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The theory of a symmetric rotator which in addition to the usual three degrees of
rotational freedom has about the axis of symmetry also a degree of torsional freedom
between two of its principal parts, is treated quantum mechanically. The potential
energy is taken to be expressible in the form: V=L(1—cos m¢’) where L is propor-
tional to the restoring torque, ¢’ is the angle of displacement, and m the number of
minima of the potential energy curve as ¢’ increases from zero to 2=. The Schrisdinger
equation is found to be separable into two differential equations, one being the quan-
tum mechanical equation for an ordinary symmetric rotator, and the other being of
the form of Mathieu's equation: d?2M/dx?*+ (a+16¢ cos 2x) M =0 in which a is pro-
portional to the energy parameter of the oscillator, ¢ proportional to the restoring
torque, and x to ¢’. It is found that the solutions to this equation must satisfy the
condition: M(x—mw) = (exp—2miKA, /A,) M(x) where K is the quantum number of
angular momentum about the axis of symmetry, 4.’ and 4. the moments of inertia
of the lower part of the top and of the whole of the top respectively about the axis of
symmetry. This ordinarily demands a general non-periodic solution to Mathieu’s equa-
tion which, however, degenerates like the ordinary Mathieu functions to an exponen-
tial function as ¢—0. A qualitative discussion is given about the manner in which the
energy states in the limiting case where ¢=0 go over into the other limiting case
where ¢= », and the calculation of the intensities and the selection rules for the rota-
tor are finally determined where ¢ =0 and where ¢= ». These it is believed will also
be valid at least in first approximation in the neighborhoods of these limiting cases

" where g no longer is quite zero and not quite equal to infinity.

HE problem of the symmetric rotator has been subjected to detailed
quantum mechanical treatment by several writers' and expressions de-
rived for the energies of various quantum states as well as the probabilities
of transition from one state to another. An interesting modification of this
is one where in addition to the three degrees of rotational freedom there exists
also a degree of torsional freedom between two principal parts of the rotator
about the axis of symmetry. This seems of interest especially since certain
molecules, the simplest of which probably are ethylene (C;H.) and ethane
(CyHs), are thought to behave in this manner.
The motion of the top is best described by the aid of the Eulerean angles
0, ¢ and ¢ where 0 denotes the angle between the space fixed axis z and the
axis of symmetry 2z’ of the top, ¢ and ¥ are respectively the angles between
the line of nodes and the x’ axis and the x axis. In this case where the upper
part of the top may twist with respect to the lower part, two angles, ¢: and
¢, are required, denoting respectively the angles between the line of nodes
and the x’” axis fixed in the lower part of the top and the x’’ ’ axis fixed in the

! D. M. Dennison, Phys. Rev. 28, 318 (1926); F. Reiche and H. Rademacher, Zeits. f.
Physik 39, 444 (1926); F. Reiche and H. Rademacher, Zeits. f. Physik 41, 453 (1927); R. de L.
Kronig and J. J. Rabi, Phys. Rev. 29, 262 (1927); C. Mannebeck, Phys. Zeits. 28, 262 (1927).
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upper part of the top. For convenience of calculation the following change of
variable is made:

S At A g (1)
A0+ 40 Y

where 4,” and A.’" are the moments of inertia of the lower and upper parts
of the top about the axis of symmetry. Taking 4, as the moment of inertia
about the x” axis and letting 4,=4,"4+A4,”’ one may write the kinetic energy:

2T = A,(6* + ¢2sin?0) + A.($ + 2 cos? 0 + 20g cos 0) + (4,4, /A.)¢'*. (2)

Unlike the symmetric rotator, the potential energy will not here be equal
to zero, but may be expected to have approximately the form:

V = L(1 — cos m¢’)

where L is proportional to the restoring torque and m denotes the number
of minima of the potential energy curve as ¢’ increases from zero to 2.

Fig. 1.

The Schrédinger equation, when obtained from the kinetic energy func-
tion by methods which are well known? and which are tantamount to using
the Laplacian in generalized coordinates, becomes:

02U/362 + cot 09U /30 + (A /A, + cot? 0)d*U/d¢?

