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ABSTRACT

Calculation of general physical constants.—The calculation of the general physi-
cal constants offers a rich and almost untouched field of investigation. In general each
equation for the calculation of a given constant contains also other general‘ constants,
and therefore does not, strictly speaking, evaluate any one of them. In 1929 the writer
solved this problem by a method of successive approximations, i.e., the constant first
evaluated was that one least dependent on others. This constant then became an auxi-
liary constant, of known magnitude, inthe equations for other constants. The method
breaks down when the probable error of any auxiliary constant is not small compared
to the experimental error. This is the case in the calculation of &, which always involves
e and in which the error in % is usually due mainly to the error in e. The present paper
gives in detail a logically correct method for the simultaneous evaluation of e and %,
from the several known functional relations between these two constants. The method
was suggested first by W. N. Bond, but was not carried by him to its logical conclu-
sion. The writer also disagrees with portions of Bond’s calculations and with the final
values of the constants that Bond adopts. )

General theoretical relation between ¢ and h.—Every so-called method for the
evaluation of % yields an equation of the type z=A4e" (1), in which 4, is an experi-
mentally determined magnitude, and #=3/3,4/3, or 5/3 according to the method em-
ployed. For least squares’ calculations it is necessary to use an equation linear in the
unknowns, and in the present case the most convenient form for such an equation is ob-
tained by the introduction of a new parameter %, defined by k.= A .¢¢", where egisa
tentatively adopted value of e. One then gets the linear equation h,=h— (ko 2e/eo)n.
The intercept at #=0 gives £, and from the slope one gets e (=Ae-+eo). In the present
work we assume e9=4.770 X107 es units, ko=6.547 X 107%" erg. sec. Plotted hn:n
curves, with the probable error in the function h, indicated by broken lines, are shown
in Figs. 1-7 and 10. The value of e so obtained is entirely independent of the adopted
eoand we thus have a new method for the evaluation of e, of greater potential accuracy
than any direct measurement. To obtain final most probable values of ¢ and k%, our ori-
ginal Eq. (1) is transformed to e=a,A™ (2), in which m=1/% and a»=(4,)"Y" Then
m=0 corresponds to a direct determination of ¢ and one can thus include in a single
equation al} data on e and %, and can determine final most probable values. This is the
essential extension of Bond’s method.

Least squares procedure.—The necessary least squares’ procedure involves most
of the questions discussed in the article preceding this, on the calculation of errors by
least squares. In order to make several corrections in Bond’s work, and to indicate
the proper procedure, a sample calculation is carried through in detail, using Bond’s
adopted data. The values of % and e so obtained agree with Bond’s results, but the
probable errors are quite different from those deduced by him. This solution is shown
in Fig. 1, curve a. The %, point for =>5/3 depends almost entirely upon the value
adopted for e/m. The points resulting from e/m=1.761X107 and ¢/m=1.769 are
shown on each figure. From %,3 one can calculate the fine structure constant «, and the
value of /4,3 corresponding to Eddington’s theoretical value 1/« =137 is shown in each
figure. Bond uses the results of 36 investigations and these are shown by circles in Fig.
1. The three resulting points (arithmetic averages of observations) for the k,:n curve
are shown by crosses.
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Additional solutions of bond’s data.—Bond weights each point according to the
number of observations composing it. When the reliability of the observations also is
included in the weighting, one obtains curve b, Fig. 2. The values of ¢, %, ¢/m, and 1/ «,
resulting from each solution, are collected in Table II (page 242). The first two solu-
tions differ mainly in respect to the probable errors. Three new investigations on e/m
have recently appeared, and Fig. 3 gives a solution corresponding exactly to curve b,
except for the inclusion of these three new observations. The new values of ¢/m are all
“low” and the calculated value of 1/a (137.115+0.054), for curve ¢, Fig. 3, deviates
appreciably from Eddington’s value.

Solutions based on 1929 data, using Eq. (1).—The writer believes that values of
constants should be derived mainly, if not wholly, from recent experimental work.
The data used by Bond include practically all work, new and old, with each investiga-
tion given equal weight. The writer in 1929 calculated a most probable value of %, for
each of the six available methods. Three of these (ionization potentials, photoelectric
effect and ¢;) correspond to #=3/3, two (x-rays and ¢) to n=4/3, and one (Rydberg
constant) to #=5/3. The six adopted values of %, are first given equal weight and
combined by the new method. The results are shown in curve d, Fig. 4. Then the
six observations are weighted according to their probable errors, and the results ap-
pear in curve e, Fig. 5. The point /5,3 is based on ¢/m=1.761 X107, since this value
now seems well established. The chief difference between curves d and ¢ and the pre-
ceding is due to the adoption of this value of ¢/, the “spectroscopic” value of the 1929
work.

Solutions based on present data, using Eq. (1).—The data now available for
each of the six methods are critically examined, and new most probable values of each
hy obtained. If, as has been customary during the past two years, one assumes that the
correct wave-lengths of x-rays are those determined from grating measurements, the
x-ray point is moved from n=4/3 to n=3/3, and an accompanying necessary correc-
tion gives a very high resulting value of k3. At the same time there remains at
n=4/3 only the very “low” 4 ; observation derived from ¢. Due mainly to these facts,
the resulting solution, curve f, Fig. 6, exhibits a definite incompatibility of the data
(r¢/7:=2.14). The results therefore cannot be used, and to get curve g, Fig. 7, the two
discordant methods (x-rays and ¢) are discarded. The resulting value of e (4.7732
+0.0072) represents the best independent determination by the new method, on the
assumption that the x-ray method belongs at »=3/3. Fig. 7 also includes a curve based
on 1/a=137. This curve requires ¢/m=1.7679, and leads to e=4.7824, h=6.5670.

Solutions based on Eq. (2).—By introducing a new parameter e,, = a,ko™, one can
obtain the linear equation e,,=e— (eoAh/ko)m, which is to be used in the least squares’
solution of Eq. (2). é,:m curves are shown in Figs. 8, 9, and 11. A simple relation is
derived, giving the value of e, corresponding to any k.. Curve k, Fig. 8, results from
the three . values used for curve g (converted to e. values), plus the oil-drop value ez
=4.768 +0.005. The resulting constants are practically identical with those adopted
in 1929, as given in Table I1. Curve ¢, Fig. 9, is based on the 1929 data, and represents
the constants that would have been obtained in 1929, had the data been properly
handled. There is a considerable change in some of the probable errors, but not in the
constants.

New solutions with x-ray method at »=4/3.—Very recent observations by Bear-
den, as well as the discrepancies noted in curve f, give convincing evidence that the
crystal wave-lengths of x-rays are correct, rather than the grating values. On this as-
sumption the x-ray method belongs at #=4/3 and a recalculation of the data of curve
f, with this one change, gives curve 7, Fig. 10, which exhibits no inconsistency of data.
The resulting value of e (4.7688 :0.0059) is the most reliable resulting from the new
method, and is in remarkable agreement with the oil-drop value. Curve k, Fig. 11, re-
presents the e, curve corresponding to curve j, with the oil-drop value added.

General conclusions.—(1) The values of ¢, # and 1/« depend in a very direct way
upon the value adopted for ¢/m. In the past ten years all investigations on e/m, with
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one exception, have given results in the close vicinity of 1.761, and with this value one
obtains (curve k) 1/a=137.307 +0.048. Conversely, the assumption 1/a=137 prac-
tically requires e/m =1.768, for which there is now very little experimental evidence.
This is the most important result of the present investigation. (2) It would appear that
the crystal wave-lengths of x-rays are correct, and the close agreement of the resulting
value of e (curve j) with the oil-drop value is strong evidence that there is no unsus-
pected error of any significance in Millikan’s work. (3) Curve & gives the most proba-
ble values of the constants (h=6.5443 +0.0091, ¢=4.7688 +0.0040, 1/a=137.307 +
0.048 and e/m =1.7611+0.0009), but these differ so little from the values adopted in
1929 that no change is advocated at this time. However, the probable errors of all con-
stants involving #*/e?, as published in 1929, are more or less in error, and a general
equation is given for the correct calculation of such probable errors. A full report on all

~ the general constants, including derived constants, will be published by a committee
of the National Research Council, whenever this seems necessary.

INTRODUCTION

HE calculation of probable values of the various general physical con-

stants offers a rich and hitherto almost untouched field of investigation.
Much time and effort have been devoted to the experimental evaluation of
each constant, and as a result there is a really extensive amount of experi-
mental material available to the computer. How this material should be
handled, mathematically, in order to obtain the most reliable values of the
desired constants, constitutes a problem of considerable complexity. This is
quite aside from the question of the proper selection and weighting of the
data, which involves primarily the individual judgment of the computer. If
each general constant could be evaluated by means of an equation that con-
tained no other general constant, the situation would be comparatively
simple. Unfortunately this is not the case. Each such equation normally con-
tains one or more additional constants, and in a previous investigation on this
subject! I have called these “auxiliary constants.”

In this previous work I attempted to solve the problem arising from the
presence of these auxiliary constants by calculating first the constant that
depends least on the other constants, and then consistently adopting this
value in all further calculations. In most cases the probable error in the con-
stant being evaluated is due chiefly to the direct experimental errors, and
depends only in a minor degree on the errors of the auxiliary constants. In
such a situation the procedure adopted in 1929 constitutes essentially a
“method of successive approximations” for the simultaneous evaluation of all
the constants, and is theoretically quite correct. The method, however, breaks
down completely when the error in the constant being investigated is due
chiefly to the error in one or more auxiliary constants. This is just the situa-
tion in the case of the Planck constant 4. There is no known method for
evaluating % that does not involve the electronic charge e as an auxiliary
constant, and the resulting error in % is, in most cases, due mainly to the error
in e. The writer pointed out this situation, in the 1929 work, but failed to
recognize the procedure necessary to give the best results.

1 R. T. Birge “Probable Values of the General Physical Constants,” Phys. Rev. Supple-

ment (now called Reviews of Modern Physics) 1, 1, 1929. This article will be denoted as G.C.
1929.
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A general statement of the correct procedure is as follows. If there exists
a theoretical equation containing, let us say, e, %, and e/m, this equation can-
not be said to furnish a value of any one of these constants. If, however,
there exist three different theoretical relations involving these three con-
stants, one can use the three relations simultaneously for the evaluation of
all three constants. If more than three such relations exist, the most probable
values of the constants are best determined by least squares. It has been re-
marked that the mathematically correct way to determine the atomic weights
of the elements is to make one simultaneous least squares’ evaluation of all
atomic weights, using all measured mass ratios. The practical objection is
that the necessary calculations might easily take centuries to carry out.

