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The pressure shift of spectral lines, unexplained by the usual theories of pressure
broadening, can be adequately treated on the basis of a theory which considers the
perturbations produced by neighboring atoms on the two states between which transi-
tions occur. The analysis presented in the paper is directly applicable only to absorp-
tion lines, but its consequences are qualitatively correct for emission lines as well. The
forces acting on the unexcited atom are the usual van der Waals forces; the per-
turbations of the excited state are produced by interactions of the same character
(dispersion forces) but of different magnitude. The energy increments for both cases
can be roughly computed by means of spectroscopic data, which renders possible the
evaluations of the mean energies of transitions and hence of pressure shifts. Details
are worked out mainly for the shift of X2537 (Hg) in foreign gases, and are compared
with the experimental data of Fuchtbauer, Joos, and Dinkelacker. In this case, the
energy increments are negative both for the excited and for the normal state of Hg,
but larger for the former. Hence there results a red shift, whose magnitude agrees
well with observations. The line width produced by the perturbations here considered
is an appreciable portion of the total experimental half-width. It is no longer neces-
sary, therefore, to explain the total broadening e8ect of foreign gases by an appeal to
Lorentz collisions. Main results of the theory are: the shift is proportional to the den-
sity of the perturbing gas; it is usually to the red, but may, under conditions discussed
in the paper, be to shorter wave-lengths; a dependence of the shift on the temperature
exists, but is slight at ordinary temperatures; the "standard deviation" of frequencies
within the broadened line is proportional to the square root of the density of the per-
turbing gas.

SYSTEMATIC discussion of the influence of pressure on the appearance

~ ~

of spectral lines must distinguish at the outset between the cases of
emission and absorption. In the former, numerous causes which can neither
be well controlled experimentally nor adequately corrected for by theory,
such as Stark effects depending on the character and strength of the exciting,
discharge, or pole effects, may play an important part in the phenomenon to
be studied, while these disturbances are absent if the lines are produced by
absorption. This theory is designed, therefore, to describe only the behavior
of absorption lines; the possibility of extending its results to emission is
only briefly considered.

Previous explanations of pressure shift and broadening, in so far as they
are not due to Lorentz collisions, have mainly conceived of the effects in ques-
tion as Stark effects, caused by the molecules of the gas. Debye, Holtsmark,
Stern, and Lenz' have developed methods of calculating the width of broad-
ened lines in terms of molecular electric fields. The perturbing structures, in
their theory, either are ions, or carry poles (dipoles and quadrupoles) which,
as a consequence of their thermal motions, produce a rapidly changing field

P. Debye, Ann. d. Physik 58, 577 (1919); Holtsmark, Phys. Zeits. 25, 82 (1924); O.
Stern, Phys. Zeits. 23, 476 (1922);W. Lenz, Zeits. f. Physik 25, 308 (1924).
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whose mean resultant at the point of the absorbing atom produces a Stark
effect, and hence a displacement of energy levels, in the manner of a static
field. The validity of this explanation depends essentially on the existence of
ions or permanent poles within the perturbing gas. But under conditions in
which absorption lines are produced, ions are certainly rare. Moreover, the
molecules of many gases which are known to produce both line shift and
broadening certainly have no dipole moments. This permits refuge only to
the supposition that they carry quadrupoles, a supposition which is safe in so
far as it is dificult to verify experimentally. Spherically symmetrical atoms,
such as the inert gases, should not produce permanent fields on this basis, and
therefore cause no shift; it is well known, however, that they do. Another ob-
jection of an exclusive explanation of pressure phenomena by an appeal to
Stark effects arises from the observation that lines which show no appreciable
Stark effect may be noticeably shifted.

The point of view taken in this paper is indeed a natural one: we inquire
as to the perturbing effect of neighboring molecules on the absorbing one,
first, when it is in its unexcited state, next when it is excited. If the energy
perturbations in the two cases are not equal with regard to sign and magni-
tude, the frequency of the line absorbed will depend on the configuration of
the surrounding molecules, and the calculation of the average frequency of the
line, or the dispersion of frequencies within it, is a simple statistical problem.
The energy perturbations between molecules in their normal states are those
which give rise to van der Waals forces ("dispersion forces"), whose quantum-
dynamical significance has been discovered and discussed by F. London' and
R. Eisenschitz and others. They can be computed to a fair approximation
from the intensities of spectral lines of the molecules in question, or from opti-
cal dispersion formulae.

In considering the interactions between an excited atom and its neighbors
an important distinction must be made. First, the surrounding atoms may be
of the same kind as the excited ones. There is then the possibility of resonance
between the systems, which occurs whenever the energy of excitation of the
one may be absorbed by another. As is well known, this gives rise to strong
perturbation energies which appear in the first approximation of the usual
(Schrodinger's) scheme of calculation, and which are essentially of the charac-
ter of dipole interactions depending on the inverse third power of the distance
of separation. Their sign may be positive or negative, so that the excited
enegy level may be displaced either upward or downward. To this type of
perturbation there corresponds the phenomenon of resonance broadening
which has been treated by L. Mensing, ' J. Holtsmark, ' and J. Frenkel, ' partly
using the older quantum mechanical methods. Resonance broadening is not
considered in this paper.

~ F. London, Zeits. f. Physik 63, 245 (1930);Zeits. f. phys. Chem. B 11, 222 (1930).
3 R. Eisenschitz and F. London, Zeits. f. Physik 60, 491 (1930').
4 L. Mensing, Zeits. f. Physik 34, 611 (1925).
' Holtsmark, Zeits. f. Physik 34, 722 (1925);54, 761 (1929).
' J, Frenkel, Zeits. f. Physik 59, 198 (1930).
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Accordingly, the cases to which the present calculations apply are those in
which the perturbing influence is entirely due to a substance different from
the absorbing one. This implies that the perturbing atoms or molecules must
be very numerous compared to those whose absorption line is studied, so that
each of the latter may be thought of as being entirely surrounded by individ-
uals of a different kind. Moreover, it will be supposed that these are always
in their normal state. It will therefore be necessary to investigate in some
detail the interactions between an excited atom of one kind with unexcited
ones of another; in order to make this investigation definite we shall restrict

'
our discussion mainly to instances where the excited atom is in its lowest
P-state. This limitation has the advantage of introducing greater simplicity
in the analysis, and of covering at the same time most cases of empirical in-
terest. The forces which are called into play under these conditions are of the
same character as the dispersion forces mentioned previously, and their evalu-
ation proceeds along the lines of London's papers.