— (2 cot 8/sin? 6)92U/dddy + (1/sin? 0)32U/ay? (3)

+ (4,4./4.4.)3°U/0¢"t + (8724 ./ h*)(E + L cos m¢)U = 0.
As in the problem of the symmetric rotator, ¢ and Y occur only as ignor-

able coordinates and if we put:

U = O0)ei 0K M (mg'/2) @
where ©(0) and M (me'/2) are functions of 8 and ¢’ alone and where because
of the single valuedness of U, N and K must be integers or zero, it is found

2 E. Schrsdinger, Ann. d. Physik 79, 748 (1926).
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that (3) consists of two parts, one depending only on 6 and another depending
only on ¢’. As is well known this condition can exist only when each part is
a constant, say 8m24,W;/k?. Equation (3) may now be separated into two
differential equations, one a function only of 6 and the other a function of ¢’
only. These two differential equations are:

4°0/do* + cot §d0/d8 — [(N — K cos 0)?/sin20]0 + (J(J + 1) — K20 = 0 (5)

where:
JU 4+ 1) — K2 = 8r24,/h2)(E — W) — K*A,/4,
= (8n24 ,W/h?) — K24 ,/4, (6)
and:
d*M(x)/dx* + (a + 16q cos 2x) M (x) = 0 (M
where:

& =me')2, a = 32mAS AW/ Am2h2, q = 2m2A, A L/ A w2k, (8)

Solutions of the differential equations.

A. The solution to equation (5) is just that for an ordinary symmetrical
rotator and has been carried out by Reiche and Rademacher, and Kronig
and Rabi who by introducing the substitutions:

s=|K+M|,d=|K—M|,t =1 — cos6),® = @i2(1 — f)sF,
were able to write equation (5) in the form of the hypergeometric equation:
(1 — OF" + [y + (a4 B + DiJF’ — a8F = 0 9
where:
y=1+d, a=@d+9)/2+T+1, B=(d+ /2.
The solution to (9) is the hypergeometric function:
F =1+ (af/7)t + (ala+ DB + 1)/2v(v + D)2 + - - -

which in order that the wave function: remain everywhere finite demands

that @ be equal to a negative integer,a= —p, (=0, 1,2, - - - ). To obtain the
equation for the energies, one solves equation (6) which gives:
W = (h?/8x)[J(J + 1)/4, — K*(1/4, — 1/4,)]. (10)

B. Equation (7) is Mathieu’s equation in the usual form. The common solu-
tions are those which have a period of 27 in x and these are known as Mathi-
eu’s functions, denoted by ce,(x, ¢) and se,(x, g). Condon?® has found that
equation (7) is just that for the physical pendulum in the quantum mechanics
and that in this case the required solutions were those where:

M(x 4 7) = M(x)
and that these were the Mathieu functions of ever order. Similarly in treating

3 E. U. Condon, Phys. Rev. 31, 891 (1928).
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the problem of rotation in diatomic crystals, Pauling* found the quantum
mechanical equation to be of the form (7) where now the required solutions
satisfy:

M(x + 27) = M(x)

a condition which is fulfilled by the Mathieu functions of both even and odd
order.

There now remains to investigate which of the solutions M (x) are the re-
quired ones in our cases. We have the condition to comply with, that the
wave function must be single valued, i.e., when the original configuration of
the system has been restored, the wave function must assume its initial
value. This interests us only in so far as it concerns the variable ¢’, defined as
the difference between ¢, and ¢; which describe the positions of the lower and
upper parts of the top relative to the line of nodes. We must inquire how the
original configuration of the rotator may be restored by variation of the
angles ¢; and ¢,. This may be accomplished by letting ¢; and ¢, independently
increase by an integral number (r and o respectively) of times 27. The neces-
sary and sufficient condition for single valuedness is, therefore, using equa-
tion (1):

Ui, ¥, ¢ + 2x(r A + 0d4.”)/A,, &' — 2x(r — o)} = U, ¥, ¢, ¢)

where by (4) this leads to the requirement:
M[(m/2)(¢" — 2m(r — 0))] = ¢ 2rif G444 DA (mg'/2)
Since 4.'+4."" =4, and e 27K =1 this becomes:
M[(m/2)(¢" — 2m(r — 0))] = e2mKE—04 140 (1mg'/2). (11)

Now 7 and o were taken as integers, consequently their differences, 7 —o
must be integral, and since (11) must hold for all values of 7 —o¢ we may with-
out loss of generality set this difference equal to unity, in which case we may
write:$

M[(m/2)(¢ — 2m)] = e ?miKA/14: M (mgp'/2) . (12)

In general this demands general and non-periodic solutions to Mathieu’s
equation which in the limiting case where ¢=0 degenerate, as do the ordi-
nary Mathieu functions, to exponential functions. When ¢=0 Mathieu’s
equation has solutions:

M(z) = et (13)
a condition which when inserted into (12) gives, after some simplification:
m(a)? — KA )JA, =5 s= - —r, -+ —2,—1,0,1,2,---r, - .

