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ABSTRACT

Present status of least squares’ calculations.—There are three possible stages
in any least squares’ calculation, involving respectively the evaluation of (1) the most
probable values of certain quantities from a set of experimental data, (2) the reliability
or probable error of each quantity so calculated, (3) the reliability or probable error
of the probable errors so calculated. Stages (2) and (3) are not adequately treated in
most texts, and are frequently omitted or misused, in actual work. The present article
is concerned mainly with these two stages.

Validity of the Gaussian error curve.—All least squares’ calculations of probable
error assume that the residuals follow a Gaussian error curve. This curve is derived
from a consideration only of accidental errors. Probable errors are, however, evaluated
frequently in cases where constant or systematic errors are known to be present. Such
a procedure, when used judiciously, is believed by the writer to be better than any
alternative procedure, but the results are naturally less reliable than a strict reliance
on theory would indicate. The statement is sometimes made that in practise one often
gets more Jarge residuals than are predicted by theory. This point is tested by 500
measurements of a spectral line, and the resulting Gaussian curve, plotted in Fig. 1,
shows no indication of such a deviation. It is possible to account for an excess of large
residuals (with the necessary accompaniment of a deficiency of small residuals), by
assuming that the various observations used were not in fact of equal reliability. The
formulas by which the probable error » may be calculated from the observed residuals,
and the reliability of each such value, are briefly considered.

Internal versus external consistency.—Probable errors are calculated usually on
the basis of internal consistency, and most texts discuss only this method. Scar-
borough, in a recent article, claims that there is no logical basis for the calculation from
external consistency. This matter is considered in detail, and it is shown that the two
methods must necessarily lead to the same result, except for statistical fluctuations,
provided that only accidental errors are present. Formulas for the magnitude of the
expected fluctuations are given. It is shown that a probable error based on internal
consistency (r;) is virtually a prediction and that the probable error based on external
consistency (7.) is the answer to this prediction. When the ratio 7./7; exceeds unity by
an amount much greater than is to be expected on the basis of statistical fluctuation,
one has almost certain evidence of the presence of systematic errors. In such a case
new arbitrary weights should be assigned. Then one has available only external con-
sistency as a basis for the calculation of errors. The false deductions that result from a
failure to note the above facts are illustrated by several examples from the literature,
and a numerical problem illustrating all of these relations is presented in detail.

Probable error of a function evaluated by least squares.—The probable error of
a function of directly observed quantities is given by the well-known law of “propaga-
tion of Error.” When, however, one has a function whose coefficients have been
evaluated by least squares, the probable error of the function is scarcely mentioned in
the literature, and the writer has never seen it calculated in practise. Explicit formulas
for the error of a rational integral function of any degree are derived by the writer,
from elementary considerations, and are found to agree with the very general formula
already known. Practically all of the results presented here find frequent application
in the article on probable values of ¢, %, etc., which immediately follows.
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208 RAYMOND T. BIRGE

INTRODUCTION

HE method of least squares furnishes a precise and reliable process of

calculation in much scientific work. That its value is not more generally
appreciated seems to be due to the fact that it is often misused or only in-
completely used, with resulting discredit to the system as a whole. There are
three possible stages in any least squares’ calculation, (1) the calculation of
the “most probable” values of certain quantities, from a given set of experi-
mental data, (2) the calculation of the “probable error” of each of the quan-
tities just evaluated, (3) the calculation of the reliability, or probable error,
of the probable errors so evaluated.

The proper procedure for the first stage is covered quite adequately in
almost any good text on the subject. The second stage is covered much less
adequately, and certain formulas that it appears to the writer should find
frequent use in scientific work have apparently never been stated explicitly
and seem never to have been used. The general theory covering these two
stages has, however, been known for a long time, so that the working out of
explicit formulas is a matter of mere detail. In the case of the third stage, the
theory is very incomplete and rather uncertain, even in its simpler aspects.

The present article is concerned chiefly with the second and third stages
of the calculation, since most of the misapplication of least squares in the
literature has been in connection with these matters. Least squares is a
branch of statistical theory and it would seem that there is instatisticsa
certain elusive character that makes all deductions difficult to state clearly.
Certainly the writer must confess that he has consulted practically every
available text on least squares, and yet has had considerable difficulty in
understanding many points. The numerous instances in the literature of the
injudicious or incorrect use of least squares seem to indicate that others have
had similar difficulties. This must be the excuse for the discussions to follow,
which, at first glance, may appear to be presented in quite unnecessary detail.
Most of the facts may be found in any good text, but some of the formulas
and points of view are, I believe, new. My object has been to bring out what
may crudely be termed the “physics” of the matter, rather than the mathe-
matics. In fact practically no mathematical proofs are given, since these may
be found in any number of texts.

The direct incentive to the writing of this article has been two-fold, (1)
the publication of a paper by Scarborough! entitled “The Invalidity of a
Commonly Used Method for Computing a Certain Probable Error,” and,
(2) the need of certain formulas in my paper? on “Probable Values of e, %,
e/m and «,” which follows the present article. Scarborough’s article considers
a matter that is ignored in practically all texts, but his main conclusion is
unfortunately quite incorrect. In my own article I have had occasion to use
formulas that, so far as I know, are not stated in convenient working form

1J. B. Scarborough, Proc. Nat. Acad. Sci. 15, 665 (1929). This article is given, practically
verbatim, in his book “Numerical Mathematical Analysis” (Johns Hopkins Press, 1930) pp.
328-332.

2 This paper on ¢, %, etc. will hereafter be denoted as G.C. 1932.
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anywhere in the literature. The present paper contains the derivation of
these formulas, and G.C. 1932, which follows, may be considered as an illus-
tration of nearly every point discussed here.