The situation, as it exists in connection with the fundamental physical
constants, is far less complex, due to the smaller number of such constants.
In fact it appears now as though e, %, and e/m are the only important con-
stants that should be simultaneously evaluated in a straight-forward manner.
In the present paper the problem is still further simplified by assuming a
value of e¢/m, so that only e and % remain as unknowns. The chief purpose of
the paper is to present what appears to be a theoretically correct method for
finding the most probable values of these two constants. It is hoped that this
general method will be used in future calculations, and the method is there-
fore given in detail. The paper also includes a re-examination of available
data, and a new calculation of probable values of e, %, and the fine structure
constant «. The final conclusion of the paper is that there is at the moment no
sufficient cause for advocating a change in the writer’s 1929 values of these
constants, but there is certainly cause for discarding the very crude method
used in these 1929 calculations.

The major principle underlying the new method of calculation has been
suggested by Bond,?? but in his two articles Bond fails to carry the theory
to its logical conclusion. The writer does not agree at all with Bond’s choice
of data, nor with his weighting of the data, and it is for that reason that a re-
examination of available material has been made. All of Bond’s calculations
are carried out by least squares’ methods, but in several cases he seems to
have used formulas not applicable to the situation. In fact there is scarcely
an English text on the subject of least squares that even mentions some of the
formulas needed for these calculations. It is partly for this reason that the
paper just preceding this? has been written. The work of the present paper
really constitutes an interesting example of the application of least squares,
and I open the paper with a discussion of the fundamental equations, and the
correct procedure for handling them, using Bond’s own data as illustration.
This is followed by a recalculation of the data adopted in my 1929 article,
and finally by a discussion and calculation of what appears to be the best
data available at present.

2 W. N. Bond, Phil. Mag. 10, 994 (1930).

3 W. N. Bond, Phil. Mag. 12, 632 (1931).

¢ R, T. Birge, “The Calculation of Errors by the Method of Least Squares.” To be referred
toas L.S. 1932,
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THE GENERAL THEORETICAL RELATION BETWEEN ¢ AND £

Each so-called method for the evaluation of % yields an equation of the
type
b= A (1

where e is the electronic charge and 4, is an experimentally determined mag-
nitude. The value of #, for each method, is listed in the last column of the
table on page 57 of G. C. 1929. One observes that three methods (ionization
potentials, photoelectric effect and ¢,;) involve #=3/3, two methods (x-rays
and ¢) involve #=4/3, and one method (Rydberg constant) involves n=5/3.
Now, as noted in the Introduction, Eq. (1) is, strictly speaking, not an equa-
tion for the evaluation of k. It does, however, permit the simultaneous evalua-
tion of e and %, since at least two values of #, together with the corresponding
values of 4,, are available. This is the major point brought out in Bond’s
papers. His procedure, however, does not lead to the final most probable
values of e and % because he omits all directly measured values of ¢, such as
for example that obtained by the oil-drop method. What Bond does obtain is
a new value of ¢, entirely independent of the oil-drop value.

To get the final most probable values of ¢ and %, Eq. (1) should be rewrit-
ten as follows®

e = anh™ 2)

where

m = 1/n and an, = (4,)"1/". (3)

Then m =0 corresponds to any directly determined value of e, while m =3/5,
3/4 and 3/3 correspond to the above-mentioned values z=5/3, 4/3 and 3/3.
It is thus possible to include simultaneously all work on e and %, and so to
obtain final most probable values of both constants. There is, however, an
important advantage in the preliminary use of Eq. (1). By means of this
equation one can determine a value of e that should be consistent with the
directly observed value. Only when such consistency exists is it permissible
to use Eq. (2) to obtain a final most probable value of e. For that reason a
number of calculations will be made, using Eq. (1), and various deductions
will be drawn from the results. Then a selected number of these calculations
will be repeated, using Eq. (2).

Eqgs (1) and (2) are non-linear in the unknowns, e and %, and the proper
method of procedure, in order to obtain least squares’ values of such un-
knowns, is to be found in every good text. The probable errors in the result-
ing values of ¢ and % are given by formulas that appear in many, but not all,
texts on least squares. Finally, in order to evaluate the fine structure con-
stant e, it is necessary to know the value of a certain f(z) at the point #n =2,
and the probable error in « follows directly from the probable error of the
Sfunction at this point. It is therefore necessary to determine the probable

5 The writer is indebted to Professor R. B. Brode for this important suggestion.
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error of a function whose coefficients (e and %) have been simultaneously
evaluated by least squares. This type of error, as noted in L. S. 1932, is
scarcely mentioned in the literature, and has accordingly been discussed
rather fully in that article.

THE LEAST SQUARES PROCEDURE

As already noted, Eq. (1) involves % and e as unknown quantites, and »
and 4, as known quantities. When an equation is non-linear in the unknowns,
the standard least squares procedure® is to adopt approximately correct
values of the unknowns, and then to calculate the proper corrections to be
applied to these tentative values. Using a Taylor’s expansion one obtains the
necessary linear observational equations. In this case let ¢y and %y be the
tentatively adopted values. Also let

e = ¢y + Ae
} @
h = ho+ Al
Eq. (1) is now to be written as
f(h,e) = he™ = A,. (5)

The general form of the resulting observational equation is

EC e

where

I = f(h: 6) - f(ho, 60) = An bt hoeo_". (7)
Egs. (5), (6) and (7) give

60—”A}L el nhoeo_("+1)Ae = An - hoeu—". (8)

Eq. (8) is not in a convenient form for use as an observational equation, for
the following reason. The various precision methods for determining % involve
proportional errors in 4, (and in k) of the same order of magnitude. The
absolute value of 4, (and accordingly its absolute error) varies, however, as
e, as shown by Eq. (5). Now for each increase of 1/3 in the value of %, e
and 4, increase about 1280 fold. Hence the weight of each observational
equation (which is to be taken inversely proportional to the square of the
absolute probable error) varies enormously with #, and this introduces a
troublesome feature in the numerical calculations.

The whole situation is greatly simplified by the introduction of a new
parameter

by = Ageon. ©)
Substituting in Eq. (8) the value of 4, from Eq. (9) and using Eq. (4) we ob-
tain
Ae
hn = h — (lzo——)n (10)
€

6 G. C. Comstock “Method of Least Squares” pp. 21-23. Merriman “Method of Least
Squares” pp. 200-204. W. W. Johnson “Theory of Errors etc.,” pp. 93-94.
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Eq. (10) is of the form

y=a-+ bx (11)
where
Ae
a=h b=—<h0—> |
€o ‘ (12)
y="r, x=mn Y

This new observational equation is linear in the unknowns, ¢ and b, and the
absolute value of y, or k,, changes only very slightly with #. Hence the ab-
solute error in %, is always of the same order of magnitude, and the various
observational equations have comparable weights. Moreover, as discussed in
footnote 20 of L. S. 1932, the least squares’ formulas are strictly applicable,
since the errors of observation are confined to the ordinate vy.

In terms of a graph, the various observations %, obtained from Eq. (9)
are to be plotted as ordinates against # as abscissa. The best straight line
through the data is then to be calculated by least squares. The intercept of
this line on the %, axis, at n =0, gives the desired value of #. From the slope
of the line we can obtain Ae and so, by Eq. (4), the desired value of e. This is
the method used by Bond.

In my 1929 paper, & was calculated by the use of Eq. (9). That is, a most
probable value of e (here called e;) was assumed, and then from each ob-
served 4, one calculated an %,. The weighted average of the various %, values
was taken as the most probable value of k. Such a procedure is equivalent to
fitting the %, values to the best horizontal straight line (h, =constant). It is
legitimate only when #%,, plotted against #, shows entirely irregular variations
(due solely to the experimental errors in 4,). If now the assumed value of e
is not correct, the values of %, will show a regular trend with z. The least
squares’ calculation of the best straight line through the various points is
essentially the calculation of a new value of ¢, (to be called ¢) which, used in
Eq. (9), will give a new set of values of %, showing the least possible trend with
n, and is, simultaneously, the calculation of the best average value (to be
called %) of this new set of values of %,. Even if the trend of %, with # is so
small as to be undetected on an %,:# plot, the least squares’ solution should
be carried out, since only in this way can the most reliable values of ¢ and %
be obtained.”

In G. C. 1929 six methods for calculating % were discussed. These methods,
as already noted, correspond to values of #=3/3, 4/3 and 5/3. There is a
seventh method, corresponding to #»=6/3, which was not mentioned because
its precision was not yet comparable with the others. This seventh method
concerns the fine structure constant «, which is given by the equation

7 The reader is reminded that in such a method the value e, first assumed is naturally some
directly determined value of e, but the final calculated value of e quite ignores this assumed
value. Hence, as emphasized by Bond, the procedure now under discussion constitutes an
entirely new and independent method for evaluating e, but as noted earlier, a really proper
procedure for determining a final most probable value of e must use both the new value and the
directly determined value. This is accomplished by the use of Eq. (2), in place of Eq. (1).
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= 2me*/ he (13)

h = <g>e (14)

The most accurate direct measurement of « is that by Paschen,® who found
Avg,=Ryg, 02/16=0.3645+0.0045 cm™, Using Paschen’s value? Ry,=109-
722.1440.04 cm™, one obtains a=(7.291 +-0.045) X103, It is more conveni-
ent to state « in terms of its reciprocal, and in this case 1/a=137.16 +0.85.
With e=4.770X10-1, this yields »=(6.5440.04) X 102" erg -sec., exclusive
of the error in e. This is a much less accurate value of # than that obtained by
the other six methods, as will appear in the discussion to follow. Accordingly
this seventh method is omitted, and we shall use our final calculated values of
h and e to determine a most probable value of 1/a. The most important con-
clusion of Bond’s two articles is that the available data are in agreement with
Eddington’s theory'® that 1/a=137. The value of 1/a will accordingly be
discussed with special reference to this point.
In terms of Eq. (9) we may write Eq. (14) as

Hence, after evaluating the constants of Eq. (10), we use that equation to
calculate %y and then Eq. (15) to calculate 1/a. The probable error in %, is the
error in the function

Hence

f(n) = h — (hl)%e:)n (16)

0

at the point # =2, and from Eq. (15) the proportional error in 1 /e, aside from
the negligibly small error in ¢, equals the proportional error in %,. The results
published by Bond indicate that he used an incorrect formula for the error in
1/, as well as for the errors in other quantities. It therefore seems advisable
to go through all steps of a typical solution. For this purpose I shall use the 36
values of %, quoted on page 634 of Bond,? without any comment as to the
scientific value of the data.!! Such comment will appear later.

