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In previous studies, by the methods of wave mechanics, of one-di'mensional mo-
tion of particles in cases in which there are intervals in which the value of the potential
energy function V(x} exceeds the value of the total energy E, attention has been con-
fined to wave functions of the form f(x, B) exp (—2miEt/h). In the present note wave
packets are considered, instead of these trains of waves.

The function V(x} is taken as follows'.

V(x) = 0 for x & 0 and for x & u,

= Vp & 0 for 0 & x & a.

A wave function is set up which initially represents a wave packet moving toward the
point x =0 from the left. The separation of the incident packet into a reflected packet
and a transmitted packet is studied. It isfound that the transmitted packet appears at
the point x =a at about the time at which the incident packet reaches the point x =0,
so that there is no appreciable delay in the transmission of the packet through the bar-
rier.

~ 'HE recent literature on wave mechanics contains a large number of
papers dealing with the one-dimensional motion of particles in cases in

which the potential energy function, V(x), has various arrangements of large
and small values. According to classical mechanics, if the value of V(x) at
each point of a certain interval exceeds the value of the total energy, 8, of
the particle, the particle can neither enter nor pass through that interval. It
is for this reason that such an interval, or the function V(x) in such an
interval, is called a "potential barrier. " According to quantum mechanics a
potential barrier is not an absolute barrier to particles with small total energy;
such a particle may either be rejected or transmitted by the barrier.

Apparently, in all of the work which has been done hitherto on problems
concerning potential barriers, attention has been confined to solutions of the
wave equation which are of the form

4' = f(x, E) exp (—2siEt/h).

As is known, such solutions apply to cases in which the particle has the pre-
cisely determined value E of total energy and in which the relative probabil-
ities of finding the particle in various intervals are independent of the time.
The typical problem which has been considered heretofore may be stated as
follows: Assuming that the particle is moving toward a certain potential
barrier with total energy E, what is the probability that it will pass through
the barrier?

The solution of such a problem can give no information about the manner
in which the particle traverses the barrier, when it does. It has been pointed
out by Condon' that it would be interesting to consider problems, involving

' Condon, Revs. Mod. Phys. 3, 76 (1931).
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potential barriers, in which the relative probabilities of finding the particle
in various intervals are not independent of the time. It is only in the sense of
studying such probabilities that we can investigate, by the methods of wave
mechanics, the transmission of a particle through a barrier. The present note
is devoted to the study of a simple typical problem of the kind suggested by
Condon.

YVe shall employ the potential energy function which is defined by the
equations

V(x) = 0

=V, )0 0&x&a,
= 0 x) a.

We shall take a suitable elementary wave function of the form f(x, 8)
exp [—2iriEt/fi I and effectively integrate it with respect to R over a certain
range, thus producing a new wave function. It is required that at t =0 this
wave function sha!1 form a wave packet, the bulk of which lies to the left of
the point x = 0 and is moving toward the barrier. The problem is to study the
way the wave function changes with time, and, in particular, to study the
development of the function in the interval x)c. There arises the question
of whether we should select the elementary wave function and the interval of
integration so that the resulting wave function shall initially be identically
zero in the interval x)a, or so that no values of A greater than Vo shall occur
in the composition of the function, that is, so that the function V(x) shall be
definitely a barrier. The second of these choices is the one made here, because
it seems on the whole to represent the more interesting situation, and because
it leads to the simpler analysis. Of course, this choice gives us initially a
certain non-zero value of the probability that the particle be in the interval
x)a. But, as this value is small compared with the initial value of the
probability that the particle be in the interval x&0, and compared with the
final value of the probability that the particle be in the interval x)a, no real
difficulty is created by the fact that this initial value is not zero.

As the exact solution of the problem is expressed in terms of definite
integrals which are difficult to evaluate numerically, the discussion is con-
fined to the simpler qualitative features of the wave function. This discus-
sion suAices to give a rather clear idea of the properties of the solution.

The chief result of the study can be stated as follows: The probability
that the particle be in the interval x )a is initially small; as time goes on this
probability increases, rather slowly at first, much more rapidly in the
neighborhood of the time at which the bulk of the incident wave packet
reaches the point x= 0, and then more slowly again; the time interval during
which this probability undergoes its chief variation is substantially inde-
pendent, both as to location and as to length, of the height and width of the
barrier.