4 Linus Pauling, Phys. Rev. 36, 430 (1930).

5 Solutions to Mathieu’s equation which must conform to conditions similar to (12) have
long been known and been of importance to astronomers. Whittaker and Watson (Modern
Analysis, p. 413) briefly treat solutions subject to the condition: F(z+2x)=(exp 2wu) F(z)
where u0. The equations give to a first approximation the departure of an orbit from a
periodic orbit, which is certainly unstable unless the exponents u occurring in pairs of opposite
sign, are purely imaginary (Analytical Dynamics, E. T. Whittaker, 3rd ed., p. 397).

2
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Hence the solutions to Mathieu’s equation required in our case become, when
q=0,

M(x) = e(2im)(s+KA/[Ay) (14)

An interesting case arises where 4,' =A4,"" which occurs in such molecules
as ethane where the upper and lower parts of the top are identical. When this
is so the condition (11) becomes:

M[m/2)(¢" = 2x(r — 0))] = e ED "M (mg'/2) (11)

which by inspection reveals that the required solutions are of two kinds,
namely, such that:
M(x + mm) = + M(x), (15)

the plus sign being taken for K even, and the minus sign for K odd.

To the knowledge of the writer, tables of such solutions to Mathieu’s
equation have never been computed, but in analogy to the ordinary Mathieu
functions we may expect them to degenerate to sin #x and cos nx as g—0
where because of (11’), z need no longer be an integer. Letting ¢=0 in (7) it
is quickly seen that the solutions satisfying the conditions set forth in (11")
and (15) are the following:

K even:
17 e:t2xi/m’ ei4xi/m, eiﬁzi/m’ .

K odd:

eixi/m’ eisxi/m, eiExi/m, cee (14/)

This suggests the necessity in many physical problems of finding solutions to
Mathieu’s equation which are not the usual ones periodic in x by 7 and 2,
but more general ones periodic in x by mm, where m is an integer greater than
2.

As has been pointed out by other writers, there are two limiting cases of
Mathieu’s equation, namely; when ¢ =0 where it is the quantum mechanical
equation for a simple rotator; and secondly when «x is small so that higher
order terms in the expansion of the cosine may be neglected, where it becomes
the wave equation for the harmonic oscillator. In the first instance the energy
is given by the expression:

Wi = (25 + 2KA,//A,)2h?A,/32724,/ A, (16)
while in the second case the energy is of the form:
Wi = (j+ 3)wo. , (16")

With the aid of Goldstein’s tables® for the ordinary Mathieu functions, Con-
don has made a chart showing how for the physical pendulum (i.e., where
m=1) the levels in one limiting case go over into the other limiting case. In
the problem of rotation in diatomic crystals (i.e., where m =2), Pauling has
pointed out that where x is small so that higher orders of x in the expansion

6 S. Goldstein, Trans. Cambr. Phil. Soc. 23, 303 (1927).
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of cos 2x in Eq. (7) may be neglected and one effectively has the harmonic
oscillator to deal with, there is a two-fold degeneracy of the levels, i.e., each
level is double, one component corresponding to vibration about the position
of equilibrium 6 =0, and the other to vibration about the position of equilib-
rium § =7. When ¢ =0, and one has free rotation, then as is well known there
exists also a two-fold degeneracy of all the levels except the first one. Pauling,
also using the tables of Goldstein, has traced how as ¢ becomes different
from zero and this latter degeneracy is removed, the levels go over to the
double degeneracy of the other limiting case.

This we should like also to do here for cases where m >2, but are con-
fronted by two difficulties. The first of these arises when we consider the
general case where the two parts of the rotator are not alike, for as we have
seen, general solutions to Mathieu’s equation are then required. If we con-
sider the case where both parts of the rotator are identical, we are still con-
fronted with the fact that tables of the functions which degenerate to (14')
as ¢—0 have never been computed for cases where m>2. While it is there-
fore not at present possible to give charts which are quantitatively right for
m>2, one may nevertheless, show qualitatively how this transition takes
place from the one extreme where ¢=0 to the other extreme where ¢ is in-
finite. For simplicity we consider m =3, but the reasoning may equally well
be made to embrace higher values of m. When m =3, functions (14’) become:

K even:
1, eiZm/:}) ei4:cz/8’ ei2m, ..