The data listed by Bond consist of 14 observations of %, corresponding
to n=3/3, 9 corresponding to n=4/3, and 13 corresponding to #=>5/3. These
observations are plotted as circles in Fig. 1 of the present article. Double
and triple circles indicate two and three coincident observations. Now we de-
sire a solution of Eq. (10), and in this case the final data consist of three values
of h, (to be called poinis), one for each of the three values of # (3/3,4/3 and

8 F. Paschen, Ann. d. Physik 50,901 (1916). See also 82, 689 (1927).

9 See G.C. 1929, pp. 45 and 46.

10 A, S. Eddington, Proc. Roy. Soc. A126, 696 (1930).

11 Tn calculating values of %, by means of Eq. (9), Bond uses ¢,=4.770X 10710 ¢s units, and
ho=06.547X107%7 erg- sec. These are the values given in G.C. 1929, and Bond’s paper, like the
present one, is concerned with possible changes in these values.
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5/3). The function obviously cannot have two or more values for a single
value of #, and any observed scattering of observations at one value of #»
must be due solely to experimental errors. On the other hand, a variation of
ha with # may well exist, due to the fact that our adopted e, is not the best
value of e, and it is this variation that we are trying to evaluate. The first
step is then to calculate a weighted average value of %, for each different value
of n. Bond gives each original observation'? unit weight, so that each result-
ing point is to be given a weight (p) equal merely to the number of observa-
tions of which it is the arithmetic average. These points®® are denoted by
crosses in Fig. 1, and are listed in Table I, col. 2.

TasLE 1.
1 2 3 4 5 6 7 8 9
n hn(obs) P ha(calc) ra' r P ha(calc) 7a
curve ¢ curve b
0 6.55751 0.00960 6.55681 0.00635

3/3 6.5473 14 6.54561 0.00307 0.0019 2.71 6.54630 0.00243
4/3 6.5364 9 6.54165 0.00204 0.0034 0.86 6.54280 0.00132
5/3 6.5395 13 6.53768 0.00317 0.00085 13.84 6.53930 0.00112
6/3 6.53373 0.00521 6.53579 0.00210

653 ~

652 ’ —

o Vel 4] % n ‘f/ola s %
| | 1 | 1 |

Fig. 1. Solution of Eq. (17). 36 observations (circles) used by Bond, with each resulting
point (cross) weighted according to the number of observations composing it. h=6.5575,
e¢=4.7787. Probable error of the calculated function hn, shown by broken lines.

In discussing least squares’ formulas, it is more convenient to use Eq. (10)
in the general form of Eq. (11), to which it is connected by the relations given

12 Just as in L.S. 1932, T shall attempt to avoid confusion by using the word observation for
each %,, as determined directly from one investigation, and the word point for the average
value of %, from all observations at any one value of 7.

18 Tn discussing % and e, the factors 10727 and 10710 respectively are omitted whenever this
can cause no misunderstanding.
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in Eq. (12). The least squares’ formulas for ¢ and b, and for their probable
errors 7, and 7, are given as Eqgs. (33) to (38) of L.S. 1932. With each point
given the arbitrary weight shown in Table I, col. 3, it is possible to calculate
all probable errors only on the basis of external consistency'i.e., by the use of
7e, as defined by Eq. (38), L.S. 1932, Eq. (10), thus évaluated, is plotted
as curve ¢ in Fig. 1, and is given by

hy = 6.5575 + 0.0096 — (0.0119 + 0.0071)#n. (17

Hence %(Ae/ey) =+0.0119+0.0071, and since %,=6.547 and ¢,=4.770, we
find Ae=+40.008740.0052 or e=4.7787+0.0052. Also, from Eq. (17),
h=6.5575+0.0096.

In place of these results, Bond gives 2=6.5575+0.0053, and ¢=4.7787
+0.0029. His published errors seem to have been obtained in the following
way. Instead of getting the three average values of %, (the points), he uses
Egs. (33) and (34), L.S. 1932, as though there were 36 different points. It is
easily shown that this procedure will give values of a and b identical with
those obtained by the method of weighting used in Table I, col. 3. The cal-
culated errors will however #ot be the same, as the results show. This is due
to the fact that his value of 7, is not correct. The rest of Egs. (36) and (37),
L.S. 1932, is unchanged. Bond calculates 7, from an equation of the correct

form, i.e.,
vaz 1/2
(s — 2))

but he uses p=1, s=236, and v=the deviation of each original observation
(36 in all) from its value calculated by Eq. (17). In the correct interpretation
of Eq. (18), (or of Eq. (38), L..S. 1932), v is the deviation of each of the three
points (average values of %,) from its value calculated by Eq. (17), p is the
weight of the point, and s = 3. By using the former incorrect interpretation of
Eq. (18), I have been able to reproduce all Bond’s published probable errors,
and therefore deduce that that was the procedure he used. That his procedure
cannot be correct is immediately evident from the fact that if all observed %,
values correspond to the same value of # {(giving only one point), no solution
at all would be possible. An increase in the number of observations at any one
value of % is useful only in giving a more reliable point. The accuracy of the
resulting coefficients in Eq. (10) depends solely on the number of different
values of 7 represented (i.e., on the number of points), and the accuracy with
which these points fit a linear relation. These facts are brought out more
clearly in the actual calculations given later.

The values of %,, as calculated from Eq. (17), are given in col. 4 of Table
I, and from the calculated %, we obtain 1/« by writing Eq. (15) as

c h
1/a = ( >h2 - : : (19)
Omeq? 47.68575 X 10-%0

1 See section on “Internal versus External Consistency,” L.S. 1932.
15 Throughout this article s is used for the number of observations, (or the number of
points), in place of the usual #, in order to avoid confusion with 7 in Egs. (1) and (10).

Fo= 0.6745< (18)
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The result is 1/a=137.016. The proportional probable error in 1/, as has
been pointed out in connection with Eq. (15), equals the proportional error
in the function %, at #=2. The formula for obtaining such an error of a func-
tion is given by Eq. (40) L..S. 1932. It is interesting to calculate the probable
error in the function #%,, not only at =0 and 2, but also at each value of #
considered. This error is given in col. 5, Table I, and is indicated by the
broken lines of Fig. 1. The error has been calculated and is similarly shown in
each of the succeeding figures. In the case of Eq. (17), ky=(6.5337 £0.0052)
X 10~27, Hence, by Eq. (19), 1/a=137.01540.104 (Bond gives 137.01; £ 0.05,).

It is of interest to calculate also the value of e/m that corresponds to
hsss, as given by Eq. (10), From the formula for the Rydberg constant® and
from Eq. (9) we obtain

2% ey 4.94214 X 10772
Rw62h5/33 h5/33

e/m = (20)
Conversely, in obtaining observed values of hs;; from any observed value of

e/m, we have the relation
7.90625 X 10—

(e/m X 10-T)1/

In taking the cube root, it is convenient to use the form e/m X10~7=1.761 or
thereabouts, and the factor in the numerator of Eq. (21) corresponds to this.

 The proportional error in the calculated value of e/m is, from Eq. (20),
three times the proportional error in the calculated %;3. Using this value of
hs;3 and its error, as given in Table I, we obtain from Eq. (20), ¢/m = (1.7686
+0.0026) X107, This is merely the value of ¢/m that it is necessary to assume,
in Bohr’s formula for the Rydberg constant, in order to be consistent with
the values of % and e calculated from Eq. (17). As in the case also of 1/«, the
writer made such a calculation of ¢/m in his 1929 work, but it was not evi-
dent at that time how the corresponding error in 1/ and in e¢/m should be
calculated.

It will appear from the discussion to follow that the most probable values
of & and e depend chiefly on the value adopted for e/m. In 1929 the writer
gave lwo values, the so-called “spectroscopic” value 1.761 X107 em units, and
the “deflection” value 1.769 X 107. These, by Eq. (21), correspond to values
hs;3=6.54714X107%7 and 6.53724 X 1077 respectively. These two points are
located by arrows on each figure of this article. The 1929 value, 7 =6.547 (our
present ko), is also shown on each figure. Finally, by Eq. (19), Eddington’s
value 1/a=137 corresponds to h;=6.53295X10"27, and this point is in-
dicated by a triangle, on each figure. The discrepancy between each new
value of e, and the previously adopted e,=4.770 can be judged from the
slope of the %, curve. A horizontal line would indicate e=¢,.

This completes the discussion of the various formulas needed for the solu-
tion of Eq. (1), and we pass now to a consideration of the scientific aspects
of the problem.

(21)

5/3 =

16 G.C. 1929, page 49.
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OTHER POssIBLE VALUES OF ¢ AND s BASED ON
BoND’S OBSERVATIONAL DATA

Bond? has chosen, from all available data, the 36 values listed in his article
and used as illustrative material in the preceding section. Even assuming
that these 36 observations should be chosen, it does not follow by any means
that the values of e and % corresponding to Fig. 1 are the most probable. In
the first place, Bond gives each observation unit weight and, as has been dis-
cussed, this is equivalent to weighting each of the three resulting points
merely according to the number of observations that it represents. It is how-
ever quite obvious that the reliability of any point k., for a given value of #,
should be judged by the consistency of the observations as well as by their
number. Accordingly we shall first consider other possible ways in which these
36 observations, and the resulting 3 points, may be weighted, and shall draw
certain conclusions as to the most desirable method of weighting. These con-
clusions will then be applied to the newer data now available.

The most rigorous method of weighting should start with the 36 observa-
tions. Each should be weighted according to what is judged to be its probable
error. Such a probable error should in turn be based not only on the purely
accidental errors of observation, but also on all other possible errors, con-
stant or systematic, so far as these can be estimated. Since the 36 observa-
tions listed by Bond include practically all work in the field, old as well as
new, such an evaluation would be very difficult to make in an intelligent
manner, and does not seem worth the effort. The method will however be
applied to the solutions given later.

(1) Curve b. A simpler method of weighting the observations is that a-
dopted by Bond. Each observation is given equal weight and the arithmetic
average of all observations at a given value of # is calculated. We thus ob-
tain again the three points listed in col. 2 of Table I. We shall, however, weight
each of these points according to its probable error 7, and not merely ac-
cording to the number of observations included by it.” The values of 7 cal-
culated from Eq. (13) L.S. 1932, and the resulting values of p(=c/#?), are
listed in cols. 6 and 7 of Table I. In this, as in succeeding calculations, the
arbitrary constant ¢ is taken as 10~%. A comparison of cols. 3 and 7 of Table
I shows how greatly the weighting is modified when the consistency of the
observations is considered.