Consider the function 4(x, t) which is defined by the following sequence of
equations:
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'I) = 0'y+ %y, ) s ( 0)

=03+04, 0(x(a,
x&a;

tO g

exp [—(w —Eo'")'/(4X') + ik(x + xp) w —2xitw'/h]dw
Wt

(a tO2

P&(w') exp [—(w —Eo"")'/(4X') —ik(x —xo) w —27citw'/h]dw,
tO y

W2

ns(w') exp [—(w —Eo"')'/(4X') + kx(Up —w')"'-
W t

+ ikxow —27citw'/h]dw,

tO 2

Ps(w') exp [—(w —Ep"')'/(4), ') —kx(Vo —w')'"

+ ikxow —27citw'/h]dw,

(2)

( (3)

Wm

n3(w') exp [—(w —8,'")'/(4) ')+ ik(x+ xo —a) w —2xitw'/h]dw; J

Wy

ns(w') =—

ch [ka(U, —w')'" ig]—
1 —2i sin0 )

sh [ka(VD —w') "i' —2ig]

exp [—ka(UO w) is+ ig]
i sin0

sh [ka(UO —w') 'i' —2ig ]
exp [ka(VO —w')'i' —ig] ji sin0 )
sh [ka(Vo —w') 'i ' —2 ig ]

(4)

—i sin 20

sh [ka(Vo —w')"' —2ig]

g = arc tan [w/(Vo —w')'"]

n, (w') =

Here), xo, m ~, Eo, and A@2, are positive numbers, and

0(w &E'/'& m & V'/'
We write

m'Sm/ 'h= k',

where m is the mass of the particle under consideration.
It is easy to verify that the function %(x, t) satisfies the Schrodinger non-

relativistic wave equation

and that, for any fixed value of t, 4 and 84/Bx are continuous functions of x.'
' Of course, the solution is set up by t'he familiar device of obtaining an elementary solution

of the form f{x, w) exp {—27rit2t)'//h), and then integrating with rsepect to m. The limits of
integration are taken as m&, m&, rather than 0, Uo't", merely in order to make the problem of veri-
fying the solution a little simpler.
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The integrals in Eqs. (3) are difficult to evaluate numerically; we shall
merely discuss them qualitatively, avoiding certain extreme values of the
parameters a, Vp, Bp, t, wI, m». To state the complicated facts rather loosely,
it will be shown that when t=0 the function 0' is a packet of waves concen-
trated about the point x = —xp. As t increases the packet moves to the right,
gradually spreading out. The bulk of the packet strikes the barrier, that is,
reaches the point x=0, at about the time 5=xo[2Eo/m] "' and the packet
then separates into a reflected packet and a transmitted packet. The re-
flected packet moves indefinitely to the left. The transmitted packet starts
to the right from the point x= c when the original packet strikes the barrier.
The transmitted packet, as it leaves the point x=a, is of substantially the
same form, except for a constant factor, as the original packet when it
reaches the point x=0. In the interval 0(x(a the function + is nearly a
monotonic decreasing function of x multiplied by a function of t which is
small when t =0, has appreciable values in the neighborhood of the instant
t =so [2EO/m]

—"', and ultimately becomes small again.
To a great extent, the qualitative properties of + can be deduced from

those of the function +~. Hence, we shall first consider the latter function.
If Ep "—w& and m» —Ep'" are fairly large, and if X is not too large, we can

write approximately

exp — ~ —&p'" ' 4X' +» x+ xp m —2m'it+ h dm. 5

In order that this approximation shall be legitimate we must assume that the
numbers

are sufficiently large, say somewhat greater than unity. We make this as-
sumption.

From (5) one obtains the following relation by means of some elementary
transformations.

exp [Eo/(4X') —[Eo'~' + 2iX'k(x + xo) ]'/[4X'(1 + Saint/h) ]]4',
&+ [—(1+8m 9 t/A)]

= 2), [—(1 + Sm. i),'t/h) ]-&&&

~ —co [—(1+S~ih~t/ h)]I/~
exp w'dm.

The limits of integration indicate that the path of integration is the entire
straight line passing through the points w = + [—(1+87' Vt/h) ]'~'. It can be
shown without difhculty that the value of the integral in the right-hand mem-
ber of the preceding equation isis'". Hence, we have the following approx-
imate expression for the function defined by the first of Eqs. (3):
Nq = 2Xs'"(1 + Smik't/I) "' exp [—Eo/(4) ')

+ [Eo ~ + 2iX'k(x + x )] /[4X (1 + Sx.ik'5/h)]]. (6)

The principal qualitative properties of the function @& can be obtained
readily from the approximation (6). Let us consider the absolute magnitude
of 4z. We have, approximately, by (6),
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~

@,(
= 2),7/i&2($ +. 64xi$4P/k2) —«4 exp [(I + 64'~),4(i/k2) —i

. [Eo —4).'k'(x + xg)' + 32xX'k(x + xo)Ep'~'E/k](4X') ' —Ep/(4X') ].
This shows that, for any fixed value of t,

~
+i~ has its greatest value near the

point determined by the equation

x + xo ——4xk 'Eo"~'t/k = (2ED/m)'"t.