Under these conditions the only cause of pressure broadening beside the
one which forms the object of this paper is that known as Lorentz collision
broadening. 7 The present description of this phenomenon is in terms of classi-
cal physics; its quantum mechanical analogue, which undoubtedly exists, has
not been formulated as far as we are aware. Lorentz considers that the im-
pacts of molecules are not completely elastic, so that, speaking in classical
terms, the vibratory energy accumulated by an atom in the process of light
absorption, is partly converted into heat at the instant of collision. Therefore
he assumes that the frequent collisions require the vibratory motion of the
electrons to stop at small irregular intervals, and shows that this is equivalent
to the presence of a dissipative term in the equation of motion of the elec-
trons. This, in turn, renders the resonance between light wave and electron
less sharp and introduces broadening of the absorption line. This action,
while in need of being rephrased in current terminology, is still considered
capable of explaining, in part at least, the width of spectral lines absorbed
under pressure, but it is incompetent to account for pressure shifts.

Minkowski' has observed asymmetries in the broadening of the sodium
D-lines. In order to explain their presence he assumes, in accordance with a
well-known hypothesis of Oldenberg, ' that kinetic energy may be withdrawn
from, or imparted to, a colliding gas atom during the process of light absorp-
tion, so that the absorbed frequency may be slightly diminished or increased
with reference to its normal value. Thus plausible values for the broadening
are found, and the asymmetries, together with their dependence on the molec-
ular weight of the perturbing gas, are well accounted for. An effect of this
sort seems indeed very likely, but it probably produces only slight departures
from the normal position of the line and is unsuited to explain the relatively
large shifts occurring at very high pressures, as its author himself points out.
Hence, in the absence of a theory capable of dealing with these shifts, we are

~ H. A. Lorentz, The Theory of Electrons, p. 141.
' R. Minkowsky, Zeits. f. Physik 55, 16 (1929).
9 O. Oldenberg, Zeits. f. Physik 47, 184 (1928);51, 605 (1928).
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to look for the perturbations discussed in the present paper to account for
their presence, and it will be shown that they do so satisfactorily.

First, attention will be devoted to the energy perturbations which take
place between two atoms or molecules, with the object of obtaining the inter-
action energy as a function of the distance between the centers of the individ-
uals involved. The excited structure is always an atom, but when for brevity
the term atom is applied to both, it will be understood that the perturber
may be a molecule in its normal state, as will be clear later.

INTERACTIONS

A. Asymptotic interaction between two diferent atoms, one in a P state
and the other in an S state (normal state).

The classical mutual potential energy of two neutral structures with nu-
clei a distance r apart and their centers of negative charge at (x)y,s)) and
(xpypsp) respectively, from their nuclei, can be developed as a series whose larg-
est term at great distances of separation is

U = e'(y„yp + s)sp —2xixp)/r' (1)
if the x-axis is placed along the line joining the nuclei. Higher terms, corre-
sponding to the classical interaction of quadrupoles and higher poles, will be
neglected. The symmetry of the wave mechanical charge distribution causes
the 6rst order energy perturbation, which is merely the average of V over the
normal charge distribution, to vanish. The second order energy is

E10
P E —E1 + IiP —Ii0

(2)

where the 8 's are the energy levels of atom I, E1 being in particular the
energy of the P state; the Fp's denote the energies of atom II, and F0 is its
normal state, considered an 5 state.

V, g
= Jf aV d = fV4')1)4y())g' (1)d' (2)d (1)d (2), )3)

since the function u p of the composite system, formed of atom I and atom
II while very far apart, is simply the product of P„ the P-function describing
the state of atom I, and Pp, the P-function describing the state of atom II.
The numbers in ( ) are abbreviations for the coordinates of the atom whose
number is stated. Subscripts 0 and 1 denote the S and the P states, respec-
tively.

Writing now, for instance x) (1) for

Jest,

(1)xp)(1)dr), there results on ac-
count of (1) and (3)

~
U)p, ~p

~

P = e4r P [y) P(1)yopo(2) + s) P(1)sopo(2) + 4xz '(1)xopo(2)

+ 2y, (1)s, (1)ypp(2)spp(2) 4xy (1)y) (1)xpp(2)ypp(2)
—4x) (1)s) (1)xop(2)sop(2) ] (4)

where all squares on the right are understood to be squares of absolute
values. More explicitly, if q is one of the coordinates x, y, or 2',
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»r()) = f&,( i)p'((, i-r' '(%r(r) p' 'r)&r»&rr,

the R's being the radial functions for atom l I,

q) (1) = Jf R (p)P(»(8)e '»&qR, (p)P,&(8)e'»p' sin 8dpd8d(t). (6)

the R's being the radial functions for atom I. The index )(( in (6) representing
the magnetic quantum number of the I' state in question, may take on the
values0, 1, —1 ~

The denominators in (2) do not depend on the magnetic quantum num-
bers m of the states characterized by a and P on account of the space de-
generacy of the unperturbed states. Hence the summation over the rn's, in-
cluded in that over (z and P, may be performed, for any particular energy
state, without regard to the denominator of (2). Elementary calculations
on the basis of the definition (5) show that

Z oeyoe = Z*oesoe = Zyoesoe = O,

also that
Zzoe'(2) = gyoe'(2) = aesop'(2) = poe'(2) o~(l

poe (2) is the element of the radial matrix for atom II connecting the S-state
(0) with the state P. The corresponding results for the coordinate matrices of
atom I, one of whose states is the I' state, depend on the value of p. Here
again, simple calculations, performed by means of (6), lead to

1 4
Qz&»'(1) = p&»'(1) —()(o + —()(o

3 15
1

Zy(» (1) = Zs(» (1) = p&» (1) '

re m 5
1

Qx(»'(1) = p(»'(1) —()(o
5

7
Z1'-'( ) = Zs-'( ) = p-'( ) —&o+ —&(o if p = + 1.

6 30

(7)

Expression (4) can now be summed over all magnetic quantum numbers
associated with n and with P. It is necessary to distinguish quantum numbers
pertaining to the state n (atom I) from those pertaining to the state P (atom
II). This can best be done by adding subscripts 1 and 2 respectively; thus
m( and l, refer to the staten, mo and lo to the state P. By (4) and (7)

e4 22
Q I

I'(o,.e ' = —p).'(1)pop'(2) —8(,o + &(,o &(,—(r' 45 9

if@=0
e4 19 1+ I

I' o,-e
I

' = —,p(.'(I)poe'(2) —~(,o + &(,o &(,)—r' 45 9
lf p, =. +
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It is convenient to write these results in terms of dispersion-f-values. As is
well known, the f va-lue fj,„corresponding to the transition from state 'A to
state p, measures the intensity of that transition. The intensity of a spectral
line emitted or absorbed in a transition from one definite initial state to any
final state will, however, be proportional to the sum of the f-values connect-
ing the initial state with all the space-degenerate components of the latter,
if no external field is applied. Hence it is convenient to define f valu-es in
terms of a summation over the m-values of the final states:

Sx'm
fop = -(&Q —K) Q(~pa '+ y.i '+ sQQ ')

3h' ml

Thus, for instance,

Sm'm

3h'
(E —E&)—g [~& '(1) + y,.'(1) + s, '(1) ]

S~'m

3h'
(+a El)P1a (1)(p~l, 2 + Q~i, Q) ~

(10)

The latter expression results if (7) is used.
This result, of course, is independent of the value of P, ; i.e. the f-value

does not depend on the space orientation of the initial state. Denoting the
f values fo-r atom II by g, we find correspondingly

Sm'm
gQp = (Fp —PQ) PQp (2)8i i.

3h'

(10) shows that it is necessary to distinguish two groups of f&, 's, one,
in which n is a state with li =2, and the other /&

= 0. All f's belonging to the
first group will be called fi, the others fi Thus, "in. substituting f and g--
values defined by (10) and (11) for the radial matrices in (8), different co-
efficients have to be used for the two groups of f's (8) is then in.troduced into
(2) where, accordingly, two separate summations with different coefficients
appear. Thus, putting

we obtain

(g —gi)(PP —FQ)(g —gi +. PP —PQ) = D P (12)

and
if @=0, (13)

(b)

if @=+1.
The summations are now extended only over the non-degenerate states, no
longer over the magnetic quantum numbers. These formulae show that the
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interaction energy between one atom in a P state and another in an 5 state
(spherically symmetrical) depend on the orientation of the former, and that
the forces called into play between these atoms are not strictly to be thought
of as central forces.

If the P state is the lowest or a metastable state, all energy differences in
the denominators of the summation terms in (13) as well as all f's and g's
will be positive, so that the various sums are positive. In this case the inter-
action is greatest when p =0, that is, when the statistical charge distribution
of the atom in the P state has its two maxima on the line through the two
interacting atoms. ((PP)'=cos' 8, and the polar axis has been chosen coinci-
dent with the line joining the atoms. ) This state of affairs can be understood
classically if the forces are interpreted as caused by polarization, For the
P atom represents a quadrupole distribution which, if p, =0, produces a field
at the other atom twice as strong as if p, = +1. Nevertheless, this analogy
seems to have no general significance, since it will at once appear that these
same forces can no longer be placed on the same footing with polarization
forces when the P state is an excited state. Ignoring this possibility for the
moment, a rough survey of known f-values and energy levels would indicate
that the results of the two summations on the right of (13) are often of the
same order of magnitude. In this case, as is seen from (13), the ratio of the
maximum to the minimum energy of interaction (or force of attraction) is

as much as 2.
Now if the P state is an excited one, so that transitions from it to states

of lower energy can occur, some of the terms in the summations of (13) may
indeed be negative (though they will not be negative in general, since the
positive transitions of atom II may make the combined transition one to a
state of higher total energy). Cases of this kind will be of interest later. Thus
it is not impossible for one, or even both, of the Z s in question to become
negative, hence for the expression on the right of (13) to change sign. This
would render the forces between the atoms repulsive, of course, a state of
aff'airs which is no longer compatible with their interpretation as polarization
forces. An equally possible case is that in which one of the 2's in (13), for
instance the second, yields a negative result, the first being positive. Then
there may result the situation that the forces, attractive for one orientation,
become repulsive for another orientation of the atom in the P state. The
classical analogue of this situation would be the interaction of permanent
multipoles. It is evident from these simple considerations that quantum
mechanical "dispersion forces" are capable of acting as substitutes for a con-
siderable variety of classical interactions.

While these detailed questions are of basic interest, it is not possible at
present to introduce them into the actual analysis of concrete problems.
This would require a much more complete knowledge of f-values, derivable
from accurate and systematic absorption data on spectral lines, than we have
at present. To continue the discussion it is necessary to proceed in a more
summary fashion, namely by averaging over the three values of p, . To be
sure, such treatment is not completely justified, even if the analysis is to be
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applied to the atoms of a gas. For here the strongly attractive states will be
statistically favoured because of the appearance of the Boltzmann factor in
the thermodynamical probability. It is only for high temperatures that this
procedure is free from error. For the conclusions of this paper, however, which
do not claim high quantitative precision, the resulting simplification is quite
in order.

Taking the average of the values of E&o given by (13a) and (13b), and
remembering that the statistical weight of (13b) is twice that of (13a), the
coeAicients in front of the two summations become the same, and the result
may be written simply:

1 3 he ' f go,
~10

r 25$27I «p D~p
(14)

In fact this formula, which neglects dependence on orientation, describes the
interaction between two different atoms with any two states in place of the
I' and the S state, and may be derived from the intensity rule of Burger and
Dorgelo. The relation has been stated in this more general form by London.
Thus it would have been possible to arrive at (14) more directly, but this der-
ivation would have obscured noteworthy details of our more special analysis.

B. Asymptotic interaction between two different atoms, both in their normal
S states.

This problem requires no further scrutiny. The question of averaging
is now trivial since no space degeneracy exists. Hence the relation correspond-
ing to (14) may be written in conformity with previous notation

(15)

where Z&, appearing in D p, is now to be replaced by Zo.

C. Approximations and numerical examples
As London" has pointed out, the summation over the f-values and energy

levels in (14) and (15) may in some instances be approximated by the use of
static polarizabilities. This is possible if (a) the atom to which the summation
relates is in the lowest state and (b) the energy differences between the low-
est state and all states, respectively, to which transitions (caused by dipole
radiation) can occur are nearly equal. Equivalent to the latter condition is
the preponderance of one f-value over all the others Under t.hese circum-
stances a certain energy difference, usually in the neighborhood of the ioniza-
tion energy and determinable from optical dispersion formulae, may be
placed as a mean value in front of the summation. This paper will deal with
interactions in which atom II is always in its lowest energy state. Moreover,
atom II is the atom or molecule (to be treated summarily as an atom in an
S state) of a gas. Now for all gases the transition from the lowest state to the
next higher state of the stable structure (atom in the case of rare gases,

"F. London, Zeits. f. phys. Chem, 11,222 (1930),
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otherwise molecule) involves an energy which is an appreciable portion of
the ionization energy. This is especially true for rare gases, less so for gases
like Os, etc. Nevertheless we shall be obliged to use mean f-values and mean
energy differences for the transitions of II. Except in the case of rare gases,
this will introduce considerable errors. Calling the mean energy difference
~ I'", in conformity with London's notation, we obtain his formula

1 3 he' ka
~A:p —p~F P—

r~ 2' 2s. (E —Eq) (AF + E —Eq)
(16)

where P is the polarizability of atom or molecule II, and k denotes the initial
state of atom I (it will be 1 or 0 in our applications).