THE GAUSSIAN ERROR CURVE

The first important fact concerning the method of least squares is that it
applies strictly only to sets of measurements whose errors follow the Gaus-
sian error curve. It may be proved that this law should be followed if the
errors are purely accidental (not systematic or constant), are equally liable
to be positive or negative, and are more likely to be small than large, with
very large errors entirely lacking.® Taken too literally, this requirement
would practically eliminate least squares as a method of computation, for
in nearly every set of measurements there is presumably a certain amount
of systematic or constant error. The probable error calculated by least
squares takes account only of accidental errors, but it is always possible to
enlarge this probable error to make what seems proper provision for other
types of errors. Let us suppose that a given constant has been measured in
several different ways, and that the stated probable error of each result
makes allowance for the various possible sources of error. If now there is no
reason to believe that the errors in one investigation are related, in sign or
magnitude, with those of another investigation, it seems quite legitimate to
combine by means of least squares the various results, i.e., to weight them
according to their stated probable errors, and to derive the probable error in
the final weighted average by the usual formulas. This is a very important
point which will appear later in the paper and to which some readers may
take exception. We assume, in essence, that the constant or systematic errors
occurring in a series of unrelated investigations also follow a Gaussian error
curve. It must be admitted that in practise one is very unlikely to meet such
an ideal distribution of constant errors, and for that reason the final result
and its probable error must be considered less reliable than the theory of
least squares would indicate. What I do maintain is that such a procedure has
more to recommend it than any alternative procedure and that, if used with
proper discretion, it will result in no serious error. One may summarize the
situation by saying that, except in especially favorable cases, least squares’
results, and their computed probable errors, are ot as reliable as indicated
by theory. This fact seems unfortunately so well known that many persons
have chosen to use other methods (or no method at all!) for calculating their
results. I use the word “unfortunately” because these alternative methods
are, without exception, inferior to least squares. Certainly one must make
computations, in scientific work, and the fact that a certain system of com-
putation is not as reliable as over-zealous advocates may claim is no excuse
for using in its place a still less reliable system.

3 See, for instance, M. Merriman “Method of Least Squares” 8th edition, articles 17-28, or
Whittaker and Robinson “Calculus of Observations” pp. 168-173. The validity of the proposed
proofs of the Gaussian error curve has been the subject of endless discussion, but this article
is not concerned with the philosophical aspects of least squares.



210 RAYMOND T. BIRGE

The equation of the Gaussian error curve is

h 2.2

Y= e (1)
where v is the proportional number of observations having an error x, and
h is the so-called precision index. The curve applies strictly only to errors,
but these are never known, since the true magnitude of the measured quan-
tity is also not known. All that we know is the most probable magnitude of
the quantity, or what is often termed its adjusted value, and the deviation
of any measurement from this is called the residual v. If a sufficient number
of measurements are available to make at all possible the plotting of an error
curve, the residuals should follow the same equation and lead to essentially
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Fig. 1. The distribution of residuals for 500 measurements of a spectral line, compared
with the Gaussian error curve evaluated by second moments. Abscissa represents residual v, in
0.001 mm units. Ordinate represents the number of residuals of magnitude v.

the same calculated value of 4. In other words, the difference in the results
given by errors and by residuals should be negligibly small, and in the follow-
ing discussion this is assumed to be the case. Now in most scientific work only
a comparatively small number of observations are taken, and it is mani-
festly impossible to make a direct test of the distribution of the residuals.
Yet least squares’ formulas are applied to these small sets of observations.
In such cases the following implicit assumption is made. One assumes, from
his own previous experience or from that of others, that if the number of ob-
servations were greatly extended, with no change in conditions, it would be
found that this large set agreed with the Gaussian error curve.

The statement is sometimes made? that in such extensive sets of measure-

4 See, for instance, Tuttle and Satterly “Theory of Measurements” p. 175. The Frontis-
piece of G. C. Comstock “Method of Least Squares” shows four error curves, and three of these
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ments, one generally finds more large residuals than are predicted by theory.
In order to test this statement, I have made a series of 500 cross-hair settings
on a very wide® but symmetrical solar spectrum line, under conditions as
favorable as possible to equal reliability for all observations. Readings were
made to the nearest 0.001 mm, and the arithmetic average was adopted as
the most probable value. The residuals calculated with respect to this average
are scattered over 12 positive and 10 negative values. The resulting dis-
tribution is shown in Fig. 1, in which the unit abscissa is 0.001 mm and the
plotted ordinate is ¥’ (=500y). y’ thus represents the actual number of
residuals of a given magnitude.

In fitting these points to Eq. (1), the one adjustable constant % is cal-
culated by moments, normally by second moments.® From the definition
of ¥ we have as alternative expressions for the second moment of the points,
Syx?=1? -Ty=1a% = Zx?/n, where the last summation is to be extended over
the entire # original observations. The second moment of the calculated
curve, [T2yx*dx equals 7 1/2h Hence, by equating the two second moments

we obtain 5 /
1 2 x2 1/2
LBy
h n
If the errors x are replaced by the residuals v, Eq. (2) becomes?
1 2 D ar\!2
;-2
h n—q

where ¢ is the number of constants simultaneously evaluated by the least
squares’ solution. In the case of a series of observations of a single quantity,
g=1.

do show a slight indication of this excess of large residuals. On the other hand, Merriman, refer-
ence 3, page 33, presents 300 astronomical observations that agree very well with the calculated
error curve, and he remarks “Whatever may be thought of the theoretical deductions of the law
of probability of error, there can be no doubt but that its practical demonstration by experience
is entirely satisfactory”. Scarborough “Numerical Mathematical Analysis”, page 314, gives
470 astronomical observations that show an equally good agreement with theory.

5 The width was achieved in part by the use of high magnification in the comparator tele-
scope.

6 The term second moment comes from the close analogy to mechanics. (See T. C. Fry,
“Probability and Its Engineering Uses”, p. 183). If all the observed points in the negative
quadrant of Fig. 1 are folded over onto the positive quadrant, and each point is given a mass
equal to its y value, then the second moment of the observations, Zyx?, is merely their moment
of inertia with respect to the y axis. Similarly, if the calculated curve encloses a flat body of
constant mass per unit area, such that the total mass of this body equals the total mass of the
points, then fyx*dx represents its moment of inertia. In the calculation of by second moments
one equates Jyx?dx to Zyx? and thus effectively makes the two moments of inertia equal. Since
the masses are necessarily equal, one may say that the “radius of gyration” of the calculated
curve is equated to the radius of gyration of the points. Similarly, in the case of first moments,
the “lever arm” of the force moment of the points is equated to the corresponding lever arm of
the calculated curve.