The least squares’ solution of Eq. (10) is now

ks = 6.5568 + 0.0063 — (0.0105 £ 0.0041)7. (22)

This equation is plotted as curve b, Fig. 2, together with the probable error
of the function, at each value of #. The arrow attached to each observed
point measures its assumed error as listed in Table I, col. 6. The calculated
values of %, and the probable errors of these calculated values are listed in
cols. 8 and 9 of Table I. All of these probable errors associated with Eq. (22)
have been calculated, just as in the case of Eq. (17), on the basis of external

17 See Egs. (13), (14), (15), L.S. 1932 and accompanying discussion.
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consistency. In the present case, however, the three individual points have
been given weights based on their probable errors and it is accordingly pos-
sible to calculate errors also on the basis of internal consistency.

The subject of internal versus external consistency has been discussed
fully in L.S. 1932, and the reader is reminded that there is a constant ratio
between all errors, as calculated by the two systems. This ratio is computed
most simply by using a hypothetical point of unit weight. For this point the
probable error on the basis of external consistency is given by 7., Eq. (18), and
the corresponding error on the basis of internal consistency is, in this article,
always given by

ri = (c)V = (107912 = 3.162 X 1073. (23)

In the case of the solution now under discussion, the data needed for Eq. (18)
are given in cols. 2, 7 and 8 of Table I, with s=3. The result is 7,=4.188
X103, Hence r,/7;=1.32.

T T T T I T
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Fig. 2. Solution of Eq. (22). Same data as in Fig. 1, but points weighted according to the
consistency of the observations, as well as their number. Probable error of each point shown
by attached arrows. #=6.5568, e=4.7777.

Now, as shown in L.S. 1932, these two methods of calculating errors
should agree, except for statistical fluctuations, i.e., the ratio 7,/r; should be
unity. Any considerable deviation from unity is an almost sure indication of
the presence of constant or systematic errors in the data. In the present case
the 32 percent deviation from unity can well be attributed to chance, since
the proportional probable error in the ratio is given by 0.4769/s'2=27.5 per-
cent, with s =3.18 We therefore conclude that there is here no definite evi-
dence of systematic errors. In such asituation I adopt the policy suggested in

18 This formula for the probable error of the ratio appears as Eq. (6), L.S. 1932. As discussed
in footnote 26 of that article, the probable error in any one of the actual constants, such as % or
e, is more uncertain than this, since the uncertainty in the weight of the constant must also be
included. Bond? does not include this second source of uncertainty and uses the equation just
quoted with s=236. He thus obtains an apparent reliability for his stated probable errors greatly
in excess of the true value.
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L.S. 1932, and use 7., since it is larger than 7;. The errors given in Eq. (22)
are therefore retained, and the various results that may be derived from this
equation are as follows,

h=6.5568 + 0.0063 1/a = 137.060 + 0.044
e=4.777T7 £ 0.0030 ¢/m = 1.7673 £ 0.0009.

These two solutions differ mainly in the values of the probable errors and
illustrate in a striking way how dependent such results are upon the adopted
method of weighting.

For convenience of comparison, the values of the four constants, for all
the different solutions discussed in this paper, are listed in Table II. Each of
these solutions is plotted, and the curve designation appears in the first
column of the table. The second column gives the number of the equation
stating each solution.

- 6.93 -

0 % 2% % n %% % &%
1 i I ! i I 1

Fig. 3. Solution of Eq. (24). Same data and method of weighting as in Fig. 2. but with
the addition of three new observations of %3 (from values of e/m). h=6.5539, e=4.7756.

(2) Curve c. In listing the 36 observations used in the preceding analysis,
Bond apparently attempted to include all available data. Even since the writ-
ing of his paper, however, three new investigations on e/m have been com-
pleted. Campbell and Houston'? from the Zeeman effect, get 1.7577; Perry and
Chalffee,?® from electrostatic acceleration of electrons get 1.761 +0.001; and
Kirchner,? by the same method, gets 1.7598 4+ 0.0025. It is of interest to add
these three new observations, and to obtain a new solution by the same pro-
cedure (including method of weighting) as used for curve . The points at
n=23/3 and 4/3 and their weighting are unchanged. For n=35/3 we have
hn=06.5413 +0.00096, giving $ =10.85. The solution is

e = 6.5539 + 0.0072 — (0.0077 + 0.0047)7. (24)

19 J. S. Campbell and W. V. Houston, Phys. Rev. 38, 581 (1931). Their final value (Phys.
Rev. 39, 601 (1932)) is 1.7579 £0.0025, but this small change does not affect the final average
value of %53.

20 C, T. Perry and E. L. Chaffee, Phys. Rev. 36,904 (1930).

2t F, Kirchner, Ann. d. Physik (5) 8,975 (1931).
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This is shown by curve ¢, Fig. 3, and the various resulting constants are
tabulated in Table I1. The errors are again calculated on the basis of external
consistency, since the ratio 7./7; is now 1.49.

TasLe II.

Curve Eq. h e 1/« e/m
a 17 6.5575+0.0096 4.7787+0.0052 137.016 £0.109 1.7686+0.0026
b 22 6.5568 +0.0063 4.77774+0.0030 137.060 +£0.044 1.7673 +0.0009
c 24 6.5539+0.0072 4.77564+0.0034 137.115+0.054 1.7659+0.0011
a 25 6.5568 +£0.0064 4.7753+0.0037 137.193+0.087 1.7631+0.0021
e 26 6.5360+0.0117 4.7652+0.0053 137.338 £0.064 1.7612 +0.0009
f 36 6.563 +0.022 4.777 £0.010 137.22 +0.12 1.76114+0.0021
g 44 6.5543+0.0166 4.77324+0.0072 137.266+0.079 1.761 +0.001
h 55 6.5464 +0.0095 4.7696+0.0041 137.30240.048 1.7610 +£0.0009

1929 6.547 +0.008 4.770 +0.005 137.29 +0.11 1.761 +0.001
7 56 6.5441+0.0079 4.7688+0.0035 137.303 +£0.046 1.7612 +0.0009
7 57 6.5443+0.0133 4.7688+0.0059 137.305 +0.069 1.7611+0.0010
k 58 6.5443 +£0.0091 4.7688 +0.0040 137.307 £0.048 1.76114£0.0009

Certain conclusions may be drawn from the constants for this solution.
In the first place, the value of 1/« differs from 137 by more than twice the
probable error, so that the data can hardly be said to support Eddington’s
theory. The new calculated value of e agrees with the directly determined
value (4.77040.005) as well as is to be expected, considering the probable
erfors. This is very important, for it indicates that there are no serious sys-
tematic errors in the direct measurements. Points like these will, however, be
discussed more critically after various other solutions have been obtained.

SoLUTIONS BASED ON 1929 Darta, Using Eq. (1)

The results given by curve ¢ might be considered the best that can be ob-
tained, if it is wise to include all possible investigations and to give to each
investigation the same weight. The writer, however, emphatically disagrees
with such a choice of data. At the risk of repeating remarks made in previous
articles, the following statement of policy is presented.

Most important constants have been measured many times, and in some
cases by a number of different methods. The only object of repeating previous
work is to obtain a greater precision in the result. Very often this precision
is attained by the elimination of various sources of constant and systematic
error that there is reason to believe existed in the earlier work. Now the as-
signment of equal weights to the various results is merely the assumption of
equal reliability. If, however, the newer results are no more reliable than the
older, it would appear that these newer investigations represent more or less
wasted effort. The computer may remark that he does not wish to pass judg-
ment on the various investigations, and therefore gives them all equal weight.
I feel, however, that the computer is practically compelled to pass such judg-
ment; otherwise the computation should not be made.

When one thus proceeds to consider the available data, it becomes im-
mediately evident that the newer investigations are in general entitled to far
greater weight than the older. The original experimental work on a given
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constant is often very brilliant, but the numerical results are likely to be
marred by the presence of constant errors that is revealed only by later and
more detailed investigation. For this reason it is, I believe, generally agreed
at the present time that values of constants should be based almost wholly
on the most recent work in the field. This is the theory adopted for my 1929
work, and it is the theory on which the rest of this article is based.

(1) Curve d. In the case of curves a, b and ¢, all observations correspond-
ing to a given value of # have been averaged together. It has, however, been
noted that three different methods for evaluating % correspond to z=3/3, two
ton=4/3,and one ton=>5/3. Itseems best to consider separately the value of
hn, resulting from each of these six methods. That procedure was adopted in
1929 and the resulting values are listed in the table on page 57 of G.C. 1929.
The weighted average obtained then was based on the assumption that there is

I I T I I I I

0 % 26 b 7 7% 5 V
U ! 1 | 1 l I

Fig. 4. Solution of Eq. (25). Most probable value of /., from each of the six methods, as
adopted in 1929. Each point weighted according to the number of observations composing
it. h=6.5568, e=4.7753.

no variation of &, with #. It is therefore of interest to consider what values of
h and e would have been obtained in 1929, had the data been handled by the
new method. In making this calculation, all six values of %, are first given the
same weight, and are later weighted according to their probable errors. This
is done deliberately, to show the change in the resulting values of ¢, % etc.,
brought about by the change of weighting.

Proceeding to the first calculation, we obtain the final value of %;/; from
the arithmetic average of the three observations (methods) for which »=3/3.
This point is given a weight of three. Similarly the final value of %4/ is given
a weight of two, and k5,3 a weight of unity. It is impossible here to base the
relative weights of these three points on the consistency of the observations,
since in the case of fs,3 there is only one observation. The three points and
their weights are listed in Table III, cols. 2 and 3. The solution of Eq. (10)
is now given by

h, = 6.5568 + 0.0064 — (0.0073 + 0.0051)z%. (25)
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This is plotted as curve d, Fig. 4, and the resulting constants are listed in
Table II. In Fig. 4 the six observations are indicated by circles, and the three
resulting points by crosses. The divergence of this solution from the preceding
is due chiefly to the fact that the value of %53 is now based solely on the
“spectroscopic” value of e/m (=1.761). As is evident from Fig. 4, this raises
the value of 1/« considerably above the 137 figure.

