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The theory of the double Stern-Gerlach experiment is developed where the rate
of rotation has a maximum at t =0 and goes gradually to zero at 5= + ~. The nega-
tive results of the experiments of Phipps and Stern are completely accounted for. The
same analysis is applied to those collision phenomena where only two quantum states
need be considered, and where their difference of energy, AE, is so much smaller than
the relative kinetic energy of the two systems that the positions of the centers of
gravity of the two systems may be regarded as time parameters. If f(t) =2m/h times
the matrix element of the perturbation, and if 2 =1"„f(t)dt,then the transition proba-
bility is

sin A 2

f(])e2&i( ~&/It) td]
A

for the cases investigated, and this probably holds for all experimental cases.

I. DOUBLE STERN-GERLACH EXPERIMENT

1. Introduction

A BEAM of alkali atoms all having the same spatial quantization may be
obtained by the Stern-Gerlach experiment. The question arises, if such

a beam of atoms is sent through a weak magnetic 6eld which is rapidly ro-
tating, will the spatial quantization remain unaltered, or will transitions
occur which will separate the beam when it is subjected to a second Stern-
Gerlach experiment? This question has been examined both theoretically' and

experimentally. '

-Tr/g, 0
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Fig. 1 ~ Rate of rotation of magnetic field.

In view of the lack of agreement between the theoretical calculations of
Guttinger and the experiments of Phipps and Stern, it is of interest to re-
examine the theory of transitions in spatial quantization. An obvious im-

provement is to replace the discontinuous rate of rotation of the magnetic
field used by Guttinger, curve u in Fig. 1, by a continuous rate of rotation,

* National Research Fellow.
' P. Guttinger, Zeits. f. Physik 73, 169 (1932).
2 T. E. Phipps and O. Stern, Zeits. f. Physik 73, 185 (1932).
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such as curve b in Fig. 1. In the following section the analysis is carried
through for such a rotating magnetic field. The results are in complete agree-
ment with experiment in predicting no transitions in the particular arrange-
ment of Phipps and Stern where the magnetic field rotates through an angle
of 2m. .'

2. Analysis

Since the only dynamical variable of an alkali atom which is appreciably
aA'ected by the weak magnetic field, JI, is the electron spin, the Hamiltonian
may be written simply as II o., where 0 is the magnetic moment of the spin.
This spin variable can have only two quantum states, so the wave function
may be written as the linear combination / =A(t)p +B(&)pp, where 4., 4p
are the Pauli spin functions with reference to an arbitrary axis. In particular,
if we choose this axis to be parallel to the magnetic field, which makes an
angle 0 with the fixed s axis, these functions will satisfy the wave equations

(EI o —hug = 0

(H o. + hv)fp ——0

where v is the frequency of the Larmor precession. By means of the transfor-
mation relations which relate P, fp to the spin functions P ', Pp' referring to
a fixed s axis, namely'

= cos (8/2)P„' —i sin (tl/2)fp'

Pp = —i sin (tl/2)P ' + cos (8/2)gp',

we see that P, Pp are related by

'(e/2)6
'(~/2)4' .

The exact wave equation is

~
~

h d
Ig &2wivtg + Q p

—2xivtf
I

—0
2xi dP

(2)

Corresponding to our knowledge that the spin is initially antiparallel, say, to
the magnetic field, this equation is given the boundary conditions

(4a)

(4b)

The answer to our problem, namely the fraction, I', of atoms which change
their spatial quantization upon passing through the rotating field, will be
given by

~ The observed change of quantization caused by impurities may be interpreted as caused
by an exchange of electrons having opposite spins.

W. Pauli, Zeits. f. Physik 43, 601 (1927).
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Upon applying the relations (1) and (2) to the wave Eq. (3), we obtain'

Ci = 8
2 7I skV fC

2
(5a)

8
~2mid, v tC2 1

2

where Av = 2v. Elimination of C2 leads to the second order equation

0 2

Ci + (2z ihv —8/8)Ci + —Ci ——0.
2

(5b)

(6)

In order that the results of this analysis may be legitimately compared with
an actual experiment, 8 and g must be continuous functions of time. Our
choice of 8 is limited, however, to such functions that render (6) reducible to
a known type of differential equation. Such a function is

8 = 2z.vo sech 7rt/r, (&)

the plot of which is b of Fig. 1. The constants vp, T have been so chosen that
the total change in 0,

58 = )l 8dt = 27rvor,

is that produced by a constant rotation of frequency vp and of duration 7..
This function, together with the transformation

z = [tanh (~t/r) + 1/2],

reduces (6) to the hypergeometric equation

d2Cg dCg
z(1 —z) + Ic —(a+ b+ 1)zI ——abCi = 0

de Js

where a= —b =68/2' and c= —,'+irDv. As t goes from —co to co, z goes
from 0 to 1. The general solution of (8) which is defined in this range is

Ci ——AF(a, b, c, z) + Bz' 'F(a + 1 —c, b + 1 —c, 2 —c, z) .