7 See Merriman, reference 3, page 73.

8 See Merriman, reference 3, pp. 79-82.
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The probable error 7 of one observation (i.e., the value of | x| that divides
the Gaussian curve into two equal areas) is related to & by »=0.4769/k, so

that

2”2)1/2- @

n—q

r = 0.6745(

If % is calculated by first moments (by equating [yxdx to Zyx), one obtains

s = 0,853 2% 5)
n

which is known as Peter’s formula.

Gauss was able to show?® that the value of %, or of #, when calculated by
second moments is more reliable than that calculated by moments of any
other degree. His general formula gives for the proportional probable error
in ., or in 7, when obtained by second moments,

0.4769

‘= .
(n)

(6)

If 7 is calculated by first moments, the numerator in Eq. (6) becomes 0.5096,
if by third moments 0.497, etc.

This seems to be the extent of the theory, so far as concerns the third
stage of the calculations, mentioned in the introduction. The derivation of
Eq. (6) was made by Gauss in connection with the curve of errors, and it is
still uncertain!® whether # or n—1 should be used in actual calculations with
residuals. It seems to me that when one is fitting a curve containing ¢ con-
stants, so that the probable error of an observation of unit weight!! is given
by Eq. (4), one should use #n—g in place of #,in Eq. (6). I am not, however,
certain about this, and I shall therefore continue to use Eq. (6), as I have done
in the past. It seems safe to conclude, in any case, that the value of #, aside
from other sources of uncertainty, is unreliable to the amount calculated by
replacing #» by n—gq in Eq. (6).

The smooth curve drawn in Fig. 1 corresponds to #=0.1965, the value
calculated from second moments. By Eq. (6) its uncertainty is 2.13 percent.
The value of z from first moments is 0.1959, a change of only 0.3 per cent, and
the reliability of this latter value is 2.28 percent. These two methods for
computing % thus yield almost identical results, in this case, and always have
almost equal reliability. The two calculated curves agree too closely to be
conveniently shown together in Fig. 1.

This figure certainly gives no evidence of an excess of large residuals, and
in fact the entire course of the observations follows the Gaussian curve with

9 See Whittaker and Robinson, reference 3, p. 201.

10 See Merriman, reference 3, p. 208.
11 The question of weighting, and the meaning of “unit weight” is considered later in this

paper.
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surprising accuracy.!? The one noticeably “low” point at v =+1.1, bordered
by the “high” point at v=+0.1 is in all probability due to a slight irregu-
larity of the comparator screw, which causes one setting to be favored at the
expense of an adjacent setting. This incidentally furnishes a good illustration
of the fact that errors, other than accidental, are always present to greater or
less degree, in actual scientific work. I believe that the apparent excess of
large residuals sometimes noted in practise is due usually to the unsuspected
presence of observations of unequal reliability. If a portion of the observa-
tions has actually one precision index %, and another portion has another,
it is easy to show that a single plot of all the residuals should exhibit an appar-
ent excess of large residuals. Now the area under the observed curve®® and
under the calculated Gaussian error curve is necessarily the same (unity for
each). Hence it follows that any observed excess of large residuals must be
compensated by a numerically equal deficiency of small residuals. In the case
of the large residuals, however, the proportional excess is large, while the
proportional deficiency of small residuals is small. Thus the observed excess
stands out, while the correlated deficiency may easily pass unnoticed.

INTERNAL VERSUS EXTERNAL CONSISTENCY

Scarborough’s article! is concerned with the relative merits of internal
and external consistency, in the calculation of probable errors, although he
does not employ these particular designations. This is a matter that is very
inadequately treated in text-books, and concerning which there appears to
be wide-spread misunderstanding. It is accordingly presented in consider-
able detail.

Let us assume that we have made % direct observations, each of the

12 N. R. Campbell, on page 182 of his book “Measurement and Calculation”, remarks con-
cerning published distributions of residuals, “The examples offered are never typical of those
occurring in physics (of other sciences, such as astronomy or geodesy, I say nothing). In my
experience, the residuals in physical examples usually depart notably from the law, the curve
representing them having a flatter top than the Gaussian. This is what our theory would pre-
dict; for there is no reason to believe that all errors considerably less than the maximum have
not equal chances.”

The last sentence is quite correct. By sufficiently restricting the range of x, the Gaussian
error curve is itself essentially “flat”. The data plotted in Fig. 1 are typical of the sort of work
on which the writer is engaged. Whether or not it is physics may be left to the reader. In this
connection it should be noted that Campbell advocates, in place of least squares, the “method
of averages,” discovered by Tobias Mayer in 1748 and in common use by statisticians at the
present time (see Whittaker and Robinson, reference 3, pp. 258-259, H. L. Rietz “Handbook of
Mathematical Statistics”, p. 64, and Scarborough, reference 1, pp. 357-363). This method was
“rediscovered” by Campbell in 1920 (N. R. Campbell, Phil. Mag. 39, 177, 1920), and named
by him the “method of zero sum”, a name he still employs (Phil. Mag. 10, 745, 1930). In 1924 he
remarked (Phil. Mag. 47, 816, 1924), “so far as I know, the method is not habitually used by
any one but myself”.

13 Tf, as in Fig. 1, the observed points are connected by straight lines, ending on the v-axis
as shown, the area under this series of lines (the “observed” curve) is #, if " is plotted as in Fig.
1, or unity if the proportional number of residuals y is plotted. The total area under the calcu-
lated Gaussian curve, Eq. (1), is of course unity.

4 This is very well illustrated by the curves in Comstock’s text, mentioned in footnote 4.
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same reliability, of a certain quantity, and have calculated the arithmetic
average and the deviations (residuals) from this average. Then, by Eq. (4),
the probable error in any one observation is

y = F(—Ziz>w (1)

n—1

where!® F=0.6745. This equation is essentially a statement of certain facts.
As has been brought out in the preceding discussion, it is assumed that the
residuals actually follow a Gaussian error curve, or would do so if the ob-
servations were sufficiently numerous. From the observed distribution of
the residuals we then deduce, by means of Eq. (7), that particular residual
that divides the area under the Gaussian curve into two equal parts, since
this equation expresses the most reliable relation between 7 and the residu-
als v.