Tasrg II1.
1 2 3 4 5 6 7
n ha(obs) P hn(obs) P h. (obs) b
curve d curve e curve f
3/3 6.5503 3 6.5472+0.0058 0.30 6.5605 +0.0046 0.47
4/3 6.5445 2 6.5409 +0.0037 0.73 6.539 +0.0040 0.625
5/3 6.5471 1 6.5471+0.0012 6.94 6.5471+0.0012 6.94

(2) Curve e. We now proceed to consider the probable error in each of the
six observations, in order to obtain a more reliable basis for weighting. The
error we desire is that in %,. As shown by Eq. (9) this is merely the errorin &
due to all sources except the electronic charge. It is not the error listed in
the table, page 57 of G. C. 1929, since there the error in e is included. From
~ the discussion on pp. 48-57 of G.C. 1929, the desired errors are as follows.

(a) In the case of the Rydberg constant, the errors in ¢ and R, are negligi-
ble. The proportional error in hs/3 is one-third the proportional error in e/m.
Assuming ¢/m =1.761+0.001, we obtain the value of %3 listed in Table 111,
col. 4. The corresponding weight p is listed in col. 5.

(b) At n=4/3 there are two methods. The first involves the Stefan-Boltz-
mann constant o, for which 5.7354+0.011 was adopted in 1929. The only
significant proportional error in %43 is one-third the proportional error in o.
Hence?? from o, we obtain %43=06.539+0.00405 (p=0.610). The second
method involves measurements on the continuous spectrum of x-rays. The
value adopted in 1929 is 6.550 £0.009 (p =0.124). This result was obtained
by giving an arbitrary weight of two to the value 6.559, as calculated by the
writer from the experimental results of Duane, Palmer and Yeh, and a
weight of unity to the similarly calculated value 6.532, based on Wagner's
work. The error +0.009 just quoted is, as noted on page 53 of G.C. 1929, the
regular least squares’ probable error, and is therefore the error desired here.?
The weighted average result of these two methods is 6.5409. The ratio 7./7;
is 0.75 and an error based on internal consistency (7;) is accordingly used. The
final result for %43 is given in Table 111, col. 4. The weight of this result, since
7i is used, is of course merely the sum of the weights of the two methods.

(c) There are three available methods for obtaining the point at z=3/3.
The first is that of ionization potentials, and the only significant error is that

22 Tt was found later that the correct error is +0.00419. This corrected value has been used
in curve j ahead, but it did not seem necessary to make a recalculation here. See also footnotes
37 and 43.

23 In the 1929 work I accidentally neglected to compound this error with that due to e.
The value that should have been used in 1929 is +0.011. )
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in the measured voltage. The resulting value of £is 6.560 +0.0131 (» =0.0583).
In the case of the photoelectric effect the various assumed errors are dis-
cussed on pp. 53-54 of G.C. 1929. The result is 6.543 +0.0073 (p=0.1876).
In the third method the only error that concerns us is that due to ¢, itself.
With ¢;=1.432+0.003, one obtains 2=6.548+0.0137 (p=0.0533). The
weighted average of these three values of A3/3 is 6.5472 and the ratio 7./7;
=0.54. Here again the results of the various methods, for a given value of #,
are more consistent than is to be expected from theory, although the de-
viation is not unreasonable. Therefore we again base the final probable error
on 7; rather than on 7,. The resulting value of %33 is given in Table 111, col. 4,
and as before the weight is merely the sum of the three weights just given.
Using the data listed in Table III, cols. 4 and 5, we obtain

By = 6.5360 £ 0.0117 4 (0.00653 £ 0.00725)%. (26)

In this case 7,/7;=0.89 and the quoted errors are based on ;. This equation
is plotted as curve e in Fig. 5. The adopted probable errors of each of the
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Fig. 5. Solution of Eq. (26). Same data as in Fig. 4, but probable error of each of the
six observations computed, and all weights based on probable errors. 5=6.5360, ¢=4.7652.

three points are indicated, but not those of the six observations (circles). It
is very gratifying to find that r./7; is less than unity, in the case of the ob-
servations and also in the case of the points. The results thus show no indica-
tion of constant or systematic errors in any one of the six adopted values
of ky.

The resulting values of the various constants are given in Table II. Since
they do not include any direct measurement of e, they cannot be called the
results that should have been obtained in 1929. (Such results are given in
curve 7 ahead.) The only fact that seems worthy of mention is the rather
large difference in the values of the constants and also of their probable errors,
in curves d and e. This difference is due solely to the change from arbitrary
equal weighting for all six methods to a more logical system of weighting.

SoLuTtioNs BAsED ON PRESENT Data, Using EqQ. (1)

We proceed now to a re-examination of all available data, beginning with
the methods for which »=3/3.
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(a) Ionization potentials. There seems to be no new precision measure-
ments since 1929, comparable in accuracy with that by Lawrence, and I
therefore again adopt his determination of the ionization potential of mer-
cury, leading as before to

hss(ion. pot.) = 6.560 + 0.0131 (p = 0.0583). 27

(b) Photoelectric effect. In the 1929 work, the only investigation con-
sidered was that by Lukirsky and Prilezaev. Their value of %3, as already
quoted, is 6.543+0.0073, exclusive of the error in e. As shown in the dis-
cussion on pp. 53-54 of G.C. 1929, it was difficult, due to lack of information,
to assign an error in this case, and it seems best now to raise the error slightly
to +0.010. (This was the 1929 error, including the error in e.) Since 1929
there has appeared a new investigation by Olpin.?® His published result,
based on a graphical solution of the voltage: frequency curve, is 6.541. Dr.
Olpin has kindly sent me his original data for this curve, and I find for the
least squares’ solution, %33 =6.561 10.029, and this result will be used in the
following.

The original precision work on %, from the photoelectric effect, is that by
Millikan.? A considerable amount of experimental data is given in his article,
with several different results. It has seemed desirable to recalculate these
results, using least squares’ methods for the calculations and the weighting.
There is no indication of systematic error in the several results, and my final
weighted average of all the data is 6.560 £ 0.037. The actual calculations are
rather extensive and it is unnecessary to present them at this time.

For the final value of k33, as determined from the photoelectric effect, I
use the weighted average of these three investigations. This result is

h3 3(photoelectric) = 6.546 + 0.0092 (p = 0.1181). (28)

The ratio 7,/7; equals 0.337, thus showing a considerably greater consistency
of the three individual results than is to be expected on the average. The
quoted error is based on 7;.

(c) The radiation constant ¢;. There is no new work on this important
constant, and T accordingly retain the 1929 value 1.432 £ 0.006, which yields

hys(ce) = 6.548 £ 0.0137 (p = 0.0533) (29)

as previously quoted.

(d) X-rays. In 1929, the value of % resulting from observations on the
continuous spectrum of x-rays was listed under » =4/3. The defining equation
in this case is?” ,

eopqV/N108
by = CopqV MO™ (30)

c?

2¢ E, O. Lawrence, Phys. Rev. 28, 947 (1926).

% A, R. Olpin, Phys. Rev. 36, 251 (1930), see p. 284.
26 R, A. Millikan, Phys. Rev. 7, 355 (1916).

27 Compare Egs. (11) and (12), p. 51 of G.C. 1929.
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Now, as noted in the 1929 work,?® there are two methods for determining \.
One is by means of the Bragg law

A= 2dsing (31)

in which the calculated grating space d involves e, to the one-third power, so
that %, varies with e, raised to the 4/3 power. This is the method?® used in
1929, and the x-ray result was accordingly listed under » =4/3.

The second method for determining the N of Eq. (30) is by means of ruled
gratings. This is a direct determination, quite independent of any assumed
value of e, so that %, now varies as ¢*/3 and should be listed under n=3/3.
The quantity actually observed in the x-ray experiments now under dis-
cussion was sin 8 of Eq. (31), so that it was possible to calculate only a Bragg
law wave-length. We may, however, assume that there exists for all wave-
lengths the proportional discrepancy found by various investigators for
certain lines, as measured with a ruled grating and with a calcite crystal.
The two most accurate investigations are those by Bearden3? and by Cork.%
The former found the grating N of two lines to be respectively 0.23 percent
and 0.24 percent higher than the crystal values. The latter found, for different
lines, discrepancies of 0.288 and 0.305 percent. If we now assume, in agree-
ment with prevailing opinion, that wave-lengths as measured by ruled grat-
ings are actually correct, then all values of %,, as calculated from x-ray con-
tinuous spectra are to be raised by 0.265 percent,—the unweighted average
of the above four results. In terms of 1027 erg. sec, the correction is +0.01740.

In addition to the x-ray work actually used in 1929, we now have avail-
able the result of Feder.?? This investigation is mentioned in footnote 162, page
53 of G. C. 1929, but appeared too late to use there. Since the work is a repeti-
tion of that by Wagner, it seems reasonable to use it as a substitute for Wag-
ner’s result. Feder’'s value of %, using my 1929 values of the auxiliary con-
stants, is 6.5463. His work appears to be of accuracy comparable to that of
Duane, Palmer and Yeh, and I accordingly give these two investigations
equal weight and adopt the arithmetic average #=6.55265. Since both re-
sults are based on crystal wave-lengths, we must now add 0.01740, thus
getting

hsjs(x-rays) = 6.5700 + 0.0063 (p = 0.252). (32)

The probable error is calculated directly from the agreement of the two
results (i.e., on external consistency), just as was done in 1929,

28 See pp. 52 and 3943 of G.C. 1929.

2 See Eq. (13) p. 52 of G.C. 1929, The discussion following Eq. (16) page 52 is not very
logical, again due to a failure to realize that what was being calculated was %43 and not %
itself. Since 4.770 was used in both Egs. (13) and (15) for what should have been called e,
the resulting value of % necessarily varied as ¢,*3 and should have been denoted %4/3.

30 J. A. Bearden, Proc. Nat. Acad. Sci. 15, 528 (1929).

31 J. M. Cork, Phys. Rev. 35, 1456 (1930).

32 H. Feder, Ann. d. Physik (5) 1, 497 (1929).
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This completes the discussion of the four methods available for determin-
ing 43/3. The weighted average of the results listed in Eqgs. (27) (28) (29) and
(32) is

ha;s = 6.5605 + 0.0046 (p = 0.47). (33)

The ratio 7./7;=0.92, so that the four results are self-consistent, in spite of
the suspiciously high x-ray value. We shall, however, find immediately that
this shift of the x-ray result from n=4/3 to n=3/3 brings about a definite
discrepancy in the final collected results. Later in this paper we shall return
again to a consideration of the proper value of N to use in Eq. (30) and we
shall see that it is fairly probable that the x-ray method should be left at
n=4/3.