In order that the boundary condition (4a) be satisfied, we must set A = 0.
Using Eq. (5a) we find that the boundary condition (4b) is satisfied when

(A8/2z-)8

The desired transition probability is thus given by

i18/2z.
F = — F(a+ 1 —c, b+ 1 —c, 2 —c,

(2
1)

lN= sin' sech' (~rAv).
2

' This direct method of obtaining this simultaneous set of equations was suggested to the
authors by Professor H. P. Robertson.
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3. Discussion

We have found the fraction (9) of electrons which change their spatial
quantization when subjected to a rotating magnetic field of the type (7).
It is reasonable to expect that any experimentally realizable rotating mag-
netic field of the same general type as (7), Fig. ib, will lead to the same gen-
eral results.

The fraction, P, is zero whenever the total rotation is a multiple of 2m. .
In the experiment of Phipps and Stern, where the total rotation was 2~, no
transition was observed. Even if their rotation had not been quite 2z the
"sech" in (9) would probable have given a result with their apparatus too
small to be observed.

Another equally surprising result is, that if we multiply 8 by an arbitrarily
large number, we do not change P, apart from the sine factor.

The dependence of P upon the duration of the rotation 7. and upon the
difference in energy of the two states, AB=2hv, is of a type to be expected
from previous studies on transitions. ' The decrease of P with increasing
values of the product ~Av is much more marked than as found by Guttinger.
A comparison is given in Fig. 2.

I.Q

Q.g

0.2

0.0 2.00.4. 0.6 l.2 I.Sxhv'~
Fig. 2. Transition probabilities. Curve s, P =1/ [1+(rnvl']; curve b, P =sech' rrrnv.

II. RELATED CoLLIsIQN PHENQMENA

The Born-Dirac collision method has been applied with success to numer-
ous high velocity collision problems. No such general method has been found
for collisions which involve low velocities. The best that can be hoped for at
present is to have a variety of techniques each restricted to a limited class
of collisions. Such special techniques are being rapidly developed.

The most obvious procedure is to use the Born-Dirac method with modi-
fications which reduce the perturbations by keeping the colliding systems
apart. One method is to consider only grazing incidences. Another is to use

' C. Zener, Phys. Rev. 38, 277 (1931).
7 O. K. Rice, Proc. Nat. Acad. Sci. 17, 34 (1931).
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as the initial solutions those corresponding to elastic collisions. ' Even then
the perturbation method is not applicable if the eigenwert of the initial state
is very close to an eigenwert of another state.

Fortunately in this case a simplification is introduced by the legitimacy
of considering only the two states which are in close resonance. The problem
may then be reduced to the solution of two simultaneous equations of the
second order in the coordinates of the centers of gravity of the two systems. '
These can at present be handled only by a perturbation method starting
from the adiabatic solutions. This is, however, exceedingly cumbersome.

These complications may be avoided in those cases in which the differ-
ence in energy between the two quantum states is small in comparison with
the relative energy of translation. Ke are then justified in treating the posi-
tions of the centers of gravity not as dynamical variables but as parameters
dependent upon time. This is in the spirit of the pioneer work of Kallmann
and London. "The problem is then reduced to the solution of two simultane-
ous equations of the first order.

The initial wave equation is of the form

h d
Ho(x) + U(t, x) — —IC&(t)e"*''s '""fq(x)

2mi dt

(t)e2wi(E. /A)tg ~(x) I
—0 (10)

IIO is the unperturbed Hamiltonian for the internal coordinates x. V is the
perturbation energy. Since the relative coordinates are here being regarded
as definite functions of time, V is a function of t and x. The wave functions
P&, if' satisfy

(IID —E„)1t„=0.

The two simultaneous equations are obtained by multiplying (10) by P&*

and by $2* and integrating.

Here

ffe 2+0 d v tC—
P'~2xihv tC2 J 1 ~

2m

f(t) = — Q, U(t/x)fn*dx
h

(11a)

(11b)

and Av = (Z, —Zu)/h. We must specify that U be such that (rt
~

U~ rt) =0.
The analysis of the preceding section has shown that this set of equations

can be solved exactly if we give f the form

f(t) = fp sech (7rt/r) . (12)

' C. Zener, Phys. Rev, 37', 556; 38, 2-77 (1931);P. M. Morse and E. Stueckelberg, Ann. d.
Physik 9, 579 (1931).

O. K. Rice, Phys. Rev. 37, 1187; 1551; 38, 1943 (1931);F. London, Zeits. f. Physik '74,

143 (1932).
H. Kallrnann and F. London, Zeits. f. physik. Chem. 28, 207 (1929).
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In particular, we have seen that the solution which satisfies the boundary
conditions

gives for the asymptotic value of the transition probability

P =
l
Ci(~)

l

' = sin'2 sech' (7rrhv),
where

t dt.

This may be written in the more general form

sin A
P ~ f(()e2»ikv tdf (13)

If we retain only the first term in the expansion of sin A, we obtain the I'
given by the perturbation method of setting C2 = 1 in (11a).This simple rela-
tionship between the exact solution and that obtained by the perturbation
method suggests that (13) is not con6ned to the particular f(t) given by (12),
but is the general expression for all non-singular f's, i.e. , all functions which
are continuous and whose first derivatives are continuous. This is borne out
by the fact that for Av = 0, it is found that for any f, P is g'iven by sin' A.
This generalization, applied to (9), says that the factor sin' (69/2) is present
for all experimentally obtainable 8's.

As an example, let
f(1) = f,/(1 + s.2P/r2)

Then (13) gives
P = sin' (~f0)e "~"~».