From this observed value of the probable error of a single observation, we
now proceed to predict the probable error in the arithmetic average. This is
done by applying the general equation of the Propagation of Errors (see
Eqgs. (24) and (25) ahead). The result is

(R)ine = F(—;i’f—)m. ®)

I think that the most important requirement in the present discussion is
a recognition of the essential difference between Egs. (7) and (8). In the case
of Eq. (7) we have a number of residuals, and as just indicated, this equation
is merely a compact and useful expression for the distribution of these re-
siduals. We have, however, only one arithmetic average and Eq. (8) is there-
fore a direct prediction. It states in effect the following. Let us imagine that
instead of one set of # observations of a certain constant reliability, we have
N such sets, each composed of # observations of this same reliability. We
may then calculate the IV arithmetic averages, which will hereafter be called
points, and these points, just as in the case of the # observations of any set,
should disagree more or less with one another. If the arithmetic average of
the set of points is calculated, and also the deviations V' of each point from
the average, this new set of residuals should in turn follow a Gaussian error
curve, for which the probable error is'6

15 This nomenclature for the factor 0.6745 is introduced merely to save type-setting.

18 A great deal of my own earlier confusion regarding internal and external consistency has
been due to ambiguous nomenclature. To get the facts clearly in mind, it seems necessary to
make a sharp distinction between the points on a curve and the observations of which each point
is the average. To aid in drawing this distinction, I have used lower case type for all letters
connected with the observations (such as v, #, ) and capitals for letters concerned with points.
In the next section of this paper, and in general work, no such distinction seems necessary, and
accordingly in G.C. 1932 and elsewhere I use the customary lower case letters for both points
and observations.
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(R)ort = F(—Z—V—?)m. ©)

N —1

Eq. (9) is thus the answer (actual or hypothetical) to the prediction made by
Eq. (8). (R)n: is the probable error of a point, as calculated by ¢nternal con-
sistency, and (R)..; is the probable error of this same point, or any other of
the N points, as calculated by external consistency.

If now the experimental conditions are such as to justify the application
of the theory of least squares, on which the predicted value (R);.; is based,
the two values (R)..: and (R):,. should agree, except for statistical fluctua-
tions.” In the simplified situation assumed here, it is easy to show just what
the equality of (R).,; and (R); indicates.'® In Eq. (8) 2v?/(n—1) actually
represents a certain average value of ¢, where e is the true error of an ob-
servation,®® i.e.,

20

= ¢, 10
n—1 ‘ (10)
Similarly, in Eq. (9),
V2 —
g »
N -1
Let us now form the ratio of (R)es: to (R)ins. From Egs. (8), (9), (10) and
(11) we get
Ry ([ FF\U:
(B) ear _ (_ > . (12)
(R) ine ez/"

Hence the statement that (R)..; should equal (R):.;, except for statistical
fluctuations, is merely the statement that the root-mean-square average of
the errors of the IV points should be only 1/(%)"2 as large as the root-mean-
square average of the errors of the n observations of any set. But this is
exactly the relation predicted by Propagation of Errors, and already used in
deriving Eq. (8) from Eq. (7). .

Before discussing the expected variation from unity of the (R)ezi/(R)in
ratio, let us consider a more general situation. We assume now that the IV
sets of observations from which the N points are calculated, are formed of
varying numbers #; of individual observations, and that the reliability of
the observations also varies from one set to another. In that case we calcu-

17 The expected magnitude of such fluctuations will be considered presently.

18 A. Palmer “Theory of Measurements” pp. 66-71, gives a more abstract discussion of the
equality of these two probable errors. This is the only reference in English to this important
question that seems worthy of quotation.

19 This has been pointed out in connection with Egs. (2) and (3). Theory gives directly the
value of # (or of %) in terms of the errors e. The theory further indicates that if the observable
Z9? is substituted for the hypothetical Ze?, the most probable relation is Ze?/n=Zv2/(n—1) in
the case of one unknown quantity, or Zv?/(n —g) in the case of g unknowns.
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late the probable error of each point by Eq. (8), and denote any representa-
tive point by 4+ Ry, where

Ry = F(———Zj}f——)llz’ (13)

This, it should be noted, is the probable error of the pomt by internal con-
sistency, and will henceforth be called (Rx)xs.

We next desire to combine together the N points, and it is now not neces-
sary to assume that these IV points are measurements of one single quantitv
We shall, instead, assume that the N points are connected by some functional
relation, i.e., that they are the values of y, for a certain set of NV values of x,
in y=f(x). In the previous example, the N points lay on the simplest of all
curves, the horizontal line y = constant.

Before proceeding to combine our N points, we must first weight each
point according to its probable error, (Rg)ins, assuming that this probable
error is confined solely to the measurement of the y coordinate.?® Now the
probable error of a measured quantity may be termed an absolute measure
of its reliability. The weight of such a quantity, on the other hand, is only
a relative measure of its reliability. Moreover, the weight P is defined in
such a manner that it is not directly proportional to the probable error R
but is connected with it by the following relation,*

C\'? C
R = (—-> or P=— (14)
P R?

where C is an arbitrary constant. Furthermore, in Eq. (13), the reciprocal
of the term Zv?/(n;— 1) may be termed a measure of the reliability of a single
observation, as shown in connection with Eq. (10), while #; measures the
number of observations. Hence for observations of equal reliability, the
probable error of the arithmetic average varies as 1/(n)'/2, and by Eq. (14),
the probably error varies also as 1/(P)*2. Thus the weight of the arithmetic

20 This assumption of zero error (or infinite weight) in the x coordinate is made implicitly
in the case of every equation presented in this article. Fortunately the condition is actually ful-
filled in many of the measurements of physical science, such as the plotting of spectral frequen-
cies against the values of a quantum number. Moreover, when all observations have the same
probable error in the y coordinate, and a similarly constant error in the x coordinate, it is practi-
cally immaterial how these errors compare with one another. In particular, one may assume (1)
zero error in the x coordinate, and any constant probable error in the y coordinate, or (2) zero
error in the y coordinate and any constant error in the x coordinate. I have found, with typical
sets of data conforming to a linear equation, that the values of the constants given by solutions
(1) and (2) differ by only about one-fifth of the probable errors of the constants. Such differences
are of course devoid of any real significance. On the other hand, if the probable errors for either
the « or the y coordinates are not constant, solutions (1) and (2) may be appreciably different.
In the case of a non-linear equation, such a difference is likely to exist whether the probable
errors are constant or not. I am indebted to Dr. W. E. Deming for the foregoing general con-~
clusions, which he has obtained in the course of a private correspondence on this subject. The
basic equations on which they rest appear in his paper, Phil. Mag. 11, 146 (1931).