with the characteristic values:
0, 452/8x24,, 1642/8x2A,, 364%/8x%4,, - - -
K odd:

i/3 i pkbxi/3 ., .
ei“/,ei“,e sxif ,

with the characteristic values:
h2/87r?Az, 9h2/87r2Az, 25h2/87r2A2, cee

If g0, the corresponding functions are in the first place solutions of
Eq. (7) in the range from zero to 3w with the boundary conditions (15). The
equation, however, has coefficients periodic in the period , so the solutions
must be solutions of Eq. (7) in the range zero to w with exponents 0, +27¢/3
for K even, and +mi/3, mi for K odd. Since the equation is real, solutions
with exponents =+ 27¢/3 are conjugate complex functions with the same real
characteristic values; likewise the solutions with exponents +7/3 have the
same real characteristic value. The solutions with exponents zero and =7 are
just the ordinary Mathieu functions of even and odd order, the characteristic
values of which may be taken from Goldstein’s tables. These are indicated in
Fig. 2 as solid lines.

All of these functions, however, may be regarded as solutions of Eq.
(7) in the interval from zero to 67 subject to the simple periodic boundary
condition so that by the oscillation theorem for Sturm-Liouville systems with
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periodic boundary conditions,” when the characteristic values are arranged in
order, the lowest is single and its characteristic function has no zeros; the
next term is double and its characteristic functions each have two zeros; the
third term is also double and the characteristic functions each have four
zeros, etc. It follows that the double characteristic values will fall into order
according to the number of zeros of their characteristic functions so that the
graphs of these can never cross one another. Neither can they cross the graphs
of any of the ordinary Mathieu functions, and they must therefore lie as de-

4-0 40
Fig. 2.

picted by the broken lines in Fig. 2, reducing to their limiting values for
g=0and g= 0.

This result may easily be verified in the simple case of potential energy
functions such as are used by Kronig and Penny® and then applying directly
their Eq. (6) which here would be written:

P(sin z)/2 + cos z = cos 2wk/6
where % is an integer and P a parameter proportional in our problem to the

" E. L. Ince, Ordinary Differential Equations, p. 246.
8 R. de L. Kronig and W. A. Penny, Proc. Roy. Soc. 130, 499 (1931).
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restoring torque. Determining the roots of this equation for values of P be-
tween zero and infinity, one arrives at exactly the same conclusions as in-
dicated in Fig. 2.

It is possible now also to write solutions to Eq. (7) for our problem where
q is large, i.e., where x is small so that higher order terms in the expan-
sion of cos 2x may be neglected, and where consequently this equation then
becomes the quantum mechanical equation for a harmonic oscillator. We
shall again for the sake of simplicity let m =3 in which case the functions are
nearly zero everywhere except close to ¢'=0, ¢’ =27/3, and ¢’ =47 /3. Each
level, as we have seen, shows a three-fold degeneracy for K even and K odd,
and the characteristic functions may now to a good approximation be taken
to be expressible by:

/ '~ 2m/3 ' — 4x/3
V, ;= (%)1/2{)(], (i) + wan(?;__iﬁ> + w2an<¢;__7r_/_>} (17)
s ony ¢o

where # is 0, 2 or 4 for K even, and 1, 3 or 5 for K odd, the X,'s are the
Hermite orthogonal functions of the indicated arguments, ¢, is equal to
(hvo/2¢)Y?, w, w?, - - - and w® are the five complex sixth roots of unity. It has
been pointed out that the degeneracy can not entirely be removed, but while
one of the components splits away, the other two components remain degen-
erate throughout for all values of ¢g. Where K is even, that component which
splits away is characterized by # =0, while the other two components which
remain degenerate have the characteristic functions with =2 and n=4;
when K is odd, that component which splits away is characterized by # =3,
while the components which remain degenerate for all values of ¢ have n=1
and n=5. The index j represents the torsional, or as it may here appropri-
ately be called, the vibrational quantum number.
The complete wave function U may now be written:

U= Rl — (= p,1+d+s+ p, 1+ d, e @ED I (x)

R being a normalizing factor so chosen that:
fUU*dv =1 (18)

where dv is an element of volume in coordinate space which in the example
we are considering is:

dv = (9)\2d0dpdede’ = A (A,'A)\? sin 0d0dydpde’ .
Calculation of intensities

The matrix elements of a coordinate ¢; are:

