, which occurs in classical theory. There is
no term with the erst power, so that if one can develop a property in a power
series with respect to k, the deviation from the classical theory goes at least
with the second power of h in thermal equilibrium. One familiar example for
this is the inner energy of the oscillator, where the term with t'he first power of
k vanishes just in consequence of the zero point energy. The second term
can be interpreted as meaning that a quick variation of the probability func-
tion with the coordinates is unlikely, as it would mean a quick variation, a
short wave-length, in the wave functions. This however would have the con-
sequence of a high kinetic energy. The quantum mechanical probability is
therefore something like the integral of the classical expression e t" over a
finite range of coordinates of the magnitude h/p where p is the mean mo-
mentum (kTm)'". The correction terms of (27) have, among other effects,
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the consequence that the probability for a particle being in a narrow hole is
smaller than would be in classical statistics. From now on we will keep only
the first two terms of (27).

From (25) one easily calculates the relative probabilities of the dilferent
configurations by integration with respect to the p:

~ ~ I dp] I ~ t dp p $g 0 ~ 0 x p] t 0 p

h' P' 1 O'V h' P' 1 8V= e ~v 1 ——g — +—Q —— (28)
12 I, mp Ox' 24 A, mg Bxp

Hence the mean potential energy is

1 O'V
f Ue ~vdx If Q — e ~vdx

J
Ve evdx

h' p' J I, mj, Bxg'V= — +

f "" ' (f-"")
1 O'V

(1 —PV)e—evdx
h'P I ma»I, '

+
e
—&~dx

where dx is written for dx~ . dx„and the higher power terms of h are
omitted. Similarly the mean value of the kinetic energy is

1 O'V
e evdx

PI,
' e h'P p mI, 8xg'

+
g, 2m' 2P 24

(30)

This formula also is correct only within the second power of h; in order to
derive it one has to perform again some partial integrations with respect to
the x. Eqs. (28), (29), (30) have a strict quantum mechanical meaning and
it should be possible to derive them also from (4). One sees that the kinetic
energy is in all cases larger than the classical expression —,'nkT.

One fact still needs to be mentioned. We assumed that the probability
of a state with the energy 8 is given by e t' . This is not true in general, since
the Pauli principle forbids some states altogether. The corrections thus intro-
duced by the Bose or Fermi statistics even give terms with the first power of
h, so that it seems, that as long as one cannot take the Bose of Fermi statis-
tics into account, Eq. (25) cannot be applied to an assembly of identical par-
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ticles, as, e.g. , a gas. There is reason to believe however, that because of the
large radii of the atoms this is not true and the corrections due to Fermi and
Bose statistics may be neglected for moderately low temperatures.

The second virial coefficient was first calculated in quantum mechanics by
F. London on the basis of his theory of inneratomic forces. ' He also pointed
out that quantum effects should be taken into account at lower tempera-
tures. Slater and Kirkwood' gave a more exact expression for the inneratomic
potential of He and Kirkwood and Keyes' calculated on this basis the classi-
cal part of the second virial coefficient of He. H. Margenau' and Kirkwood'
performed the calculations for the quantum-correction. The present author
also tried to calculate it by the method just outlined. He got results, which
differ from those of Margenau and Kirkwood in some cases by more than
100 percent. "' It does not seem however to be easy to compare these results
with experiment, as the classical part of the second virial coefficient is at low
temperatures so sensitive to small variations of the parameters occurring in
the expression of the interatomic potential, that it changes by more than
20 percent if the parameter in the exponential (2.43) is changed by —', percent
and it does not seem to be possible to determine the latter within this accu-
racy.

' F. London, Zeits. f. Physik 63, 245 (1930).
' J.C. Slater and J.G. Kirkwood, Phys. Rev. 3V, 682 (1931).
7 J.G. Kirkwood and F. G. Keyes, Phys. Rev. 38, 516 (1931).
' H. Margenau, Proc. Nat. Acad. 18, 56, 230 (1932). Cf. also J. C, Slater, Phys. Rev. 38,

237 (1931).
' J.G. Kirkwood, Phys. Zeits. 33, 39 (1932)."I am very much indebted to V. Rojansky for his kind assistance with these calcu-

lations. The reason for the disagreement between our results and those of Margenau and Kirk-
wood may be the fact that they did not apply any corrections for the continuous part of the
spectrum.

In a paper which appeared recently in the Zeits. f. Physik (2'4, 295 (1932)) F. Bloch gets
results which are somewhat similar to those of the present paper. (Note added at proof. )