21 Palmer, reference 18, article 44. Merriman, reference 3, articles 41-43, 61 and 63.
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average of n equally reliable observations is proportional to #, and if each
observation is arbitrarily assumed to have unit weight, then the weight of the
arithmetic average is said to be #. This is the real origin of the idea of weight.

The most explicit expression for the weight P is obtained by substituting
for Rin Eq. (14) its value from Eq. (13). We then get

C/n—1
This expression states that the weight of an arithmetic average isdirectly
proportional to the number of observations composing it, and also to the
reliability of the individual observations.

Thus, from Eqgs. (13) and (14), we may calculate a weight P, for each
point from its (internal consistency) probable error (Rg)i:. Now in many
actual situations we do not know the details of the derivation of the values
(Ri)int. Furthermore it is possible, as discussed earlier, that this probable
error is an estimate that includes not only the effect of accidental errors,
Eq. (13), but also of other possible types of error. In that case (Ry)n: is
merely a stated quantity, and is connected with other quantities of interest
to us only by Eq. (14).

We shall denote by R; the probable error of a “point of unit weight.”??
Then by Eq. (14)

R; = (C)V2, (16)
Hence i R
(Ri)int = <?k> = TNE . an

Just as in the previous illustration, the value (Ry)in: is one based on certain
internal evidence and is essentially a prediction. To check this prediction we
proceed to fit the NV points to the known functional relation® y=f(x). This
is to be carried out by means of the appropriate least squares’ formulas, that
is, the ¢ undetermined constants of the function are to be thus evaluated.
One then calculates values of ¥ and compares these with the observed values,
thus obtaining a set of residuals V. Then the probable error of any point, of
weight Py, as based on exfernal consistency, is given by

> PV? )1/2
W~ =P/

22 This expression may easily be very confusing. It does not refer to any actual point.
The constant C is purely arbitrary, and R; is merely its square root. The magnitude of Rz for
any actual point is of course %ot arbitrary. From the real magnitudes Rzand the arbitrary con-
stant C, or Ry, one derives the weights P whose absolute values are arbitrary, but whose rela-
tive values are not.

28 In order that our comparison of the values of Ry, based on internal and on external con-
sistency, may be valid, it is necessary that the points actually be connected by the assumed
functional relation. Sometimes, as in the case where the points are merely repeated measure-
ments of a given quantity, there is no doubt as to the function. In other cases there may be
considerable uncertainty on this matter.

mmu=ﬁ( (18)
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It is convenient, in analogy with Eq. (16), to define the probable error, based
on external consistency, of a point of unit weight. This, by Eq. (18) is

R, =F (_ZP ) (19)

(N -9

Eq. (18) can then be rewritten as

€

(Rlc) ext — T~

P (18)

It is possible to calculate also the probable errors of the ¢ constants whose
magnitudes have been simultaneously evaluated by the least squares’ solu-
tion, and of the function itself. To do this we need only the weight of each
of these quantities, and formulas for these weights will be given later. We are
here, however, interested primarily in a comparison of external and internal
consistency, and in making such a comparison it is immaterial whether we
discuss some particular point on the curve, a hypothetical point of unit
weight, one of the constants of the function, or the function itself. This is
due to the fact that, as shown by Egs. (17) and (18'), the appropriate weight
of any one of these quantities enters in the same manner into both the ex-
ternal and the internal consistency error, and therefore cancels out when the
ratio is taken. We shall, for convenience, consider the hypothetical point of
unit weight. Then from Eqgs. (16) and (19)

R, ZPVZ 1/2
—=F .
o)

20

WV = gC 20)
This ratio, just as in the case of Eq. (12), should equal unity, except for ex-
pected statistical fluctuations. Eq. (20) appears, at first glance, to be quite
different in form from Eq. (12), but it is actually only a more general ex-
pression.?*

Since R; by Eq. (16) is only an arbitrary constant, the uncertainty in the
ratio R./R; depends wholly on the uncertainty in R,. Now the uncertainty
in the calculation of the probable error of N points (or observations) is given
by Eq. (6).%® Thus if N=9, we may expect that the ratio R,/R; of Eq. (20)
has itself a probable error of about 16 percent, and therefore we may expect
a deviation from unity of this order of magnitude.

24 This may be seen more clearly by substituting for each P, in the TP V?, its value C/R?
from Eq. (17). The arbitrary C then cancels out of Eq. (20) and we have under the radical the
various (Rx)sne which, by Eq. (13), presumably involve the residuals v of the original observa-
tions. The right side of Eq. (20) equated to unity, then expresses the general expected relation
between the magnitude of the residuals (or errors) of the various sets of observations forming
the points, and the magnitude of the residuals (or errors) of the various points, just as Eq. (12)
does in one very special case.

2 The residuals of the N points, from the calculated f(x), should of course follow the Gaus-
sian error curve, regardless of the particular function. The # observations of a single quantity,
in connection with which Eq. (6) has been stated, satisfy the particular function y=constant.
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Let us suppose now that, in a certain situation, the actually calculated
ratio differs from unity by several times—say five times—the probable error
of Eq. (6). There is approximately only one chance in a thousand that such
a deviation is the result of mere statistical fluctuation. We therefore conclude
that a definite discrepancy exists between the results based on external and
on internal consistency. This discrepancy can be due to only two possible
causes, (1) the functional relation to which the points have been fitted is not
the true one, (2) the probable errors that have been assigned to at least a
portion of the points are false.