¢k, 1) = f ¢ U U (19)

where Uy and U, are the characteristic functions belonging to states & and !
respectively and where as in (18) dv is an element of volume in coordinate
space.
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Following Kronig and Rabi, considering charges fixed in the lower and the

upper parts of the top with coordinates (x'’, ¥'/, 2’’) = (a1, 0, ¢1), and (x"" ’,

77 8" ")y =(ay, 0, c3), one obtains as coordinates in free space, where 3; and
B: are substituted for A.’/A4.and 4.,"'/A. respectively and where:

d1=¢ — B1¢', p2 = ¢ + Be¢’, f1 + B2 = 1

cisin @ siny + a; cosy cos (¢ F Bip’) — a;cosfsiny sin (¢ F Bigp’)
yi = — ¢;sinfcosy + a;siny cos (¢ F Bip’) — aicosBcosysin (¢ F Bigp”)
Z; = ¢; cos 0 + a;sin 0 sin (¢ F Bip’)

Xq

where 7 =1 takes the upper sign and 7 =2 takes the lower sign.

For the case where ¢ =0 we proceed in the manner outlined by Kronig and
Rabi, by putting these coordinates into (19) together with the characteristic
functions appropriate for this extreme case and evaluating the resulting defi-
nite integrals. We shall first consider those amplitudes for the component of
the electric moment lying along the axis of symmetry 2’. It is apparent that
Egs. (19) integrated over the variable § and ¥ will have identically the same
value as in the case of the ordinary symmetric rotator. Setting this part of
the integral equal to C, noting that this component of the electric moment
does not depend on @;, the integrals we shall have to evaluate will be of the
kind:

2T 2m
I = Cf f eiKQSe—iK’dJei(Hﬂiﬂ:K)ﬂm'e—i(s'/ﬂiiK')ﬂi¢’d¢d¢"
0 0

In order for this integral not to vanish K must be equal to K’, i.e., AK=0
which it will be seen carries with it the requirement that s =s’ in order for the
integration over ¢’ not to vanish also. We have thus the additional selection
rule that As =0 which if we set 7 =(s/B8;+ K) where T is to be interpreted as
the torsional quantum number may more advantageously be written: AT =0.
Carrying out the integrations, the amplitudes are found to be identically
those obtained by Dennison in the case of the ordinary symmetric rotator.}

Turning now to consider the amplitudes where the component of the
electric moment lying in the x’y’ plane is involved, it is clear that as before
the integration of the expressions (19) over # and ¥ must be exactly the same
as for the ordinary symmetric rotator. Setting this part of the integral equal
to C’, the integrations which we shall have to carry out will all be of the kind:

2w 2w
I=cC f f €1 @107 giKbg—iK'¢gis I8t KB’ g—i(s' IBiK)Bid dpdep’ .
0 0

In order that these integrals are not to vanish, we see that K’ must be equal to
K+1,ie.,,AK= +1, a condition which here just as before carries with it the
requirement that s=s’. We have consequently the selection rule here also
that As=0, which, however, if we again adopt the notation T =(s/B;+ K)
may be expressed: AT = +1. We have then to evaluate the integrals which
lead here as before to identically the amplitudes of the ordinary symmetric
rotator.!
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As we have seen, each of the energy states except the first exhibits a two-
fold degeneracy. If for simplicity we consider a model where the upper and
lower parts of the rotator are identical and apply on it a slight perturbation,
this degeneracy may be removed for those states which have as their char-
acteristic functions the ordinary Mathieu functions, while for the other levels,
the degeneracy persists, as we have seen, for all values of gq. To each of the
components of these levels whether they split apart or not may be ascribed
a characteristic function, and it may readily be seen that the correct wave
functions are cos T¢’/2 and sin 7¢’/2, and when AT = + 1, that the probabil-
ity of transition between two energy states, the one with an even character-
istic function and the other with an odd characteristic function will be the
same as that between two energy states where the characteristic functions
are both even or both odd. When, however, AT =0 the transitions must be
between energy states both of which are characterized by even wave func-

JKT
333
g};g 313
222 213
302
2\02

Fig. 3.

tions or both by odd wave functions (e.g., cos T¢’/2— cos T¢p'/2;sin T’ /2—
sin T¢p’/2). To illustrate what are some of the permitted transitions, a few
energy values (J=2, J=3, T'=2, T'=3) have been computed, for a model
- where the upper and lower parts of the top are alike (i.e., 4,/=4."") and
where 4, has been taken equal to 24.. In Figure 3 are shown the correspond-
ing energy levels, and the transitions are indicated where AJ=0, +1, AK
=41, AT=+1.