It is important to determine the sign of the interaction energy. Clearly,
all quantities in front of the summation of (16), including AF, are positive.
fk,. is negative or positive, respectively, according as the difference (E —El,)
is negative or positive, so that fz /(E Ez) is —always positive, as may be
seen from (9). Hence the sign of each term of the summation depends only
on the sign of (hF+E —E~).

Let us now distinguish two cases.
(1) Suppose that k=0, designating the lowest energy state of atom I.

Then all the quantities AIi+B —8& are positive and Epp is negative. It
is of course well known that forces between unexcited, neutral structures
(van der Waafs forces) are attractive at large distances.

(2) Let atom I be excited, so that one or more of the terms (E, E~) are-
negative.

(a) Then Z will be positive only if AF) (E&—E ) for the transitions in

which f~ is appreciable, that is, which correspond to intense spectral lines.
Suppose this to be the case. It will usually be true when atom I is a metal.
Another feature of interest can then also be deduced in a qualitative way by
general considerations. Since at least one of the (E,—E~) is negative, there
will certainly be one term in the summation which is numerically larger, on
account of its smaller denominator, than any one of the terms in the cor-
responding summation of case 1. Furthermore there will be a greater num-

ber of large terms in Z . This is seen at once by examining the sum rule of
Kuhn and Reiche, which states that, approximately, for any state k

(17)

Z being the number of optical electrons. " Now if k is not the lowest or a
metastable state, there will be negative f's as well as positive f's, and con-

The sum rule is exact only if Z denotes the total number of (extranuclear) electrons in
the atom. In this form, however, it is useless, since the transitions due to the inner electrons
correspond to numerous unknown ultraviolet and x-ray frequencies. Optical transitions of the
type responsible for dispersion and the interactions considered here involve mainly the outer
electrons, the f-values of the inner ones being rendered ineEective by the large energy differ-
ences appearing in the denominators. It is to be remembered that the procedure in the following

applications to the cases of Na and Hg, where Z is taken to be the number of electrons in the
outer she11, (1 and 2 respectively) may introduce large errors into the analysis.
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sequently Z, ~f& ~)Z, while if k denotes the lowest or a metastable state,
~fp

~

=Z. Collecting these observations we note that Xpp is a larger negative
quantity than in case 1. Ke shall illustrate this by numerical examples, the
results of which are of use in discussing pressure shift phenomena. Ignorance
of f-values for higher transitions compels us to make very rough approxima-
tions and to rely mainly upon (17). Nevertheless it is possible to explain
some interesting details of the pressure effect in a crudely quantitative man-
ner. Case 2b will be defined and considered later. The following examples
are best understood if reference is made to term diagrams, such as are found
in Grotrian, Graphische Darstellung der Spektren, Vol. II.

n. Let atom I be Na, II the N2 molecule. " For N2 p is 1.74 10—'4, AI', in
the absence of optical dispersion data, will be taken to be the ionization poten-
tial, 17 volts. The transition from the lowest S state to the lowest P state of
Na is one of 2.1 electron volts, the corresponding f-value is known to be nearly
1."Since this is by far the strongest transition from this S state a11 others
may be neglected. Hence, if r is measured in angstroms and all energies in
volts (we shall adhere to this choice of units in the following formulae and
indicate it by writing R for r)

~00 =—164 1024
p. AF

R' 2. 1(AF + 2. 1)

123
volts.

R' (18a)

If Na is in the 3'Pq~p state, there is one possible transition to 3S with an f
value nearly equal to 0.5, and numerous possible transitions to higher S and
D states. All these will be grouped together to one mean transition of ap-
proximate energy 2 volts. But then, on account of (17), the f-value cor-
responding to this composite transition must be greater than 1 by an amount
equal to the sum of the f's from 3P down to all lower states of a one-electron
system, provided that the field in the outer portions of the Na atom is con-
sidered as appreciably hydrogenic. But the latter f's sum to about 0.3, as
may be seen from Sugiura's work.

164 10~4 — 1.5 1.5 270
Xfp ——— —p DF — — + —= — volts. (18b)

RP 2.1(~ —2. 1) 2(M+ 2) ~ I7.P

The value of BIO when the subscript 1 refers to the other doublet state
(3'Pp~p) will not be materially different from (18b).

P. Let atom I be Hg, atom II A.
For argon, P=1.63.10 ", ELF=17.5 volts. '4 If Hg is in its ground state

6 ~S, there are transitions of appreciable intensity to 6 pP&, 6 'P, 7 'P with f
values 0.026, 0.71, 2.27" approximately. The corresponding energies are 4.9
volts, 6.7 volts, 8.8 volts. Hence

'~ Measurements on the pressure shift of the D lines perturbed by N& are being made by
F. T. Holmes to whom the author is indebted for discussions of the experimental features of
pressure shift."Y.Sugiura, Phil, Mag. (7) 4, 495 (1927)."Herzfeld and Wolf, Ann. d. Physik '76, 71 (1925)."Wolfsohn, Zeits. f. Physik 63, 634 (1930).The last of these f's certainly corresponds to a
double excitation and does not truly refer to a 7 I' term.
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164.10'4 0.026 0.71 2. 27
Epp ————

P AF- —+— +R' 4.9(AF + 4.9) 6.7(AF + 6.7) 8.8(DF+8.8)

67= ——volts.
R' (19a)

It is seen that the sum rule (17) is not obeyed by the 6 S state of Hg. Never-
theless we shall assume it to be valid for the state 6 'PI. The result to be ob-
tained may therefore be considerably in error, but it will probably be too
small. As under n, many transitions may occur to higher levels from 6 'P&.

We choose as their mean energy 5 volts (which places the center of gravity of
the transitions about —, volt below the ionization potential) and as the cor-
responding f value 2. The transition to 6 S, whose f value is —0.026 (inter-
combination between singlet and triplet systems) need not be considered.
Therefore

p
Q™

164 10 '4 2
—P AF

R' 5(DF + 5)

82= ——volts.
R' (19b)

If in subsequent discussions we use this value the numerical results must be
considered as tentative; but the fact that the coeScient in (19b) is greater
than that in (19a) seems well beyond doubt and may also be established by
other considerations. Similar reasoning leads to the values given in Table I.

