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The dielectric behavior of colloidal particles is treated mathematically. The par-
ticles are assumed to be spheres and the electric double-layer is represented by a con-
centric conducting shell. Assuming that the conductivity of the shell is large compared
with that of the particle and that its thickness is small compared with the radius of the
particle, the relaxation time in sec. is given by 3&a/8mc )2d where ~ is the dielectric
constant of the material of the particle, a its radius in cm, c the ratio of the e.m. u. to
the e.s.u. , ) 2 the conductivity of the shell in e.m. u. , and d its thickness in cm. A distri-
bution of particle size is assumed, and by the use of Wagner's treatment of non-homo-
geneous media expressions are obtained for the capacity and power factor as functions
of the frequency. It is thus shown that the dielectric behavior predicted by Wagner for
an assemblage of spheres having different specific conductivities may also result from
an assemblage of colloidal particles of non-uniform size.

INTRoDUcTIQN

A CONSIDERABLE number of theories have been proposed in explana-
tion of the mechanism of power loss in liquid and solid dielectrics under

alternating electric stress. Some materials behave in a simple manner in that
the power loss can be calculated from the dielectric constant and the direct-
current conductivity. Many materials are not so simple and the theories
proposed for them follow one of two general lines. They consider either that
the material is made up of a mixture of substances which separately behave in
a simple manner, or that the material itself has an inherently complex be-
havior.

The theories dealing with the complex behavior of the material are based
on the assumption of anomalous conductivity, dielectric hysteresis, or, more
recently, the rotation of dipoles acted upon by viscous forces as treated by
Debye. '

Maxwell' treated the case of a non-homogeneous material consisting of
layers of simple dielectrics with different dielectric constants and conduc-
tivities and showed that an absorption current was to be expected. Grover'
has shown that this would result in a change of the dielectric constant with
frequency and a power factor different from that which would be calculated
using the direct-current resistance.

* Contribution No. 57 from the Experimental Station of E. I. du Pont de Nemours and
Company.

' P. Debye, "Polar Molecules, " Chemical Catalog Co. , p. 77, New York, 1929,
' J. C. Maxwell, "Treatise on Electricity and Magnetism, ' Oxford University Press, New

York, 1928.
3 F.W. Grover, Bull. Bur. Stand. 7, 519 (1911).
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By assuming the material to be made up of elements of different relaxa-
tion times, whose nature is no more specifically described, von Schweidler'
has shown that the dielectric behavior of certain materials can be explained.
Using the experimentally determined charge and discharge currents, he has
developed by means of the superposition principle (Hopkinson-Curie) ex-
pressions for the behavior of the power factor and capacity as functions of
frequency.

Wagner' has considered a distribution law for the time constants proposed
by von Schweidler and then has made use of this distribution in an extension
of Maxwell's theory' in which the medium is supposed to consist of spheres
of differing conductivities imbedded in a non-conducting medium. It should
be remarked that the radii of the spheres play no part in the expression for
the time constants of the material.

Murphy and Lowry have proposed a mechanism to explain power loss
in solid and liquid dielectrics. They assume (a) that the material contains in-

sulating particles on which are adsorbed ions of both charges, (b) that under

f = Eo c05 Q3t

Fig. 1, Model of colloidal particle.

the influence of a field an ion can move freely over the surface, (c) that the
ion cannot leave the surface until a critical voltage is attained, and (d) that
the concentration of ions decreases at increasing distance from the interface.
They consider that the particle alone is electrically equivalent to a pure capac-
ity and that the ions beyond the interface are equivalent to parallel capacities
with series resistances of different values, and therefore with different relaxa-
tion times. They then set up expressions for the capacity and power factor
of such a system of condensers, but the constants which are involved are not
determined.