The present discussion is not concerned with (1), and we here merely
assume that the true functional relation is known. Cause (2) is due, nearly
always, to the presence of unsuspected constant or systematic errors in a
portion or in all of the points. The evaluation of the ratio R./R; is thus an
invaluable aid to the detection of such errors. If now it has been proved, from
the value of this ratio, that the stated probable errors of the points are false,
then the weights Py, based on these assigned errors, are entirely misleading.
In such an annoying situation, the logical procedure is to discard this set of
weights, and to make an arbitrary assignment. Such an assignment is neces-
sarily based on the personal judgment of the computer, and may be very
uncertain. It is, however, likely to be better than an assignment that has
been proved false. Using the new set of weights, one then makes a new ctal-
culation of the constants in f(x), derives a new set of residuals V, and with
these calculates a new set of probable errors by means of Eq. (18). In this
situation one has available only external consistency for the calculation of
the errors.

If the ratio R./R; does not differ from unity by more than the expected
amount, one may use either R; or R, for the calculation of errors, i.e., either
Eq. (17) or Eq. (18'), assuming P to represent the appropriate weight of
the quantity discussed. In the following article, G.C. 1932, I have adopted
the conservative policy of using, in such a situation, the larger of the two
quantities R, and R;. One often encounters the situation in which the num-
ber of points N is relatively small. The probable error in R, is then large, and
most writers consequently advocate using R;. In fact the probable error
based on internal consistency is always more reliable than one based on ex-
ternal consistency.?® An additional advantage in the use of (Ry):x; is that it
can be calculated far more rapidly than (Rp)es:. It must be remembered,
however, that this conclusion as to the relative reliability of internal and ex-
ternal consistency depends wholly on the correctness of the assumption that
only accidental errors are present, and I again emphasize the point that the

2% The reliability of any probable error (Rx)in: must be judged from its origin. If this prob-
able error is given by Eq. (13), then its reliability is given by Eq. (6) with n=#;. This is also
the reliability of (Px)!2 since in Eq. (17) R; is merely a constant. On the other hand, the re-
liability of (Rk).s: is affected not only by (Pr)'2 in Eq. (18), but also by ZPV2 The ratio
(Rk) ezt/ (Ri)ine is affected merely by the uncertainty in ZPV?, and this is given by Eq. (6)
with n=N.Hence (Rz) ezt is always less reliable than (Rg)sx: and it is apparently for this reason
that (Rx)sn: is commonly employed in the literature.
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sole reason for calculating (Rp).s;, in addition to (Ry)n:, is to test this as-
sumption which, unfortunately, will very often be found quite untenable.

The final conclusion of this section is that in the situation where no
appreciable systematic errors are present, as shown by a satisfactory value
of the ratio R,/R;, one may use either external or internal consistency as a
basis for the calculation of probable errors. The internal consistency value
should then be the more reliable, and is in common use. I advocate, however,
as a more conservative policy, the use of the larger of these two errors. On
the other hand, when the ratio is not satisfactory, one must make an arbi-
trary assignment of weights, and with such weighting external consistency
furnishes the only basis for the calculation of errors.

The writer hopes that the preceding remarks have made clear to the
reader the true situation. The necessity for such a discussion may be empha-
sized by a few examples of the misstatements and misapplications of this
matter appearing in the literature.

(1) Scarborough’s article! is devoted to a proof of the fact that a probable
error based on internal consistency varies directly with the probable errors
of the original observations, whereas a probable error based on external con-
sistency involves only ratios of these probable errors, and so is independent of
their absolute magnitudes. From these facts he draws the wholly irrelevant de-
duction that the first method gives a correct result, but the second does not.
He states, in italics (page 667), that (R),.; is simply a measure of the agree-
ment of the points among themselves, and nothing more. After the preceding
discussion it is perhaps unnecessary to remark that such agreement, or better,
lack of agreement, constitutes the sole mathematical basis for the calcula-
tion of errors. The true relation between the two methods is given most
simply in Eq. (12). The first method uses the agreement of the individual ob-
servations determining each point to predict what agreement will be found
among the various points. The second method gives the actual agreement
of the points among themselves, and is therefore an answer to the prediction.
Both methods are based on the same theory, and are equally correct in
principle.

(2) In Leland’s text “Practical Least Squares,” page 189, there is given
an example of the calculation of a weighted average and of its probable error,
from three observations of an angle for each of which the probable error is
given. The data are

72° 477 43.18" + 0.06”

44.01” 4+ 0.10”

43.74" + 0.08".
Now a mere glance at these data indicates that they show a much greater
variation than is to be expected from the stated probable errors, so that un-
suspected errors of some kind are undoubtedly present. Yet Leland proceeds

to calculate the weighted average, and its probable error, on the basis of in-
ternal consistency. The result is 43.50’/4+0.04’/, and he gives this as the
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final best answer. I find that R,/R;=3.81, and since »=23, the calculated
probable error of the ratio is about 27 percent. The observed deviation from
unity is thus over ten times the probable error and there is not one chance in
a million of this occurring as a result of purely statistical fluctuations.

In his general discussion Leland (loc. cit. pp. 188-189) recognizes the
fact that R, may not equal R;, but he apparently assumes that in every such
case, R; will give a more reliable result than R,. We have seen, however, that -
this is not the case. On the contrary, we can form a mathematical estimate of
the expected discrepancy and use this for the detection of previously un-
suspected errors. In the above example one should obviously discard the
stated probable errors. If, merely for convenience, the same relative weight-
ing is retained, the correct result is 43.50"/ +-0.16’’, as deduced from external
consistency.

(3) In F. W. Clarke’s monumental work on the calculation of atomic
weights,?” internal consistency is used exclusively in the calculation of prob-
able errors and in the subsequent weighting. Now until very recently the
investigation of atomic weight ratios formed a most fertile field for unsus-
pected constant and systematic errors. A brief examination of the data pre-
sented by Clarke is sufficient to establish this fact. I find, from sample cal-
culations, that the ratio R,/R; averages about ten, so that Clarke’s stated
probable errors average about one-tenth of the most probable values. In
certain cases such a system of analysis leads to a clearly false result for the
atomic weight itself, as I have pointed out in a previous paper.?® Thus there
is occasionally an atomic weight determination by some particular investiga-
tor that is quite at variance with all other known results, but that happens
to have high internal consistency. Clarke accordingly gives it a high weight,
and this weight carries through to the final result, so that the investigation
in question, which should have been discarded entirely, produces an appreci-
able change in the published final result. All of the recent reports of atomic
weight committees seem to recognize the fact that the older determinations
are nearly all vitiated by constant errors, and as a result the committee makes
an arbitrary assignment of weights. To speak bluntly, it gives zero weight
to these older determinations, regardless of their apparent probable errors.
This same question arises in the following article, G.C. 1932, and in it I have
adopted the same policy.