TABLE I. Interaction of Hg with gas moleclles for large distances of separation. Epp denotes

the energy of interaction when both the Hg atom and the gas moleclle are in their lowest states.
E1pis written for the corresponding quantity when the Hg atom is in the 6 'PI. state. p is the polarisa-
bility of the gas atom; for AF cf. Eg. (0).

p . 1(P4 AF (volts) —Epp ' R (volts)
(a)

—E10 ' R (volts)
(b)

Hg —A
Hg —N2
Hg —02
Hg —CO2
Hg —H2

1.63
1.74
1,57
2.9
0.81

17.5
17
13
10
16.4

67
71
58
97
32

82
88
74

129
40

Zb. Next it will be necessary to consider the case in which AIi, the energy
difference of the preponderant transition of atom II, is smaller than the
difference Bl,—8 of greatest transition probability for atom I. Then the
right hand side of (16) will change sign, and the forces of interaction become
repulsive. An example of this type is afforded by the interaction of a Na
atom (I) with a K atom (II). The state of affairs is now more easily described
by using formulae (15) and (14). If both Na and K are in their lowest S
states the only transitions which need be considered are those to 3 'P and
4 'P respectively, the corresponding f values being practically 1. Hence

17500

R' 2. 1.1.6(2. 1 + 1.6)

1400
volts.

R' (20a)
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The transitions of Na from the state. 3 'I'3/Q will be dealt with in the same
approximate manner as previously (cf. Eq. 18b). Thus, if the Na atom is
excited (3 P&) and the K atom in its lowest state, the interaction energy is

17500 0.5 1.5
~110 +R' 2. 1 1.6(—2. 1+ 1.6) 2 1.6(2 + 1.6)

3500
+ — volts.

R'

(20b)

It must be emphasized that these numerical answers, as well as all equa-
tions for interaction energies in this paper, are true only for large distances
R since no exchange phenomena have been taken into account. But it is to
be expected, and will indeed be borne out by our results, that the interactions
which are responsible for the behavior of spectral lines here considered take
place at distances of separation at which the expressions developed are at
least approximately valid. To find the lower limit of R at which they cease to
be applicable one merely needs to remember that the perturbation scheme
here employed breaks down when the perturbed energies become comparable
in magnitude to the differences between the unperturbed energy levels. Since
these are usually a few electron volts it is seen that the numerical results
from (18) to (20) have meaning as long as R))A'", A being the numerical
coefficients of 1/R . (R is in A-units. ) Consequently (20a) and (20b) certainly
fail at distances of the order of 5 or 6A, a fact which may be regarded as due
to the high polarizability of metallic atoms. At a closer approach of the two
structures their internal condition would be strongly modified.

In concluding this section the author wishes to express his appreciation
of valuable suggestions and criticisms offered to him by Professor Van Vleck
in connection with the use of f values.

STATISTICAL CONSIDERATIONS

In order to simplify the statistical analysis four major assumptions will

be made:
1. Atom I is surrounded only by individuals of type II. This will restrict

the validity of the results to cases in which the pressure of the absorbing sub-
stance is small compared to that of the perturbing gas.

2. The mutual attractions between structures II will be neglected in order
to avoid irrelevant calculations, a simplification which does not affect the
result through the order of terms which we are retaining.

3. Internal electronic changes of atom I, caused by absorption of light,
occur adiabatically with respect to its surroundings. They may be thought
of as taking place so rapidly, for instance, that the configuration of the
neighbors can not readjust itself until after the process of absorption is com-
pleted. The extent to which this assumption is justified is dificult to estimate
independently of the results to which it leads. Nevertheless it would seem a
plausible approximation to the actual state of affairs.
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4. The transition probability of atom I is independent of the configura-
tion of the perturbing atoms. Referring to Fig. 1, transitions between the
curves e and g are equally likely regardless of where they take place. This
assumption is permissible since the energy variations along the curves are
small compared to those encountered in band spectroscopy. Possible vibra-
tional levels, and such refinements as the application of the Franck-Condon
principle, will be ignored.

Suppose atom I, in its lowest state, to be at the origin of space coordinates,
and let it be surrounded by X atoms of type II, situated at r& r&. Reckon-
ing the condition in which all r's are infinite as the zero level of energy, and
writing e(r;) for the interaction energy of I with the ith atom of type II, the
energy of this configuration is Z;e(r;). If I is suddenly excited to a I' state

bO

C
LLj

Fig. i. q interaction energy of Hg-A when Hg is in the 6 Pb a in its normal state. a=in-
teraction energy of Hg-A when both are in their lowest state (van der Waals energy), Dotted
curve corresponds to the simplified model here chosen.

whose unperturbed energy is 8, then the energy of the configuration im-
mediately after this transition will be E+Z,q(r;), where g(r;) is written for
the interaction energy of I in its excited state with the ith atom of type II.
Thus the actual energy difference 6 corresponding to this transition is

6(r~ r~) = E+ P[g(r~) —«(r;) j (21)

But the statistical weight of this space configuration is e "&s"" dQ, where
dQ is an element of 3 X-dimensional configuration space. For the mean
energy of all such transitions one obtains, therefore,

z+ Zl, (..) —.(..)lj ~~

(22)
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The integration in the denominator is performed over the space of each in-
dividual separately and yields approximately t/'~, t/" being the total volume
of the assembly; for «(r) is known to be different from zero only in avery
small sphere about the origin, so that in the remainder of the volume of each
individual the integrand is 1. A reduction of the numerator is easily carried
out, since every one of the X term in the summation makes the same con-
tribution U~ 'fe '&" or[oi(r) —«(r)] d«o, d«o being the element of ordinary
space. Hence (22) takes the simple form

= E + (X/U) Jt e '""' [q(r) —«(r) jd«o. (23)