At the point where ~%'i~ is a maximum we have approximateiy

~
@i

~

= 2$7fi~2(I y 64x2$4gi/k~) i~4

It is to be observed that we have approximately

+i(x, 0) = 2Am'" exp [—Vk'(x + xo)'+ ik(x + xg)EO'~'].

The chief qualitative properties of the function +I are now apparent.
When t = 0 the function is a packet of complex waves which is extremely small
except in the neighborhood of the point x= —xo. As t increases the packet
moves to the right with speed which can be estimated as equal to (2EO/m)'".
As the packet moves forward it spreads out, and the maximum absolute value
of the function +~ diminishes.

If, as we assume, Eo and Vo —Zo are large, and a is not too large, the func-
tions l3i(w') and a~(nr') vary only slowly in the neighborhood of the point
m=80"', which is the important part of the interval of integration w~~m
~ m 2. Hence, we can write, approximately,

4 2(x, t) = Pi(Ep)@i(—x, t), (7)
+5(x, t) = ng(Ep)%i(x —'a, t). (g)

According to (7), the function 9'2 is approximately, aside from a constant
factor, merely the function +& with the sign of x changed. We now perceive
the qualitative nature of the function + in the interval x (0. Initially we have
a packet of waves concentrated about the point x= —xo. As t increases the
packet travels to the right, gradually spreading out and diminishing in max-
imum absolute magnitude. The bulk of the packet reaches the barrier at
x=0 at about the instant t = (2EO/m) 'i'xo. Thereafter, the packet is mul-
tiplied by a nearly constant factor, and it travels indefinitely to the left,
gradually spreading out as before.

Eq. (8) displays the nature of the function 4 in the interval x)a. Initially
the function is small throughout the interval. In the neighborhood of the in-
stant t = (2EO/m) '~'xo the function begins to have appreciable values in the
neighborhood of the point x =u. Thereafter we have a wave packet moving off
indefinitely to the right, and gradually Battening out. As the function
n3(w') is small throughout the more important part of the interval of integra-
tion, the packet which moves to the right from the barrier is smaller than the
packet which impinges on the barrier from the left.

It is significant that %(x, t) first attains appreciable values in the interval
x &a when the bulk of the incident packet reaches the point x = 0. In this
connection it is interesting to compute the probability P(t) that the particle
be in the interval x)e at the instant t. It is easily found, on the basis of the
approximations already made, that
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where
0 = 2"'9.[hko:o —47rEo'"t][h' y 64or'X't'] "'. (10)

These equations show that, to within the accuracy of the qualitative discus-
sion given, the probability P(t) does not depend on the height or width of the
barrier, except through the constant factor

~

ao(Eo) ~'. In particular, the in-
stant of most rapid increase of P(t) is independent of Vo and a.

It remains to examine +(o:, t) in the interval 0 (x(a.
On the assumption that ka(Vo Eo)'r' is—fairly large, the function Po(u)')

is much larger, numerically, than no(w') throughout the more important
part of the interval of integration. It follows that 0'4 is larger than %3 in the
interval 0&x &a, except, possibly near the point x =a where both functions
are small. Hence, throughout most of the interval 0 &x &a the function 4
is nearly equal to %4.

Now, throughout the more important part of the interval of integration
exp [—kx(Vo —w')'r'] is a slowly varying function of w. Therefore, we can
write approximately,

W2

+4 = exp [—ko:(Vo Eo) ] Po(w') exp [—(w —Eo ) /(4X )
W1

+ iko:ow —2oritw'/h]rfw.

This equation shows that ~%'4~ is approximately a monotonic function of x
multiplied by a function of t. The fact that 0' is a continuous function of x,
together with the facts which we have already deduced concerning 0' in the
intervals x&0 and x&a, shows that the function of t must be small when
t=0, must attain appreciable values in the neighborhood of the instant
t = (2Eo/r)o) "'xo, and must ultimately become small again.

In conclusion a word should be said about two physica11y important limit-
ing cases which immediately come to mind. These are the cases in which we
have V0 ——0 and V0 ——~, respectively.

The present theory is in no way applicable to the case VQ = 0. In order to
treat this case we would have to consider cases in which the wave packet
contains elementary wave functions pertaining to values of B which are
greater than t/'0 ~ However, for the sake of simplicity, and in order to confine
the discussion to those problems that seem to possess the most interesting
features, such cases have been explicitly excluded from consideration in this
paper.

On the other hand, the theory does apply to th'e case in which t/'p = ~.
We need only observe what happens when we take VD greater and greater
without limit, E0 being left unchanged. It results that the magnitude of the
transmitted wave packet (measured in any convenient way) becomes smaller
and smaller, and vanishes in the limit. Thus, in the limit the wave function is
identically zero on the far side of the barrier, so we have perfect reHection. It
is interesting to observe that the perfect reHection is explained simply by the
vanishing of the magnitude of the transmitted packet, and not by the packet
suffering an infinite delay.