In concluding this section I give a numerical example of the calculation
of errors by internal and by external consistency. For this example a situation
is chosen that will incidentally bring out a point regarding weights that
appeared implicitly in the preceding discussion.

Merriman?® lists 24 observations of an angle, measured by the U. S.

27 F, W. Clarke “A Redetermination of Atomic Weights” 4th edition (1920). Printed as
Part 3, Vol. 16 of Memoirs, Nat. Acad. Science.

28 R. T. Birge “Probable Values of the General Physical Constants,” Phys. Rev. Supple-
ment (now called Reviews of Modern Physics) 1, 1, 1929. See pages 25 and 19-20. This article is
referred to as G.C. 1929.

29 M. Merriman, reference 3, page 90.
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Coast-Survey, and the data need not be re-copied. The degrees and minutes
also are omitted, since these are unnecessary for our purpose. The observa-
tions are of presumed equal reliability, and the arithmetic average is there-
fore the most probable value. This result is 49.64'' +£0.28'’, where the prob-
able error has been calculated by Eq. (8).

Let us now, merely for the purpose of this illustration, divide the ob-
servations, arranged in their original order, into four sets, each comprising
six observations. We may then calculate the arithmetic average of each set,
and by means of the residuals,?® a probable error for each such average. We
thus get the following four points

48.82" £ 0.64"
48.85" + 0.43"
51.19” + 0.32"
49.71" £ 0.60""

4

Since these four sets each comprise an equal number of observations, of equal
reliability, the four probable errors should be equal, except for statistical
fluctuations. We may test this as follows. Treating the four errors 7; as if they
were four observations of a given quantity, one obtains from Eq. (7) the
probable error 7’ in any one of the four

" F( Do(ri —

¥ avera e)2 1/2
; : > . (21)

The proportional magnitude of 7’ is thus found to be 19 percent. The pre-
dicted value is given by Eq. (6) with =6, and is 19.5 percent. This very close
agreement is of course mainly fortuitous, but it is certainly an indication that
the various observations are of equal reliability, and that the fluctuation of
the values of 7;1s only statistical.

In such a situation one should disregard the variation in 7; and give each
of the four points the same weight. To give them unequal weights, on the
basis of the unequal values of 7; is in this case just as illogical as to give a
series of observations, of presumably constant reliability, a series of weights
based on the deviation of each observation from some adopted average.®
With equal weighting for the four points, one will of course get for the final
average merely the first quoted result, 49.64"’.

We now, for the purpose of the illustration, assume that the origin of the
four points and of their probable errors is not known, and we proceed to give

30 Tt should be noted that a residual now means the deviation of any observation from the
average of its own set, not from the general average just quoted.

3t These facts seem to be well recognized. See, for instance, Wright and Hayford “Adjust-
ment of Observations” pp. 74-77, and Tuttle and Satterly, reference 4, pp. 202-203. The for-
mer text refers specifically to the Northern Boundary Commission which decided that, when a
long series of observations were taken with the same instrument, under comparable conditions,
the average results were to be weighted according to the number of observations composing
them, and not according to the calculated probable error.
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weights (P) to the points according to their probable errors, and to calculate
the weighted average, 4. The weight of this average is 2P and the probable
error may now be calculated in the usual two ways. By internal consistency
it is

7

(R)ine = (—ZP)”Z : (22)
By external consistency it is
Zpyz 1/2
(R) ent = F<—~————— ) . 23)
ot (N —1) 2P (
The numerical results are given in the top row of Table I.
TasLE 1.
4 (R)int (R) ezt ratio
50.09” 0.22" 0.43" 1.95
49.64" 0.27" 0.15” 0.55
49.38” : 0.21" 0.32” 1.52
Average 49.70" 0.23" 0.30" 1.34

Let us now rearrange the observations, forming the first set of six from
the 1, 5, 9, etc. observations, the second from 2, 6, 10 etc. We then obtain by a
similar process the values in the second row of the table. For a third division
I have used observations 1, 3, 5, 7, 9, 11 for the first set, 2, 4, 6, 8, 10, 12 for
the second, 13, 15, 17 etc. for the third, and 14, 16 etc. for the fourth. The
results are given in the third row, and finally the average of the three methods
of division in the last row. The previously quoted result obtained by the
direct unweighted average (49.64’/+0.28"') is certainly the most reliable,
and the table shows that external consistency happens, in this instance, to
give for the probable error a slightly more reliable average value than does
internal consistency. On the other hand, the fluctuations of (R)..: are greater
than those of (R):ns, in agreement with our previous remarks on this subject.
The expected probable error in the ratio, with N =4, is 24 percent. From the
results given in the last column of the table, the average deviation of the ratio
from unity is 64 percent. There is only one chance in fourteen for such a
discrepancy, and it is barely possible that all the 24 observations do not have
the same reliability, in spite of our previous result to the contrary. This
belief is strengthened by the fact that one of the 24 original residuals is
exceptionally large, and the entire set forms a rather poor Gaussian error
curve. The agreement with theory is, however, on the whole about as good
as one may expect from such a small number of observations, and I have
deliberately taken for this illustrative problem such a small set, since this is
the situation commonly experienced in scientific work. The results show that
one should be cautious in drawing any definite conclusion as to the presence
of systematic errors, unless the deviation from unity of the ratio R./R; is so
much greater than that to be expected that there is a very small probability
(say 1in a 100 or more) that such a deviation is due to pure chance.
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THE PrROBABLE ERROR OF A FUNCTION

If one has a function Z of a number of independently observed quantities
21, 2s, 23 €tc., whose probable errors 71, 7,5, 73 etc. are known, then the probable
error R in Z is given by the well-known formula® for the “Propagation of

Errors,”
YA 2 YA 2 VA 2
R=\—n)+|(—r)+|— 73> -+ etc. (24)
621 622 623
If Z is the arithmetic mean of # observed quantities z;, - - - , 2,, and if all the

probable errors 7; are equal, this equation leads to

7
e

a relation used in deriving Eq. (8) from Eq. (7). If Z=2", Eq. (24) gives the
well-known fact, used frequently in G.C. 1932, that the proportional error in
Z is n times the proportional error in 2.