(T T T T T T T
~o
~
658 TN -
~
~
\
le.57 ~ lo -

— 653 -

aac=577
0 % 24 I n Z % %
I | | | I | i

Fig. 6. Solution of Eq. (36). Six observations resulting from a re-examination of all avail-
able data. Probable errors of observations and of resulting points shown by arrows. X-ray
observation at n=3/3, in place of former n=4/3. h=6.563, e=4.777, but data inconsistent.

Assuming for the present that there are four methods for obtaining %
that belong under »=23/3, there remains only one method at n=4/3, and
one at n=>5/3. The one method at n=4/3 is based on the total radiation
constant o. There is still considerable uncertainty regarding the best value
of this important constant. The reader is referred to pp. 55-57 of G. C. 1929
for a discussion of the situation at that time. As noted on page 57, Hoare's
value of 5.735, which was published too late to use in 1929, but which for-
tunately agreed exactly with the assumed value, appears to be more reliable
than any previous determination. Since then Mendenhall® has obtained
5.79 (error not stated) and C. Miiller, in a general article* on this constant,

3 C. E. Mendenhall, Phys. Rev. 34, 502 (1929).
3 Wien-Harms Handbuch d. Exp. Physik 9, 427-455 (1929).
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lists a recent value of his own, 5.77 +£0.03, of which I have seen no further
reference. He adopts 5.77 as the most probable value, in agreement with
Ladenburg’s earlier estimate.®® A value of 5.77 corresponds to h4;3=6.5256,
and this point is plotted on Fig. 6. It obviously is inconsistent with the re-
sults from all other methods. Even ¢ =5.735 seems too high, and the indirect
value® of o, as calculated in 1929, is 5.7139 X 1075, As discussed then, the
chief experimental uncertainty seems to lie in the corrections to be applied
for incomplete absorption of the receiver. Hoare claims that his method
eliminates such corrections, and it appears to the writer, as it did in 1929,
that 5.735 is still the most reliable experimental value.** The probable error
is, under the circumstances, very uncertain, and merely for convenience I
shall retain the 1929 value. Hence?®’

hags = 6.539 % 0.0040 (p = 0.625). (34)

In the case of =35/3, the only known method for obtaining % is from the
Rydberg constant formula. The error in %53 is due almost solely to the error
in e/m, and as shown in curve e, based on the 1929 data, this point is, ap-
parently, so accurately known that the final values of ¢ and % depend prima-
rily upon the adopted value ¢/m=1.761+0.001. The three new determina-
tions of e/m, since 1929, have been listed in connection with curve ¢. They
are all 1.761 or lower. Two of them are obtained from the acceleration of
free electrons in an electric field, and constitute the first “low” values of
¢/m obtained by a non-spectroscopic method. It is still extremely important
to obtain a really reliable value of e/m from magnetic deflection. In the mean-
time the presumption of evidence is that there is only one value?® of e¢/m, and
that this is the so-called “spectroscopic” value. It is quite possible that this
value is 1.760, or even lower, but it has seemed better to retain, for the
present, the 1929 value, 1.761 +0.001. Hence

hs;z = 6.5471 4+ 0.0012 (p = 6.94) (33)
as used in curve e.

3 Geiger and Scheel, Handbuch d. Physik 23, 305 (1926). See p. 56 of G.C. 1929,

3 See Table b, p. 61, G.C. 1929. With the values of the principal constants, including e,
adopted in 1929, one has ¢ =16.03418 X 1078 /A4;3® and hy/3=2.521635 X 10728/1/3,

% In a very receat investigation, Phil. Mag. 13, 380 (1932) Hoare gets 5.737, from 50 ex-
tremely consistent determinations. :

37 The writer must apologize for several small but annoying discrepancies in this article.
Many solutions have been obtained that, for lack of any significant features, are not published,
and the total calculations ar€ quite extensive. As a result, there have been several instances
where brief calculations were unintentionally repeated, with slightly different results due to
the employment of a different number of significant figures. Thus, in a previous section,
Eq. (34) was quoted as +0.00405 (»=0.610), and as stated in footnote 22, it happens that
both these results are slightly in error.

38 Several writers have implicitly criticized the assumption of two different values of e¢/m,
as made in G.C. 1929. I think every one admits that there can be but one correct value, and
the sole reason for adopting the two values, in 1929, was to call attention, as emphatically as
possible, to the obvious discrepancy in the experimental results. The extensive discussion and
investigations of e/m that have since appeared in the literature constitute sufficient evidence
that this oLject has been attained.
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(1) Curve f. This completes the discussion of present available data. The
three resulting points are given in Eqgs. (33) (34) and (35), and are listed in
cols. 6 and 7 of Table III. The solution of these data is

hn = 6.563 £+ 0.022 — (0.010 £ 0.014)n. (36)

This is plotted as curve f, Fig. 6, and the resulting constants are given in
Table II. The value of the ratio 7,/7;is 2.14, a deviation from unity of 4.14
times the probable error. There is only one chance in 190 of such an excess,
and we thus have here clear evidence of an incompatibility of the three %,
points. A glance at curve f shows that this unwelcome result is due jointly
to the abnormally low value of %43, and the abnormally high value of that
one of the four observations composing %33 deduced from the x-ray method.
It is difficult to explain the low value of %43, and it has just been noted that
most reviewers favor ¢=35.77, which leads to the even lower value hys
=6.5256. On the other hand, the high value of %33 from the x-ray method is
due mainly to the correction computed from the assumption that the true
x-ray wave-lengths are those given by ruled gratings. The writer believes
that the situation shown by curve f constitutes definite independent evi-
dence against such an assumption.

(2) Curve g. The next logical step, under the circumstances, seems to be
to ignore entirely both the ¢ and the x-ray result. This leaves three observa-
tions at #=3/3, given by Eqs. (27) (28) and (29). The new weighted average
is

Bsjs = 6.5500 + 0.0066 (p = 0.23). (37)

The ratio 7,/7;=0.425, as contrasted with 0.92 when four methods were in-
cluded.

The one remaining point is %s3, as given by Eq. (35). With only two points
and two undetermined constants we now abandon least squares’ methods and
make a direct calculation of the intercept and slope of the %,:%# curve. These
constants, and their errors, are given by Egs. (27) to (30) of L.S. 1932, and
the error in the function itself by Eq. (32). In the present case the y;+7; of
L.S. 1932 may be denoted %3+ 73, where %; stands for %33, and y,+ 7, may be
denoted s+ 75, where hs stands for k3. Also x;=3/3 and x,=5/3. Hence
Egs. (27) to (32), L. S. 1929, become respectively

a=2.5h; — 1.5hs (38)
b= 1.5(hs — hs) . (39)
7o = [(2.575)% + (1.575)%]1/2 (40)
re = [(1.575)2 + (1.573)2]1/2 (41)
y = ha=hs(2.5 — 1.5%) + hs(1.52 — 1.5) (42)
= ([(2.5 — 1.50)r5]2 + [(1.5n — 1.5)r5]2)1/2, (43)

With k3 +r; given by Eq. (37) and s + 75 by Eq. (35) one gets
y = h, = 6.5543 + 0.0166 — (0.00435 + 0.0100)7. (44)
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This equation is plotted as curve g in Fig. 7, and the errors in the function,
calculated by Eq. (43), are shown as usual by broken lines. This error of the
function must of course equal the error of any observed point, at the cor-
responding value of n. Hence in Fig. 7 the broken lines touch the arrows in-
dicating the assumed errors 7; and 7;. The magnitude of 1/« and its error are
calculated in the usual way. In the case of ¢/m, however, we have only the
value originally assumed, i.e., 1.761 +0.001. The various constants and their
errors are listed in Table I1.

If the grating values of x-ray lines are correct, with the result that the
value of %, belongs at #=3/3 and is with justification omitted, then curve g
represents the best independent determination of e. This curve gives also
the clearest illustration of the dependence of ¢ and % upon the value adopted

I T T T
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Fig. 7. Solution of Eq. (44). Same data as Fig. 6, but with x-ray and ¢ observations dis-
carded. k=6.5543, e=4.7732. Broken straight line represents necessary solution (2=6.5670,
e=4.7824) if 1/a=137.

for e/m. Taking hy;3=6.5500 as one fixed point, we may for instance assume
hajs=6.53295 (corresponding to 1/a=137) for the other. The resulting curve
is indicated by broken lines in Fig. 7. Its equation is

hn = 6.56705 — 0.01705x (45)

and the resulting constants are e/m =1.7679, e=4.7824, b =6.5670.

It thus seems highly probable that if Eddington’s theory concerning 1/«
is true, the correct value of e/m must be approximately 1.768, and as already
discussed, there is now very little experimental evidence in favor of such a
value. If, however, future work should establish the correctness of Edding-
ton’s theory, then it follows almost inevitably that the correct value of e
is about 0.26 percent higher than our previously adopted ¢, =4.770, and that
his about 0.30 percent higher than ko= 6.547.

Returning once more to the assumptions made in deriving curve g, we
note that the probable errors in the resulting constants are greater than in
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the case of most of the previous solutions. This is due primarily to the fact
that the curve is based on two points only, instead of on three. The value of
e (4.773240.0072) agrees, however, with the oil-drop value (4.768 +0.005)
well within the probable errors, and we have therefore achieved our main
objective, i.e., we have obtained a new and entirely independent value of e
and have shown that it is compatible with the previously accepted value.
Hence we may now proceed to the calculation of “most probable” values of
¢ and £, by the use of Eq. (2) which allows the inclusion of a directly measured
value of e.

SorutioNs Basep oN Eq. (2)

Eq. (2) is of the same form as Eq. (1), with % and e merely interchanged.
Hence the least squares’ treatment of Eq. (2) leads to a linear equation like
Eq. (10), with e and % interchanged, i.e.,

em = € — <eg A—h>m (46)

ho
where e, in analogy with Eq. (9), is a new parameter defined by
em = Anho™. (47)

Also, as stated in Eq. (3), m=1/n,and a, = (4,)7V"

Ordinarily one would evaluate e, by means of the value of @, that can
be calculated from the experimental data. But in this case we know all the
needed values of %, and from them it is possible to get, by a simple calcula-
tion, the corresponding values of e,. Thus, from Eqgs. (9) (47) and (3) we
obtain

I, ho
eO" emn
Hence
em h\~1/n
(2 X 49
€o <h0> ( )

Then, writing e, =e,+d¢, and h,=ho+ 6k, where d¢ and 8k are small quanti-
ties, Eq. (49) becomes

de _ 1 6k (50
() B n ho
Putting in the numerical values of ¢; and % (4.770 and 6.547), we get
0.72857 6%
dg = — —————— (51)
n

where
0h = hy — ho and e, = €y + de. (52)
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This gives the value of e, corresponding to any assumed value of %,. Also,
in Eq. (51), if 8k represents the probable error in %,, then e represents the
corresponding probable error in e.