THEORY

We shall here consider a mechanism somewhat similar to that of Murphy
and Lowry. The dielectric is assumed to consist of poorly conducting particles
surrounded by ionic atmospheres and imbedded in a non-conducting m.edium
We wish to consider the effect of the size of the particles upon the powe«ac-
tor and dielectric constant. For the purpose of mathematical treatment the
particles are represented by spheres and the ionic atmospheres by concentric
shells of a certain conductivity. The model is drawn in Fig. 1 and corre-

4 E.von Schweidler, Ann. d. Physik 24, 711 (1907).
' K. W. Wagner, Ann. d. Physik 40, 817 (1913).
' K. W. Wagner, Arch. Elektr. 2, 371 {1914).
7 E, J. Murphy and H. H. Lowry, J. Phys. Chem. 34, 598 (1930).
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sponds roughly to the accepted picture of colloidal particles possessing an
electric double-layer. The conductivity of the atmosphere surrounding a col-
loidal particle undoubtedly varies with the distance from the surface but it
is here considered to be lumped into an equivalent conducting layer of a cer-
tain thickness.

Wagner has treated a system of conducting spheres in a non-conducting
medium. Use will be made of this treatment, which gives expressions for the
capacity and power factor, by showing that our model is equivalent to a con-
ducting sphere the conductivity of which depends on the constants of the
model. By assuming that the conductivity of the spheres varies in a certain
way about a most probable conductivity, Wagner obtained expressions for
the power factor and dielectric constant of the system which are functions of
the frequency. These expressions give curves which are typical of a great
many dielectric materials. It is here shown that a similar sort of behavior
would be displayed by a dielectric containing spheres of different radii; each
surrounded by a conducting shell. Such a system corresponds roughly to the
structure of colloidal dispersions.

An outline of the argument to be used follows. The material is supposed
to consist of spheres as shown in Fig. 1. The central sphere of radius a~, has a
conductivity of X& and a dielectric constant, e&. The concentric shell has a
radius c~, conductivity X2, dielectric constant e2, and the outside medium has
conductivity and dielectric constant respectively, X3, and es.

The dielectric constant and conductivity are combined into a complex
conductivity to be represented by A A+i=us/47rc', where i is (—1)'~', c the
ratio of the e.rn. u. to the e.s.u. and co/2s. is the frequency. This sphere with
its shell is shown to be equivalent to a single sphere of complete conductivity
A. It is found that A is a function of Aq, A2, and the ratio a~/aq, and is inde-
pendent of the conductivity of the medium, A3. The fact that the equivalence
is independent of A3 makes it possible to substitute in Wagner's expression
for the conductivity of a single sphere, an expression which involves the con-
ductivities of the sphere and the shell and their respective radii. In this way
Wagner's work can be taken over directly. By the use of simplifying assump-
tions and approximations it is possible to get the equivalent conductivity in
terms of a single expression, and then by considering a distribution of particle
size, rather than a distribution of conductivity &s Wagner did, we obtain ex-
pressions for the power factor and the capacity as functions of the frequency.

We will now take up the argument in detail. Referring to Fig. 1, let the
potentials in the three media be Vy, where k = 1, 2, 3; the corresponding elec-
tric field strengths are then

EI, = —grad UA, .

We consider the sphere immersed in a uniform alternating electric field,
the direction of which is along the s' axis; the field is accordingly axially sym-
metric about this axis. Since there are no free charges in the various media the
V& must satisfy Laplace's equation

&2)
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and in virtue of the axial symmetry may, on choosing polar coordinates with
s axis as pole, be taken in the form

V„= g(A„„r"+ 83 r &"+")P„(cos0)
n=p

where P„(cos e) is the nth Legendre polynomial.
The boundary conditions to be satisfied by the V3 are as follows: (a) the

field must become uniform as r~333, i.e. , E3~(0, 0, E3 e'"'). But this requires
that

231 = —E3e' ', A3„= 0(23 ) 1)

to which we may add the normalizing condition

A3p ——0.