Clearly, the second part of this expression is the energy shift of the spec-
tral line absorbed by atom I; on the wave-length scale it is to the blue when
the term is positive. (23) shows that the shift is generally proportional to the
density of the perturbing gas, which is the result found experimentally by
Fiichtbauer, Joos, and Dinkellacker, "with whose work this theory will be
mainly compared. Hereafter their paper will be referred to as F. J. D. For
large values of r, the quantities p and e are identical with EI p and Ep p of the
preceding section. (R and r denote the same quantity; we are writing R when
the distance is measured in A-units. ) The probable course of ol and «over the
total range of distances of separation is qualitatively illustrated in Fig. 1,
describing the eRect of an argon atom, for instance, upon the 6 S and the
6 'P& state of mercury, respectively. The reason for placing the minimum of
the upper curve to the right of that in the lower is of course to be seen in the
fact, that, in terms of the kinetic theory, the excited Hg atom has a larger
"diameter" than the normal atom. (It is for the same reason that Ro, to be
defined presently, should be greater than the gas kinetic diameter. )

The further considerations will be applied to a model which may be ex-
pected to represent the actual situation fairly closely: We shall suppose that
g may be replaced by EIp for the range from R=R~ to R=~, and that it
suddenly becomes infinite at R& and remains so for smaller distances. This is
equivalent to a substitution of the dotted curve for g in Fig. 1. Energy transi-
tions during which any R(R& are then impossible, and the statistical weight
zero may be assigned to all 6's for which any one argument is smaller than
R&. This supposition precludes the possibility of calculating the-accurate in-
tensity distribution within the shifted line, and permits only a qualitative
estimate of the line width, as will be shown. It has been seen that the asymp-
totic interaction energies vary as R '. Let us denote E&o by —b/R' and Eoo
by —a/R'. Then, with the premises just discussed,

q(r) —«(r) = (a —b)/r' = (b —a)Eoo/a if R ) R~.

Hence the energy shift, by (23), is seen to be

b —a E
D = 4x ——— Eppe»' r'dr

a
(24)

&' Chr, Flchtbauer, G. Joos, and O. Dinkelacker, Ann. d. Physik 71, 204 (1923).



PRESSURE SHIFT AND BROADENING IN SPECTRA

which, when r is expressed in A and Zpp in volts, may be written as a wave-
length shift:

u —b X
AX = 8100K 4~ —10 "

I Eood @&at &rg2d g
V J., " (25)

X is the wave-length of the displaced line in A, and the shift is to the red when
AX is positive.

COMPARISON WITH EXPERIMENT

Many references to pressure shifts are to be found in the literature, but
the experimental conditions are frequently such that an adequate theoretical
description of the situation can not be made. The experiments of F. J. D. ,

however, present a very interesting set of data to which our considerations
may at once be applied. They have measured intensity distribution and shift
of the Hg line 2537A absorbed while the Hg vapor was perturbed by different
gases at high pressures (10—50 atm. ). The straightforward test of the theory
would be to evaluate (25) and compare the results with their experimental
data. However, R~ is a parameter concerning the exact magnitude of which
there is considerable doubt. Hence it seems more appropriate to choose R~
so that the value of (25) agrees with the experimental shift. Rq should then
be somewhat larger than the gas kinetic diameter of Hg, if this theory suffices
to explain the shift. (25) may be computed graphically; indeed in some cases
e E«" may be replaced by 1 and the integral computed directly. R& means,
crudely speaking, the distance of closest approach between the excited Hg-
atom and its perturber. The value of R&, which may thus be computed from
the pressure shift, is of some independent interest in other respects. It should
be remarked that, within a plausible range of values, the numerical de-
pendence of R& upon the choice of b&0 is such that R& is approximately pro-
portional to b&0. Table II shows the results. In the first place it is worthy of

TABLE II. AX is the pressure shift per atmosphere observed by Fuchtbauer, Joos, and Din-
kelacker, R1 the distance of closest approach between the excited Hg-atom and its perturber, as
caclulated from b) by the present theory. d is the van der Waals diameter of the perturbing atom,
and 0- the value of the distance between centers at collision, evaluated by means of Lorents' theory of
collision broadeni ng."

Perturbing gas

A
02
N2
CO2
H2

0.0088
.0079
.0056
.0078
.0042

4.8 A
5.0
5.6
6.2
4.9

Bp

39
46
50

105
21

3.13 A
3.32
3.41
4.36
2.55

9.44 A
8.07
8.05

11.2
5.27

note that R~ is of the correct order of magnitude at all, a feature which con-
firms the qualitative correctness of the considerations here presented. More-
over, for all gases but H~ the calculated values of R~ arrange themselves in

"d, X is not the mean shift per relative density 1, as tabulated by F. J. D. on page 225;
it is computed from their lowest pressures only. The slight empirical deviation from a linear
relation which takes place at very high pressures is considered to depend on causes not included
jn the theory.
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the order of the van der Waals diameters of their molecules, which have been
computed from the experimental values of Bo given by Beattie and Bridge-
man. "(d = [38O/2s N]'", with N = 6.06.10"rnol. ') The fact that H~ violates
this order is confirmatory rather than detractive, for H& is misbehaved in all
similar instances. "We shall return to this point. Calculations on H~O, for
which experimental data are also given by F. J. and D. , have been omitted
since our method would be inadequate in so far as it neglects the inter-
actions of the permanent dipoles and quadrupoles, which H&O molecules are
known to carry.

To our knowledge, there are no quantitative experimental datawith
reference to the pressure shift of the sodium D lines with which calculations
similar to the foregoing ones could be compared. There appear to be some
empirical data showing that D& is shifted more strongly than D&. ' The present
theory predicts equal shifts, as the remark following Eq. (18b) implies. Fur-
ther experimental work on this point would be interesting.

Most of the known pressure shifts are to be red."The opinion has been
expressed that blue shifts can not occur. Our analysis enables us to settle this
point; it demonstrates the possibility of pressure shifts to the blue. Their
occurrence is clearly seen to depend on the relative spacing of the energy
levels of the two interacting structures, that is on the condition previously
designated as 2b. If this condition is to be satisfied the energy differences be-
tween the normal state of the perturbing molecule and that state to which
transitions are most likely to occur must be smaller than the difference corre-
sponding to the spectral line absorbed. If the latter is the resonance line of the
element whose f value is large compared to that of other transitions, then it is
usually sufhcient that the strongest transitions of the perturbing substance
be of lower frequency, if a blue shift is to be observed. This explains at once
why blue shifts are infrequent. The resonance lines with which one can work
most conveniently are those of metals, since their wave-lengths fall in a do-
main which is spectroscopically easy to reach. The perturbing substance must
necessarily be a gas, and most gases have ionizing potentials above 10 volts,
so that their strongest transitions, or the composite transition previously de-
noted by AJi, presumably correspond to wave-lengths in the far ultraviolet.
One might well expect, however, to find blue shifts in the case of ultraviolet
lines if the perturbing gas is one of relatively low ionizing potential. The
Hg lines 1850A would appear to be of some promise in this respect. The de-
tails can be worked out for each individual perturber after the fashion of the
previous computations.