As in the case of the k,:n curve, it is convenient to obtain explicit for-
mulas for the calculation of 1/« and e/m from the e, :m curve. By analogy
with Egs. (14) (15) and (19) we write

ch 1 3.12385 X 10~V
e e (291 -

21/61/22 €179

(53)

and the proportional error in 1/« is therefore twice the proportional error in

e1/2, which in turn is the error in the function e, at m=1/2. For 1/a =137, we

have e1,,=4.77512X 1071, and this point is shown on the plotted e,, curves.
Similarly, ¢/m may be calculated from the value of e, at m=3/5. Cor-

responding to Eq. (20) we write

2#263/55

R 2]1—3 = (713175 X 1053)63/55 (54)
oC 10

e/m =

and the proportional error in e/m is five times that in ess. If e/m =1.761 X107,
e35=4.76996 X 101, and if e/m =1.769 X 107, ¢35 =4.77427 X 10719, These two
points also are shown on the plotted e, curves.

(1) Curve h. For the first solution of Eq. (46) I use the data of curve g,
plus the best directly measured value of e (to be called eq). This latter is the
oil-drop value?® 4.768 +0.005, and not the 4.770 value adopted in 1929, for the
following reason. This latter value is a weighted average of the oil-drop
result, 4.768, and a value calculated from the grating measurements of x-ray
wave-lengths. The more recent work of Bearden and of Cork, as already
noted, indicates a discrepancy of 0.265 percent in the crystal and grating
wave-lengths. The discrepancy in the resulting value of e is three times as
great, or 0.8 percent. It is generally agreed at the present time, and the cal-
culations in this article support the opinion, that the observed discrepancy in
the x-ray wave-lengths cannot be due to an error of, 0.8 percent in the adopted
value of e (4.770), but must be due to some other cause. In that situation it
is not possible to calculate a value of e from grating wave-lengths, and the
only directly determined value that is available is the oil-drop result 4.768.

The needed data are, accordingly,

es;s = 4.7678 + 0.0048 (p = 0.43), from k33 = 6.5500 £ 0.0066,
4.76996 + 0.00052 (p = 37.0), from hs;3 = 6.5471 + 0.0012,
4.768 + 0.005 (p = 0.40).

Il

€3/5

It

€4

This last point is of course to be plotted at m =0, since it is independent of
the value of %,. The least squares’ solution of these three points is

em = 4.7696 £ 0.0041 4 (0.00045 + 0.00686)m. (55)

39 See G.C. 1929, pp 36-40.
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The ratio 7,/7;=0.389, indicating remarkable consistency of the data. The
errors in Eq. (55) are accordingly based on r;, and it is worthy of notice that
if they were based on 7, they would be only 39 percent as large. Eq. (55) is
plotted as curve % of Fig. 8, and the various resulting constants are listed in
Table II. This figure shows also the curve necessary if 1/a=137 and es; has
the value given above. The intercept at m =0 is 4.7824, as already given in
connection with Eq. (45).

The values of e and % resulting from curve % are for all practical purposes
identical with those adopted in 1929. In order to facilitate comparison, I give
in Table II, on the next line below the curve % values, the 1929 constants.
With the probable exception of curve k, to be discussed later, this curve 2
solution represents, I believe, the most probable values to be obtained from
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Fig. 8. Solution of Eq. (55). Data of Fig. 7, transformed to e, values, plus the directly
determined e;=4.768, at m=0. h=06.5464, e=4.7696. (The letter & should have been placed
on the continuous line). :

the data at the present time. The chief difference between the 1929 and the
1932 values lies in the stated probable errors. As has already been noted, the
1929 errors were calculated in a very crude way, and as shown in more de-
tail in the concluding section, some of them are too large, and some are too
small.

(2) Curve i. It is now of interest to calculate the values of the constants
that should have been obtained in 1929, had they been correctly calculated.
For this purpose we use merely the data of curve e¢ (Table III, col. 4), trans-
formed to e, values, plus eq=4.7701+0.005 (»=0.40), since that is the 1929
adopted value from all direct determinations of e. The es;;s point is the same
as for curve k. The other points are

ese = 4.7759 £ 0.0036 (p = 0.77)
esss = 4.7699 + 0.0034 (p = 0.87).
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From these four points we obtain
em = 4.7688 £ 0.0035 + (0.0021 + 0.0058)ms. (56)

This solution is plotted as curve ¢, Fig. 9.

The ratio 7,/7;=0.76 and the data are accordingly, as a whole, quite con-
sistent, although the e;;4 point is obviously too high, just as the %43 point in
curve ¢ is low. The various constants calculated from Eq. (56) are listed in
Table II, where they may be compared with the published 1929 values
placed directly above them. It is of interest to note that the best present
values, as given by curve %, agree rather better with the published 1929
values than with the values that should have been obtained in 1929. How-
ever, all three sets of values agree with each other far within the limits of
error, and it is quite immaterial which set is used.
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Fig. 9. Solution of Eq. (56). Data of Fig. 5, transformed to €., plus ea=4.770. The result-
ing constants (5=6.5441+0.0079, e=4.7688 +-0.0035) are the values that should have been
obtained in 1929, had the calculations been made correctly.

NEw SoLuTioNs WITH X-RAY METHOD AT n=4/3

The calculations outlined above were presented to the American Physical
Society, at the Berkeley meeting, Dec. 1931.4° Since then two more solutions
have been made, based on the very recent work of Bearden.®! It has been
noted, at the end of the discussion of curve f, that that curve furnished inde-
pendent evidence that the true x-ray wave-lengths are znot those given by
ruled gratings. Bearden has independently been led to this same conclusion
from an entirely different source. Using the measured index of refraction of
quartz, for various wave-lengths, he has been able to calculate values of the
respective wave-lengths. In order to do this it is necessary to assume values
of various general constants, including e¢/m. For this last constant Bearden

40 R. T. Birge, Phys. Rev. 39, 547 (1932) abstract 6.
4 J. A. Bearden, Phys. Rev. 39, 1 (1932), and further details by private communication.



256 RAYMOND T. BIRGE

adopted®? 1.761. The resulting wave-lengths show remarkable agreement
with those obtained by crystals, and are in definite disagreement with those
obtained by ruled gratings. To get agreement with the latter, it would be
necessary to adopt a value of ¢/m some 0.5 percent Jower than 1.761.

I do not feel competent to make a critical estimate of the possible errors
in the theoretical equation used by Bearden. If it is a sufficiently correct
equation, and if the various constants appearing in it have been correctly
evaluated, we are led to the surprising result that it is the grating wave-
lengths that are wrong, and not the crystal wave-lengths, contrary to all
previous opinion.

(1) Curve j. With this new condition of affairs, it is of interest to leave
the x-ray value of %, at n=4/3, and to adopt the crystal wave-lengths, just
as was done in 1929. I have accordingly recalculated curve f, with this change.
For n=3/3 we now have left three methods, with a weighted average %33
=6.5500 4 0.0066, as adopted for curve g. For n=4/3 there are two methods.
The x-ray value of &, is now 6.5526 +0.0063. This is the quantity to which
0.01740 was added, when transferring the x-ray observation from n=4/3
to n=3/3, in curve f. This x-ray observation is now to be averaged with
hn=16.539 +0.0042% as obtained from ¢. The weighted average is %43 =6.5431
+0.0042 (p=0.57), and 7,/r;=1.21. The expected deviation from unity is
34 percent, and so we have here no definite indication of inconsistency in the
two methods. The ks point is as usual 6.5471 +0.0012 (p=6.94), based on
e/m=1.76110.001.

The solution of these three points is

h, = 6.5443 £+ 0.0133 4 (0.00162 + 0.0081)n (57)

with 7,/r;=0.685 and with the errors consequently based on 7;. This is cer-
tainly a far different situation from that found in curve f, where r./7,=2.14,
but the improvement is partly an illusion. It merely happens that the x-ray
value of %,, which even without the 0.017 correction is rather high, is here
averaged with the low value of %, derived from o, to give a point %43 that
agrees well with the other two points. In curve f the low %43 point came from
o alone, and the very high x-ray value helped to raise the resulting /%33 point
and to produce the inconsistency of all points. It is certainly true, however,
that the retention of the x-ray value of % at #=4/3 improves the consistency
of the data, and there is now no sufficient reason for rejecting any one of the
six methods.

Eq. (57) is plotted as curve j, Fig. 10, and the derived constants are listed
in Table II. They are almost identical with the constants given by curve <.
The value of e is 4.7688 +0.0059, and with the assumption that the crystal
wave-lengths of x-rays are the correct values, this becomes the best inde-

42 In previous work on the index of refraction of x-rays, by Stauss, Bearden and others,
the wave-lengths as given by gratings were assumed to be correct, and a value of e/m was
calculated.

4 Here we use the correct probable error, of which mention has been made in footnotes
22 and 37.
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pendent evaluation of ¢ by the new method. It is really remarkable that it
should agree so well with the oil-drop value, and this again is confirmation
of Millikan’s work.
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Fig. 10. Solution of Eq. (57). Data of Fig. 6, but with x-ray observation transferred back
to n=4/3. h=06.5443 +£0.0133, ¢=4.7688 +0.0059. This is the best value of e, as calculated
by the new method.

(2) Curve k. The last solution to be presented is based on the data of
curve j, converted to e, values, and with the addition of e;=4.768 £0.005.
The needed data are just those of curve %, with the added point e;s=4.7738
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Fig. 11. Solution of Eq. (58). Data of Fig. 10, converted to e,, values, and ¢;=4.768 added.
The resulting constants (#=6.5443 +0.0091, ¢=4.7688 +0.0040) are considered the most re-
liable values, on the basis of present data.