(b) Vl can have no singularity at the origin, whence

(4)

for all n (c) T. he potentials must be continuous at the boundaries r=a„a2
of the spherical shell, i.e. ,

V3(132) V2(132) V2(131) . Vl(131)

Finally, the normal component total current

ZMCg

iI, = )I + EI, = AyEy
4xc'

must be continuous at the boundaries, i.e. ,

BU3
A3

Br

BU2
A2

Br

BV2
A2 for r=a2

Br

BUg
for r= a~

Br

(9)

Conditions (4)—(9) are readily solved for the constants A3„, B3„ofEq. (3);
since we are only interested in the region exterior to the sphere we only write
down the results referring to this medium:*

(A3 A2)(2A2 + Al)82 + (A2 Al)(A3 + 2A2)&l
~31 ag'A3g

(2A2+ Al)(2A3+ A2)a2'+ 2(A2 —A. l)(A3 A2)01'

83„——0 (23 8 1).

Following Wagner we ask whether it is possible to describe this field as
due to a single sphere of radius a2 and complex conductivity A immersed in

* These results as well as (11) and (12) below may be taken directly from J. C. Maxwell,

"Electricity and Magnetism" 3rd Ed. Vol. 1, pp. 437—438 (Oxford 1892) (in particular, from

Eqs. (6), (10), and (11))on noting that the mathematical problem here involved is equivalent

to his on replacing the (real) specific resistance k by the reciprocal of the complex conductivity

A.
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a medium of complex conductivity. Under the same conditions as those for
the double sphere the potential exterior to the single sphere will be given by

ag' A3 —A
I/'3 = ~3i r+ — —. cos0.

2x3+ x

Equating the two expressions (3) and (11) for V3 and solving for A we find

(2A2 + Al)a2 2(A2 —Ag)ag
A = Ag.

(2A2 + Al) a2 + (A2 Al) al
(12)

(13)d/a «1 and a~ ——(a, + d)

(B) that A2 is large compared with Aq or

The double sphere is therefore equivalent to a single sphere whose con-
ductivity is given by the last equation, expressing the conductivity of the lat-
ter in terms of the conductivities and radii of the former. This equivalence is
perfectly general and does not depend on the medium surrounding the spheres
since A3 no longer appears. Wagner derived expressions for the capacity and
power factor of an assemblage of single spheres and from the above argument
we see that exactly the same electrical behavior results from an assemblage of
spheres with shells. We could at any point in Wagner's discussion substitute
for the conductivity of his single spheres by means of Eq. (12).

For our purposes, however, it is convenient to introduce at this point
some simplifying assumptions. We assume (A) that the conducting shell is
thin compared with the radius of the sphere and that its thickness d is con-
stant, i.e.,

On dividing numerator and denominator of Eq. (12) by 2A2a&, substitut-
ing from Eq. (13) for a2' and expanding, neglecting higher powers of d/a&,
and dropping the subscript of a, we have

(1 + A g/2A g) (1 + 3d/a) —(1 —A g/Ag)
A = A2.

(1 + Ag/2Ag) (1 + 3d/a) + —', (1 —Ag/A2)

Expanding and neglecting the product of the small quantities A&/A2 and
d/a, we have

3Ay/2 + 3dA2/a
A =

3/2 + 3d/a

A = Aq + 2dA2/a.

(16)

(17)

We now have this simple expression in place of the more complicated Eq.
(12) giving the conductivity of the equivalent single sphere and will use it to
substitute in Wagner's equations. He gives for the relaxation time of the
single sphere

e+ 2&3

4s.c'P + 2Xg)
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For the relaxation time of our model we obtain by the indicated substitution

~, + 2d/a + 2e3
T (19)

4~c'(Xi + 2dk2/a + 2X3)

Further simplification is obtained by following Wagner in assuming that
e&

——e3 and in addition that the conductivity of the shell in relation to the
sphere is so large that X~ can be neglected with respect to 2X~d/a and that
s2d/a«s~. We have, then

36' 8
T =

S~c9,28
(2o)

for the relaxation time of a non-conducting sphere surrounded by a thin con-
centric conducting shell ~

*

Now in order to interpret the experimental facts for many materials it
has been shown by von Schweidler' and others that it is necessary to assume
that the materials are made up of an assemblage of elements having different
relaxation times. Since the relaxation time in Wagner's expression, Eq. (18),
does not depend on the radii of his spheres, he considers that the variation
in T is due to a variation of conductivity. As the radius appears in our expres-
sions for the relaxation time, Eqs. (19) and (20), we shall consider the varia-
tion in T to be due to a variation in the radius. We thus depend on the varia-
tion of particle size rather than inhomogeneity in particle constitution for the
necessary distribution of relaxation times.