To determine the amplitudes and the transition rules at the other ex-
tremity where g is very large we are obliged as before to construct and evalu-
ate a set of definite integrals like those indicated in (19) using the same co-
ordinates as before, but now using the characteristic functions (17) which are
the appropriate ones in this region. We consider first those amplitudes where
the electric moment along the axis of symmetry is involved. As before we
shall denote the integration over 6 and ¥ by C, and bearing in mind that this
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component of the electric moment is independent of ¢;, the integrals we must
solve will be of the kind:

. 2T 27
n,j A )
Tw.r=C f f e Keem iKY, W, i *dpdy’,
0 0

which vanishes except where K =K', n=n', and j=j’. We consequently have
where the component of the electric moment along the 2z’ axis is concerned,
selection rules and amplitudes which are identically the same as where ¢=0.

We turn now to where the electric moment lies in the x’y’ plane and set
the integration over 6 and ¥ as before equal to C’, which enables us to write
the integrals to be evaluated as follows:

n, g

2 2m
In',j’ — C/ f eii¢6iK¢e—iK'¢d¢’ f Eii¢,eii¢’/2‘1/n,j‘l/nf,]‘f*dd)'.
0 0

In order for this not to vanish we must set K=K’'+1, and now replacing
¥, ;and ¥,’ ;* by their appropriate values, remembering that one of these
must correspond to even values of K and the other to odd values of K, the
integrals become expressible as:

n,i 2 ¢, ¢,
= g [ o d x (2)()
i ( /) . J¢O, i b

' — 27/3 ' — 27/3
+w(z)X]_<¢> / ) X,-(d) / )
oo ¢’

' — 47 /3 ' — 4x/3
+ww>x,.<¢ /7r/ ) X,-/<¢ x/ )} i
o ¢’

or which is equivalent:

’

n,j m ¢/ )
In",]j’ = (C”/3) f X]<(;>X]/<(:)/> 3ii¢’eii¢'/2{ 1+ w (@ etmi/3 -+ w(y)eiZTiIS}d¢'_
0 0 0

In the above integrals, when the exponents are taken positive, the sums
within the brackets may be seen always to be equal to three or to zero, and
when the exponents are taken negative, those sums which previously were
found equal to three now become zero and vice versa, except n=#n'+3, in
which case the sums always vanish. Since the actual coordinates over which
we are integrating are cosines and sines, one must take sums and differences
of these integrals, where the exponentials have exponents of different sign.
Consequently the probability of transition between any two levels belonging
to sets with quantum numbers j and j’ respectively will be the same where
n#Zn’+3. When n=n'+ 3 the transition cannot take place. We obtain when
we expand the term e*’/? into a series:

. 27 ’ ’
Il =(C"/3) f X,(f—,)X,.,(fl,){ [14w@erittowerriis][14-i¢'/2 -
0 0

0

—¢'2/84 - [ [1+0@emilqoWemils|[1—i¢'/2—¢'2/8— - - - |}do'.
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From this it is apparent that there will be several transitions allowed depend-
ing upon changes of j to various values of j/. These may be determined by
evaluation of the components of these integrals of which we shall consider
only the first two:

n,i " 2w ¢/ d)/ . " (> i
I yp=C Xj**, X; - {[1-}-(»(;‘6“‘—}-(»’/6“/']
0 $o $o
+ [1 + w®emmils | w(y)e—Zwi/:i]}d¢/

which of course vanishes except where j=j’, where it takes the value C’’.

n,Jj C” am ¢'I (b/ ) . .
I,,/,Jj/ = ’—6* . X](&>X]/<&>{z¢ /2[1 + w®emi/s 4 w“/)e“‘“']

T ig'/2[1 + 0@l 4 oWermin]}dg,

which has a value only when j=j' + 1. Here it takes the value C’’/8(¢)'2.

It is thus proved that the appropriate amplitudes are the same expressions
as before, only that here they will in general be multiplied by some definite
constant, and while these amplitudes and transition rules are valid only where
q is very large and the levels are completely degenerate, they should serve to
indicate what will be the important transitions where ¢ is still large, but where
the degeneracy has been partly removed and the one component has begun
to split away. It should be noticed that in the region of large ¢, the only
transition which is of importance is the first one we have just discussed above
where j=7’. This is of course what is to be expected from the problem of the
ordinary symmetric rotator since it is the limiting case of our rotator when
g becomes infinite.
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