An interesting application of Eq. (24), which is needed in G.C. 1932, is the
following. Let us assume that we know two points, y1+7, at x=x;, and
Yo 17,5, at x =2x,, and that we pass a straight line,

y=a-+ bx (26)

(25)

through these two points. What are the resulting errors, 7,, 7, and R, in a, b
and the function itself? To get the error in ¢ and in b we must first express
these quantities in terms of the original data. The results are
2¥1 — X1
) an

X1 — Xg

b= (28)

X1 — X2

We then apply Eq. (24), where now Z is replaced first by @ and then by b, and
z; and 2, are replaced by ¥; and y,. The results are

Xof 2 X1 2
=)+ G @)
X9 — X1 X1 — X2
7 2 7 2
e (Y (Y, -
X1 — X9 X9 — X1

To obtain the error R in the function ¢+ bx, we must similarly express this
function directly in terms of y; and y.. From Egs. (27) and (28) we get

X9 — X X1 — X
y=a-+bx = y1<—————> + y2< ——) (31)
Xe — X1 X3 — X9

32 Merriman, reference 3, pp. 75-79. Palmer, reference 18, pp. 95-104.
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Then, from Eq. (24), with Z =a+bx,
R = [(“ — x)“]zjt [(xl — xm]z. (32)
X — X1 X1 — X2
When x=x;, R=7;, and when x=x,, R=7,, as should of course be the case.
An actual plot of the value of R is shown in connection with curve g, Fig. 7,
of G.C. 1932.

Let us now assume a more complex situation. Instead of two points,
which uniquely determine a straight line, we have a number of points,
through which, by means of least squares, we are to pass the most probable
straight line. What is now the resulting error in @, in b, and in the function
itself? The most general situation occurs when we have any function whatso-
ever, which is to be evaluated by least squares. Formulas for calculating the
errors in the various constants so evaluated are given in most good texts,
but I have been able to find in only two places, in English, a formula for cal-
culating the error in the function itself. In both places®* only an entirely
general formula is given, of such a character as to be rather inconvenient in
actual work. I have #never seen this formula used, nor even mentioned, al-
though there is a distinct need for the calculation of such errors, in G.C.
1932, and I am sure in much scientific work. The following relations have
therefore been obtained.

Instead of discussing the general equation, it is simpler to deduce, from
elementary considerations, a specific formula for the probable error of a
linear function. Let us assume that weights p have been assigned to the
various points, on the basis of the given probable errors (p =c¢/r?). Then the

least squares’ values of ¢ and b, and their probable errors 7, and 7;, are given
by

. (2o (2opar) — (2op@) (D pay)

) (33)
y = (2D (Xp=y) —D<pr><2py) (34)

where
D = (22p)(2opa?) — (2opa)>. (35)

3 See, for instance, Palmer, reference 18, Chap. IX, and Whittaker and Robinson, refer-
ence 3, pp. 239-242.

3¢ The references are (1) Whittaker and Robinson, reference 3, near top of page 243, and (2)
Wright and Hayford, reference 31 near bottom of page 138. Both published formulas give the
weight of a function y. By Eq. (17) or (18”) one can calculate the resulting probable error, on the
basis of internal or of external consistency.

% In G.C. 1929, page 5, the sign of both numerator and denominator in a(=a ;) and b(=a1;)
was reversed, resulting in an apparent negative value of the determinant D. This may have led
to confusion when D was used under the radical in Eqs. (36) and (37) ahead. Palmer, reference
18, page 112, gives the general formulas for the probable errors of the constants of any function
containing only two constants.
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Also /
re = n( Z;,Dpx> (36)
1/2
¥y = f’e<%—g> (37)
where .
ry = 0.6745((212))) . (38)
" —

If 7, and 7, are calculated by internal consistency, 7. is replaced by r;( =c/2).

From Eq. (26) it is obvious that 7,, the probable error in @, is also the
error in the function y at the particular point x=0. We desire the error in y,
at any point x=e€. Let us make, in Eq. (26), the linear transformation
x'=x—e¢, giving

y=a + bx. (39)

Then the error in v at the desired point x’ =0 is merely the error in a’. This
error, from Eq. (36), is given by

= ,(M)”L r(EJiS’i:L)’ (40)

D D

since the determinant D is invariant to a linear transformation in x. Eq. (40)
gives the probable error in any linear function of x, at the point x =e. In the
case of any other rational integral function (r.i.f.) of x, one can obtain the
probable error in the function at x =€ directly from the formula for the error
in the absolute term @, by merely substituting x’ =x — e in place of x.%

The error 7.’ of Eq. (40), as might be expected, is least in the vicinity of
the observed points, and increases nearly linearly as one extrapolates the
function in either direction. In fact the error of the function is a minimum at
the “center of gravity” of the observations, defined by e=2px/Zp, since this
is the condition required to make Zp(x —¢€)? a minimum, considering € as the
variable. A plot of the value of 7,” is shown, by broken lines, in each figure of
G.C. 1932.

8 The weight of the first unknown (the absolute term of a r.i.f.) is always D/A4 11, where 4 1,
is the minor determinant formed by omitting the first column and top row of the general deter-
minant D (see Whittaker and Robinson, reference 3, pp. 231 and 241). For a r.i.f. of degree f,

Disgivenby 20 Xpx pate e 2op
pr prz ......... .
ST p e 3 pars

I have checked these results by showing that in the case of the r.i.f. of zero, first and second
degree, the general formula mentioned in footnote 34 actually reduces to the explicit form
D/A 11, with x’ substituted for xin 4 1.
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In scientific work it is quite customary to evaluate the coefficients of a
function by least squares’ methods. Rather more rarely, the probable error in
each coefficient is similarly evaluated. The accuracy of the resulting function,
on the other hand, is usually judged roughly from the deviations of the data
(the residuals) from the calculated function. The equations just quoted
furnish a quantitative evaluation of this accuracy, not only in the vicinity
of the data, but also in the extrapolated region on either side of the data. It
seems to the writer that such information must necessarily be of value in
much scientific work.