The next step is to choose some function to represent the distribution of
particle size. Wagner gives reasons for assuming that the conductivities of
the spheres differ in such a way that the relaxation times are distributed ac-
cording to a logarithmic error function and then uses the analysis of his
earlier paper in which such a distribution was taken. Since there is no gen-
eral function expressing the distribution of particle size in colloidal dispersions
we will choose a function which, while representing approximately the dis-
tribution in typical colloids, gives the same distribution of relaxation times
as used in Wagner's treatment. Such a function results if we assume that the
volume per cc occupied by spheres of radius between a and c+da is given by

Vb 1
dv e

—(blogatao) g~
(~)"' a

(21)

where U is the total volume per cc occupied by the spheres and b is a constant
which determines the density of grouping about a most probable radius ao.
Curves illustrating this function are given in Fig. 2. The general shape is
characteristic of the distribution found for small particles. '

* The more complete theory of the relaxation times for our model leads to two such times
which in the approximation d/ad+1 here considered are given by Eq. (20) and ~/47rc X. But the
effect of this second term is negligible in comparison to that of the 6rst in our case, for in addi-
tion to being short in comparison with (20) it appears with an initial amplitude of relative
order d/3a.

See for example, R. P. Loveland and A, P. H. Trivelli, J. Franklin Inst. 204, 193 (1927);
S. Odin, Chap. 58, "Colloid Chemistry, " J, Alexander, Chemical Catalog Co. , New York; J. B.
Nichols, Physics 1, 254 (1931).
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We wish to show that the particle size distribution, Eq. (21), gives the
time constant distribution assumed by Wagner. Eq. (21) can be written thus

dv = (Vb/pl"")8 "'""'dlog a/s (22)

which, on substituting for a in terms of T by Eq. (20), becomes

dU, = (Vb/m'")e "'" ~ o"d log T/Tp (23)

Wagner's Eq.
" (44)' gives for the distribution of the volumes occupied by the

single spheres of different time constants.

3dV, = (Kb/pr ~ )e ~ "Prtr'~'d log T/Tp (24)

where K is a constant (Nachwirkungskonstant)* appearing in his first treat-
ment of a distribution of time constants' and is defined as follows: When a

2.0

O

ci)

0.5

2 a]a, 3 4

Fig. 2. Assumed volume distribution of particle size,

field is impressed on an imperfect dielectric the electric displacement after a
long time, D, is greater than the initial displacement, Dp, and is given by

D„= Dp(1 + K) . (23)

Comparing Eqs. (23) and (24) we see that Wagner's equations may be ap-
plied to our case if we substitute 3 V for k. In his treatment the capacity at
any frequency is given by C+AC where C is the capacity at infinite frequency.
Making the substitution for k, his equation becomes

DC 3Vb, , r ",, cos (2b'sp —1)N,
Zs (26)

~1/2 COS I
and for the power factor, tan P,

(
hC 3Vb, , ('" e ~ cos 2b'spg1+ tan P = e

—"'o'
~

dm.
C ~1/2 COS Q

Here
s = log T/Tp, sp ——log Tp, and s + zp = p4

(2&)

* See "Elektrophysik der Isolierstoffe, " A. Gemant, Julius Springer, Berlin, 1930, p. 95,
for amplification of the meaning of this constant and also on the pages following for calculation
of the relaxation time by a method similar to Wagner's.
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Tables and curves illustrating these equations are given in Wagner's
paper. ' In Figs. 3 and 4 are reproduced his curves for capacity and power fac-
tor as functions of frequency.