A theoretically clear cut example of this type is afforded by the pressure
shift of the D lines with K vapor as the perturbing agent, as is seen from
Equations (20a) and (20b). E&0 is positive in this case, so that g in Fig. 1

would be curved upward. Use of Eq. (20) shows the blue shift to be quite

"Beattie and Bridgeman, Zeits. f. Phsyik 62, 95 (1930}."Cf. , for example, H. Margenau, Phys. Rev. 38, 365 (1931);30, 1782 (1930).
20 Cf. C. C. Kiess, J.O. S. A. 18, 169 (1929)."Cf. Humphreys and Mohler, Astrophys. J. 3, 114 (1896).
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large, even if a large value of 8& is assumed. But in carrying out the experi-
ment, as was attempted in the manner of a preliminary survey by Prof.
W. W. Watson and the author, one meets with appreciable difficulties. In the
first place, sufficiently high pressures of K vapor can not be obtained with-
out using high temperatures which bring out overlapping absorption bands.
These not only obscure the effect to be observed, but also invalidate the
theory in so far as they give evidence of the existence of perturbing structures
whose transition probabilities are not considered. Furthermore, at higher
temperatures the Na atoms present as an impurity in K produce resonance
broadening in the D lines which is suAicient to obliterate the shift. Never-
theless, the experiment does not appear to be hopeless if, for instance, low
temperatures and pressures are used and interferometer methods employed.

Large pressure shifts are to be expected when the absorbing and the per-
turbing atom are capable of strong transitions of nearly equal frequencies.
This is at once inferred from (14), D,s becoming small for one of the terms
in this case; it is to be interpreted as an approach to resonance coupling.

Finally, the dependence of the shift on the temperature of the perturbing
agent merits attention, for this, too, appears to have been a doubtful point.
The temperature enters into the shift through the Boltzmann factor in the
integrand of Eq. (25). Consider again Table II. One can easily convince him-
self that, even at values of R of the order of SA, Eoo/k T is smaller than —,

' at
ordinary temperatures and becomes rapidly insignificant for greater R's.
Hence, though the shift is definitely dependent on the temperature, this de-
pendence is very slight at those temperatures at which pressure shifts of ab-
sorption lines are usually determined. Dilferentiating (27) with respect to T,
and writing e for Epp,

1 B(AX)

BT

62e—e/ kT+2dg
R1

f
kT' .e- ~»Z2dZ

R1

1 a

3k T' RI'
(26)

Here again the theory exposes itself to experimental verification.

LINE WIDTH

In dealing with the width of an absorption line we are considering the
effect of at least three causes: Doppler effect, Lorentz' intermittent excitation,
and the perturbations discussed in this paper. The Doppler broadening is
independent of the pressure and given by the formula

Avn = 7 .16v(T/3f) ' 10

where 2' is the molecular weight of the absorbing substance. For Hg at the
temperatures used in the experiments of F.J. D. , Avn is 0.034 cm ', a quantity
that is inappreciable in comparison with the observed values of D~, ranging
about 6 cm '. The Lorentz effect, given by the formula

Avr, ——Z/s,
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where Z is the number of impacts per second of the absorbing molecules,
has usually been called upon to explain the total line width, There is no
doubt, however, that the perturbations to which this paper is devoted ac-
count for a large portion, if not all, of the broadening.

The simple model used in this work does not permit us to deal very
satisfactorily with the question of pressure broadening since it does not ren-
der properly the intensity distribution within the spectral line. The details
of this distribution may be essentially distorted by our substitution of the
dotted line for curve q in Fig. i. Hence it is not possible to explain by this
theory the interesting asymmetries in the intensities of the D-lines absorbed
under pressure, as observed by Minkowski" and others. It is certain, how-
ever, that the incongruous trends of the real curves e and g would in general
cause asymmetries to appear. But we do not wish to offer this as an alterna-
tive to Minkowski's explanation, which appeals to the simultaneous occur-
rence of absorption and collision; probably both of these causes will have to
be considered.

The experimental measure of pressure broadening is the "half-width"
of the line. This is known numerically from the work of F. J. D. and many
others. As pointed out, Lorentz theory of collision broadening, while incap-
able of accounting for a shift of the maximum, does enlable a calculation of
the diameter of closest approach, 0, between the colliding structures. This
quantity would be somewhat analogous to the R& of Table II, and may be
compared with it. We are therefore tabulating 0., as calculated by kinetic
theory, " in the last column of Table II. The smaller values of R& which the
present theory provides are evidently more satisfactory, for it could hardly
be supposed that the "diameter" of an excited Hg atom in an impact with a
CO2 molecule is of the order of 18A when in its normal state it is only 3.6A.

The "half-width" of a line has been found by F. J. D. to be proportional
to the pressure. It is difficult to correlate the experimental half-width with a
definite feature of our model. Yet some interesting information may be de-
rived by calculating the statistical dispersion ("Streuung") s' of the fre-
quencies within the line. Putting as before q = —b/r', c = —a/r', and writing
for convenience

c= (a —b)/a, U= Qe(r;f), (27)

the dispersion of energies within the absorption line is, by definition,

$2

t (cU —D)'e ~~"rdQ

e «'dQ

"R. Minkowski, Zeits. f. Physik SS, 16 (1929). Cf. also M. W. Zemansky, Phys, Rev.
36, 21-9 (1930)."Values taken from Zemansky, Phys. Rev. 36, 219 (1930).
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On account of (22), etc. ,

Jt eUe n/ "rdQ

(29)

Hence (28) becomes on expanding

$2 (30)

Next replace U' by its value according to (27) and perform the integra-
tion in the numerator. The integrand is c'g;e'(r~)+c'g;„;P, e(r;) e(r;). As

previously, dQ is the product of the elements of space of all X perturbing
molecules. Each of the terms of c'g;»g, e(r;) e(r;) contributes to the in-

tegral the same value c'V/r —'[e(r)e '&"&" ]', and since there are altogether
N(N 1) terms —the total contribution of the second sum will be

N' 2—V"
~ e(r)e «'/""d0 —= V~D'

p'2

because of (24), and since N —1 may be replaced by N, N being very large.
But the denominator of (30) has the value V~, as pointed out before, so that

C2 N

V~ f ge2(r, ) e
—&// krd f1 —4&e2 ~

e2 (r) e
—«&r& /err2dr (31)

Thus it has been shown that the statistical dispersion of energies within

the absorption line, caused by perturbations alone, is proportional to the
density of the perturbing gas, or, roughly, to its pressure. The same is true,
of course, of the dispersion of wave-lengths.