+0.0041 (»=0.60), from hys=6.5431+0.0042. The solution of the four
points is :

em = 4.7688 + 0.0040 + (0.00196 £ 0.0066)m (58)

for which 7,/7;=0.51. The equation is plotted as curve &, Fig. 11, and the
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resulting constants are given in Table II. They are nearly identical with
those obtained from curve <. These numerical coincidences are devoid of
scientific significance, but they are nevertheless very interesting. Thus if one
assumes that the x-ray method belongs at #=3/3, and must be ignored,
together with the ¢ method, because of inconsistency, then the best resulting
set of constants is given by curve %, and this set is almost identical with the
constants published in 1929. On the other hand, if one assumes that the x-ray
method belongs at »=4/3, the resulting set of constants is given by curve &,
and this set is almost identical with the constants that would have been ob-
tained in 1929, if correctly calculated (curve 7).

GENERAL DiscussioN AND CONCLUSIONS

Table II shows, in summary form, the various sets of constants resulting
from the data and curves plotted in Figs. 1 to 11. The most interesting of
these constants is probably 1/a. The source of interest lies in the fact that
1/a is one of the very few dimensionless ratios formed from general physical
constants. Its numerical value should therefore have theoretical significance,
and the theories that have already been proposed in this connection are tab-
ulated in G. C. 1929, pp. 71-72, and by Bond,? pp. 995-996. Of these theories
the one most deserving of serious consideration seems to be that put forward
by Eddington,!® which predicts 1/a=137.

The tabular material of Table IT shows that if 1/a =137, then e¢/m equals
1.768 or more. The broken line drawn in Figs. 7 and 8 and given by Eq. (45)
corresponds to e/m=1.7679, as already noted. The only solution of the ex-
perimental material yielding a value of 1/a equal to 137 within the probable
error is that given by curve @, Fig. 1. This solution is based in Bond’s 36 ob-
servations, yielding 3 points, with each point weighted according to the num-
ber of observations composing it. The point at #=5/3 comes from 13 ob-
served values of e/m, of which only two equal 1.761. The other values are
all higher, running up to 1.773. In fact the first observed “low” value of e/m
was that by Babcock* in 1923, Since that date no new experimental value of
e/m, with the exception of the magnetic deflection work by Wolf,*s has been
higher than 1.761. The most important conclusion of Bond’s work is that
1/« is really 137, from purely experimental evidence. We see now that this
conclusion was reached only by using every value of ¢/m listed in certain
compilations, and by giving the same weight to each investigation. With
numerous older “high” values of ¢/m Bond thus got a high average. At the
present time one may say with some assurance that either there is a serious
constant error of essentially the same magnitude in the recent determinations
of e/m by three totally different methods (Zeeman effect, fine structure of
hydrogen and helium spectral lines, and acceleration of free electrons by
an electric field), or else 1/« is not 137. The two most probable sets of data
(curves & and k) give 137.305+0.048 as the average value. These solutions

#4 H, D. Babcock, Astrophys. J. 58, 149 (1923). ¢/m =1.761 from Zeeman effect. See page
44 of G.C. 1929.
4% F, Wolf, Ann. d. Physik 83, 849 (1927). See p. 43, G.C. 1929.
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have been obtained on the assumption that the experimental value of ¢/m
equals 1.761 +0.001, and the value calculated from the solutions is identical
with this, as shown in Table II.

With such an assumption regarding e/m, the resulting values of e and %
fall within certain rather narrow limits. These limits may be brought out
more clearly by a brief review of the various solutions that have been ob-
tained. Curve & results from Bond’s 36 observations, but with the three
points weighted according to their probable errors. Curve ¢ is based on the
same method of weighting but with the addition of three new determinations
of e/m. The resulting values of ¢ and % are slightly higher than those advo-
cated in 1929, but this result is due to the relatively high averate value of
e/m obtained from the inclusion of all the older work. Solution d is based on
an arbitrary equal weighting of the six observations adopted in 1929, and
has no real merit. A more logical weighting of these same six observations
gives the quite different solution shown by curve e, and this solution repre-
sents the values that should have been obtained in 1929, as based on Eq.
(1). Since, however, Eq. (1) does not include any directly determined value
of e, the solution merely shows that the 1929 data give a value of ¢ (4.765)
by the new method that is quite consistent with the oil-drop value (4.768).

A re-examination of all available data then leads to curve f, which how-
ever could not be used because of definite inconsistency of the data (r./7:
=2.14). Solution g, obtained by omitting the x-ray and ¢ methods, is properly
self-consistent and the resulting value e=4.773240.0072 represents the best
independent determination of ¢ by the new method, provided we assume that
the x-ray observation belongs at #=3/3. The use of Eq. (2) and the addition
of the direct determination ¢=4.768, then gives curve &, which is one of our
two most probable solutions. The other of these most probable solutions is
curve k, and this differs so little from curve % that it is really immaterial
which is accepted. Curve & results from the assumption that the crystal wave-
lengths of x-rays are correct, an assumption that places the x-ray method at
n=4/3. Two independent sources of evidence,—Bearden’s recent work,* and
the increased consistency of the data resulting from the transfer of the x-ray
method from #=3/3 to n=4/3,—unite to indicate the correctness of the
assumption. This was discussed at the opening of the section entitled “New
Solutions with X-ray Method at #=4/3.” Curve j is the solution based on
Eq. (1), corresponding to curve &, based on Eq. (2). Curve 4 is the solution,
based on Eq. (2), of my 1929 data, and represents the values that should
have been obtained at that time.

This brings us to the final conclusions resulting from our analysis of the
data. The crystal x-ray wave-lengths are probably correct, and curve k
represents the most reliable solution. The best value of e, obtained by the
new method, is given by curve j, viz. e =4.7688 +0.0059. The best final value
of e is 4.7688 £ 0.0040, from curve k. As was stated in the published abstract
of this paper,® the possibility of the simultaneous evaluation of e and %, from
the totality of experiments designed to measure %, is of the utmost impor-
tance. The fact that the new value of e thus obtained is almost identical with
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the oil-drop value is, in my opinion, very strong evidence that there is no
unsuspected error of any significance in Millikan’s work. On the other hand,
the preceding analysis has shown that the most probable values of ¢, & and
1/a depend primarily on the value adopted for e/m. The present evidence
favors e/m=1.761, and with this one gets, almost inevitably, a value of e
agreeing well with the oil-drop value, and a value of 1/a definitely different
from 137. If 1/« is to equal 137, it is necessary that e/m equal approximately
1.768. As discussed in connection with Eq. (45), the resulting values of ¢ and
h are then about 0.26 percent and 0.30 percent higher than the values adopted
in 1929. The direct and necessary dependence of the values of ¢, & and 1/«
on the value adopted for e/m is the most important result brought out in this
paper.

With curve k assumed as the most probable solution, the resulting values
of e, , 1/ and e/m differ so little from those suggested by the writer in 1929
that, for practical purposes, #no change is advocated. It would seem good
policy to recommend a change in the value of a fundamental physical con-
stant only when the new value differs from the old by more than the probable
error of the new value. When two values agree within less than the probable
error, their difference has no scientific significance. In view of the wide use
of fundamental constants, and of the numerous constants that may be de-
rived from them® it is desirable, as a purely practical matter, that the values
in common use be changed as infrequently as possible. This has been the
policy of all atomic weight committees. The writer feels that, as a result as
much of good luck as good management, he advocated in 1929 values of e,
h, e/m and 1/« that are still quite acceptable. In special tests of theoretical
relations one should of course use the latest and most reliable values of all
constants. For such work the constants listed on the last line of Table II
(solution k) are recommended, but for all ordinary work the 1929 values may
well be retained.

The only significant error in these 1929 values lies in the stated probable
error of all ratios of the type %%/ev. The method adopted in 1929 for calculat-
ing the error in such cases is outlined in footnote 2, page 60 of G. C. 1929. The
preceding discussions of the present paper have shown the correct method.
Thus, from Egs. (14) and (15)

21!' ]’l ]’lz (_9)
_—= = J

ac e? 12

The proportional error in %/€?, or in «, is merely the proportional error in &,
as calculated from the adopted %,.:# curve. Similarly, from Eq. (53)

27[' ho

— = (6())

ac 61/22

and the proportional error in « is twice the proportional error in eys, as cal-
culated from the adopted e,:m curve. This last curve always yields the most

4 Table ¢ of G.C. 1929 gives an incomplete list of such derived constants.
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reliable values of e and #. Hence Eq. (60) is to be used, rather than (59).
We may combine and generalize Egs. (59) and (60) as follows,

h ha ho

e : (61)

e ep” e1/m™

Replacing # by its equivalent 1/m and forming the mth power, Eq. (61) be-
comes

—= e (62)

This last equation is most convenient for use with the e,:m curve, and
states that the ratio £™/e has a proportional error equal to the proportional
error in the calculated value e,. Similarly Eq. (61) states that the propor-
tional error in % /e equals that in the calculated %,. Writing

he/ev = (hm/e)v = (h/em) (63)

where m =x/vy, or n=y/x, we obtain from Eqgs. (61) (62) and (63) the final
generalization that the proportional probable error in %%/e¥ is y times the
proportional probable error in e., as obtained from the adopted e,:m curve,
or x times the proportional probable error in %,, as obtained from the adopted
hn:m curve. The e, :m curve includes the most data and is therefore usually
the more reliable.

As examples of the use of Eq. (63) we may note that the correct probable
error in %/e? (or in 1/a) is less than one-half as large!” as that given in 1929.
On the other hand, the ratio %/e is, from solution £, (1.3723 40.0008) X 1017
in place of 1.3725 4 0.0005 given in 1929. The error is thus larger than before.
Many of the constants listed in Tables b and ¢ of G.C. 1929 contain the factor
h®/e¥, and the probable errors in all such cases require more or less revision.*?
It is, however, not my purpose here to present any extended revision of the
general physical constants.*

This paper may well conclude with the remark made in the introduc-
tion,—that the primary object at this time is to present a mathematically
correct method for the (necessarily) simultaneous evaluation of e and % and
of the probable errors in all ratios of the type %%/e?. It is only in respect to
these points that, so far as I am now aware, the methods used in G.C. 1929 are
open to real criticism.

47 137.307 £:0.048, in place of 137.29,+0.11.

48 The method used in 1929 involved the assumption of a certain constant error for hs or
e, instead of the varying error shown in Figs. 1 to 11 of this article. Hence the true probable
error, for values of m or n near the “center of gravity” of the data, is /ess than that given in
1929, while for more distant values it is greater.

49 There is now in existence a National Research Council Committee on Physical Constants,
of which the writer is chairman. This committee will issue a detailed report whenever any
significant changes in the values (not the probable errors) of the fundamental constants seem
required.