It is of interest to see the order of magnitude to be expected for the value
of To. Eq. (20) becomes

Tp = 1.33(s/d)ey(1 j'Ag ) 10 (28)

where ) 2' is expressed in reciprocal ohms, If we assume the electric double-
layer' of the order of 10 cm in thickness, a particle radius of 10 ' cm, and
a conductivity of 10 ', then the relaxation time will be 1.33 &(10 '. We should
not expect the conductivity to be greater than that of a strong acid in aqueous
solution, i.e. , of the order of 1 and it will probably be less than that. With this
value of To, a decrease in the dielectric constant and an increase in the power
factor should be observed in the range of the high radio frequencies, i.e. ,

1.0xK

0,8

0.6
c

0.4

0.2

'le-O. OS W
&b-o

b-0
'-v = .08—
b -0.2

0 1 2 4 5
GJ Tp

Fig. 3. Capacity increment as a function of ppT0.

0.5xK~
O.4
0.3

oU 0.2

0. 1

g =o.os
l 3

(A) Tp

Fig. 4. Power factor as a function of ppTp.

at about 10 . In many cases the particle size may be larger than 10 ' cm,
and as we see from the above expression, the relaxation time increases with
increasing particle size, so that for particie sizes of the order of 10 4 cm the
whole region of anomalous behavior would fall in the range of frequencies in
which measurements can easily be made.

In some cases the relaxation time may be so short that it will be experi-
mentally impossible to determine C, the capacity at infinite frequency. In order
to make use of Eqs. (26) and (27) this quantity must be known. However, it
should be possible to calculate C from the dielectric constants of the medium
and the material of the spheres. Methods of doing this are discussed by
Piekara. "

It should be pointed out that the assumptions made in simplifying Eq.
(12) place certain limitations on the applicability of the simple expression

' T. Svedberg, "Colloid Chemistry, " p, 195, Chemical Catalog Co. , New York, 1924.
'0 A. Piekara, Phys. Zeits. 31,579 (1930).
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for the relaxation time which results, Eq. (20). For small particle sizes of the
order of 10 ~ cm it has been estimated that the thickness of the ionic layer
is of the same order as the particle radius. "We have assumed that d/a is
less than one, so that we can apply our expressions only to the larger par-
ticles. Since we have assumed the particles to be relatively non-conducting the
results will not be applicable to dispersions of colloidal metals. We have
tacitly assumed in expression (14) that

cue~/4xc9. 2 && 1

or in using Eq. (20) we must have

(2/3)cuTd/a « 1.

We have assumed d/a small so that the expressions are valid for a frequency
as high as 1/T and for frequencies above this the validity will depend on the
value of d/o.

Speculations of a qualitative nature have often been made as to the eRect
of adsorbed ions on the alternating current losses in liquid and solid dielec-
trics and of the eRect of colloidal particles on these losses in transformer oils.
With the aid of Eq. (20) we can obtain quantitative expression for the fre-

quency at which the maximum power loss is to be expected for one model.
For other spherical models with different conditions of shell thickness, con-
ductivity, etc. , a similar procedure might be undertaken to obtain the relaxa-
tion time by use of the general Eq. (12) and substitution in Wagner's expres-
sion for the relaxation time, Eq. (18).In view of the impossibility of obtaining
a rigorous mathematical representation of the form of the conducting sur-
faces, their conductivities, etc. in the case of solid dielectrics and of the lack
of knowledge of the nature of the electric double-layer in colloids it does not
seem worth-while to undertake the expression of the relaxation time for more
general cases of the spherical model. It is evident from the expressions ob-
tained for the model treated in detail that in addition to the recognized effect
of the volume concentration and conductivity of impurities on the dielectric
behavior, the eRect of size is also of importance in certain cases.

In addition to providing an interpretation of dielectric behavoir, this
analysis provides means for investigating colloidal structure. For example an
indication of the degree of uniformity of particle size could be obtained from
the shape of the power factor vs. frequency curve, or the position of a maxi-
mum in this curve would give the most frequent relaxation time giving
definite relationship between the particle radius, the thickness of the ionic
atmosphere and its conductivity.

In conclusion one of the authors (J.B.M. ,Jr.) wishes to express his appre-
ciation of the encouragement and helpful criticism which he has received
from Dr. E.O. Kraemer during the preparation of this paper.

"A. Tiselius, Diss. , Upsala, 1930.