This proportionality is disturbed if the "standard deviation" s is regarded
as determining the perturbation breadth of the line, As mentioned before,
there is no definite criterion for this choice as long as the accurate distribu-
tion is unknown. It is clear, however, that the standard deviation should

agree in numerical magnitude with the line widths if allowance is made for
other causes of broadening. Since s does not vary linearly with the pressure,
we can not expect perturbation broadening to be a constant fraction of the
total line width over the complete pressure range. Computing it for the
example of argon as the perturbing gas and choosing a pressure of 20 atm. ,

we find
e —= (4sN)9V)'" 10 "(a —b)/R '/' = 3.7 10 '.

This corresponds to a 6& of 3 cm —', as aga'nst F. J. D. 's half-width of 7 cm '.
For the other gases, the disparity is slightly greater, the computed standard
deviation being always smaller than the experimental half-width. This state
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of affairs may be regarded as satisfactory. Moreover, if the remainder of the
line width were considered as due to Lorentz broadening in the classical
manner and 0. computed from it, there would result better agreement with
our values of R~.""

The question arises as to how the pressure shift and broadening of emis-
sion lines is to be treated. A systematic discussion of this problem is difficult
since the statistical condition of the gas in which the emission occurs is in
general not a steady one, particularly when excitation is produced by strong
electrical discharges or thermal activation. If we suppose, however, that the
number of excited atoms at any time is small compared to the number of per-
turbing atoms, and the latter are all in their normal state, which will be true
umder proper experimental conditions, then the statistical analysis depends
mainly on the life time of the excited state. In this respect, two limiting cases
must be distinguished.

(1) The life time of the excited state may be so large that statistical
equilibrium between the excited atom and its perturbers is established be-
fore emission takes place. The statistical weight of any space configuration
is then e ~'«""i'" instead of e ~""'&~~ which was used in the preceding dis-
cussion. Consequently, formulae (25) and (31) are applicable if in the Boltz-
mann factor Bop is replaced by EIO.

(2) Emission occurs immediately after excitation, so that the statistical
distribution is always determined by the forces between the unexcited struc-
tures. In this case, formulae (25) and (31) apply as they are stated.

In either case will the results of the present analysis be a qualitative
guide. Nothing can be said in general, however, about the shift of lines which
are due to transitions between higher states, where the forces of interaction
may become very complex.

CRITIQUE AND SUMMARY

Aside from the necessary numerical uncertainties in the coefficients of
the interaction energies there is a valid objection against the method of cal-
culation employed in this paper. In solving the wave mechanical perturba-
tion problem the distance between the interacting structures has been treated
as a fixed parameter. Then quantum dynamical reasoning has been aban-
doned, and the remainder of the problem has been solved by the method of
classical statistics. We are, of course, forced to adopt such an inconsistent
treatment because of the difficulties which, at present, stand in the way of a
quantum dynamical description of a large assembly of systems coupled by
forces. It should be remembered, however, that this critique applies to all
the usual treatments of similar problems, such as the calculation of virial
coeKcients and the like.

The method is properly employed only as long as the thermal motion
of the molecules is slow compared to the secular changes which the internal
structure of the molecules undergoes as a result of the interactions. It is in-

"' ¹teadded in proof: The question as to the existence of such an additional eR'ect and
its quantum mechanical interpretation will be considered in a later communication.
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structive to carry this idea a little further and compare the various gases in
this respect. Let us choose the time 3 during which a molecule in its thermal
motion passes through a distance equal to its own gas kinetic diameter as a
measure of its slowness, and compare it with r, the period of secular varia-
tions. The magnitude of r may be obtained from the uncertainty relation:
AE r =6/2s, where AE is the energy of perturbation. For it we shall sub-
stitute b/RP, the energy at the closest distance of approach, referred to the
collisions of Hg with a gas molecule. (Cf. Tables I and II.) Thus the values
shown in Table III are found:

TABLE III.

A
Ng
02
COp
Hp

t 10» (sec.)

7
6.3
6.5

10
1.2

10» (sec.)

0.97
2.2
1.3
2.9
2.2

0.14
.35
. 20
. 29

1.9

The magnitude of r/t shows that in all cases we are working in a critical
region, and that the approximation should be much worse for H2 than for the
other substances. Indeed we are inclined to regard this large value of r/t,
which is obtained for He as weil as for H2, as indicating the unsuitability of
this method for problems of the type here discussed.

The neglect of exchange phenomena in the calculation of interactions re-
stricts formulae (14) and (16) to cases in which valence forces are absent.
For if a chemical compound could be formed, the curve g in Fig. 1 would be
entirely incorrect at small values of R. There would then in general be more
than one mode of interaction, and at least one of them would correspond to a
curve which, instead of turning upward as shown in the figure, continues
downward to a much stronger minimum at a shorter distance of separation.
Na and K are known to form a molecule. Hence, if the chemical affinity is
su%ciently great it may be that our considerations regarding the shift of the
D lines caused by perturbing K atoms are not appropriate.

To summarize: the phenomenon of pressure shift is to be understood as
produced by perturbations of the energy levels of the absorbing or emitting
molecule. The energy of perturbation is caused by the interactions of the
rapid internal motions of the structures, the forces being of the type desig-
nated as "dispersion" forces by London, and different from the forces of
static polarization. They vary with R 7, R being the distance between inter-
acting centers.

The theory is capable of explaining the numerical magnitudes of the shifts
observed experimentally within the margin set by the uncertainty of other
quantities involved in the calculation. It shows the shift to be proportional
to the pressure of the perturbing gas, as found empirically. It explains further-
more why most of the observed shifts are to the red, and suggests the occur-
rence of blue shifts in cases which have not been investigated. The direction
of the shift depends primarily on the relative spacing of the energy levels of
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the interacting structures. The discussion is restricted, however, to the effect
upon lines due to transitions between the lowest S and the lowest I' state.

The width of the line produced by the perturbations in question is an
appreciable portion of the measured half-width, provided that the standard
deviation of frequencies within the line is taken as a measure of the perturba-
tion width. This standard deviation increases with the square root of the
pressure. As a result, it is no longer necessary to hold classical Lorentz broad-
ening responsible for the total line width, a procedure which has been shown

to lead to improbably large collision diameters in some instances. The con-
siderations are immediately applicable only to absorption lines; but the
results should, under suitable excitation conditions, apply roughly to emission
lines as well.


