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ABSTRACT

Part I. Calculation of the first order energies for configurations involving
almost closed shells. A method is developed for calculating the electrostatic energy
matrix for a configuration consisting of a closed shell minus ¢ electrons plus 5 other
electrons with the same simplicity as for the corresponding configuration consisting
of e+7 electrons. One classifies the states according to the quantum numbers of the
“missing” and of the added electrons and calculates Slater’s integral (J—3§K) for
each pair of electrons in the usual way except that one attaches a negative sign to an
integral connecting a “missing” with an added electron. It is then shown quite gen-
erally that the matrices of magnetic interaction are identical in LS coupling for the
two configurations mentioned above except for a reversal of sign of the spin-orbit
coupling parameter corresponding to the almost closed shell.

Part II. On two-electron spectra. It is shown that one is completely justified,
when calculating the matrix of magnetic interaction in LS coupling by Johnson's
method, in neglecting the equivalence of the two electrons of the atom. Similar results
are shown to obtain for the addition of an electron to an ionic multiplet. The method
of calculation of the matrix of magnetic interaction between configurations by this
method is considered and it is shown that neglect of the equivalence of the electrons
in case one of the configurations is composed of equivalent electrons leads to an error
of a factor of (2)V2. One does not obtain a magnetic interaction between configurations
which differ by more than the # value of one electron. This holds quite generally for
any type of atom.

PArT I. CALCULATION OF THE FIRST ORDER ENERGIES FOR
CONFIGURATIONS INVOLVING ALMOST CLOSED SHELLS

§1. Introduction

N 1929, Slater! gave a method of calculating the electrostatic interaction

for any atom in terms of certain radial integrals (F’s and G’s). About a
year ago Condon and the writer? extended Slater’s tables to f electrons, and
made a systematic comparison with this theory of all available data on two-
and three-electron configurations. Johnson?® has recently given a simple
method of calculating the magnetic energy for any two-electron configura-
tion, and he and others have made calculations of the magnetic energy for
certain other configurations.* Finally, Condon and the writer® have made a

1], C. Slater, Phys. Rev, 34, 1293 (1929).

¢ E. U. Condon and G. H. Shortley, Phys. Rev. 37,1025 (1931).

3 M. H. Johnson, Phys. Rev. 38, 1628 (1931); see also part II of this paper.

4 M. Johnson, Phys. Rev, 39, 197 (1932); Goudsmit, Phys. Rev. 35, 1325 (1930); Inglis,
Phys. Rev. 38, 862 (1931); M. H. Johnson, Phys. Rev. 40, 127 (1932); J. H. Bartlett, Phys.
Rev. 35, 229 (1930).

5 E. U. Condon and G. H. Shortley, Phys. Rev. 35, 1342 (1930).
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detailed comparison of experimental data with theory for sp, sd, sf con-
figurations, using the calculations of electrostatic and magnetic energy as
first given by Houston.$

These calculations are all for atoms at the left of the periodic table, 7.e.,
atoms whose configurations involve just a very few electrons outside of
closed shells. In calculating the electrostatic energy by Slater’s method one
classifies the different possible complete sets” for a given configuration ac-
cording to the values of M and M. The electrostatic energy is diagonal with
respect to these z-components of angular momenta, so one proceeds to use
the diagonal sum rule to find the energies for the different multiplets. The
process of calculating the diagonal element of the electrostatic energy for a
given complete set involves the evaluation, from tables, of a certain integral
(J—8K) for all possible pairs of individual sets in the complete set. This is
not difficult when the configuration consists of just a few electrons, but the
amount of work becomes tremendous when one deals with a configuration
which involves an almost closed shell, particularly a d shell. For this reason,
practically no calculations of electrostatic interaction for configurations of
this type have been made.® Laporte and Inglis,® and simultaneously Condon
and the writer® recognized on somewhat empirical grounds that Houston’s
formulas would apply to configurations of the type p%s and @°s if one inverted
the level scheme and took X negative. The agreement with experiment was
found to be remarkable. Heisenberg!® has considered in general those con-
figurations consisting purely of an almost closed shell, with no additional
electrons, by considering the relation between the equations satisfied by #
electrons and by # “Léchern” under the Pauli exclusion principle.

We shall here give a method by which the electrostatic energy for a con-
figuration which consists of a closed shell minus € electrons plus 5 other
electrons can be calculated with the same simplicity as for the corresponding
configuration consisting of € electrons of the type of the closed shell plus the
7 other electrons, and shall show that the matrices of magnetic interaction
(in LS coupling) are exactly the same for these two configurations except
for a reversal of sign of the spin-orbit coupling parameter applying to the
almost closed shell.

§2. Formulation of the problem

One takes as the zero order approximation for the calculation of atomic
energies a model in which each electron moves independently in a central
force field of potential energy U(r); and considers as a perturbation the
potential energy

8 W. V. Houston, Phys, Rev. 33, 297 (1929).

7 A complete set of quantum numbers consists of N individual sets, each individual set
specifying the nlmm, of one of the N electrons of the configuration. These definitions are
according to Condon, Phys. Rev. 36, 1121 (1930).

8 Slater gives partial results for p°p; Ufford, in this laboratory, has calculated 5p and d%.

? O. Laporte and D. R. Inglis, Phys. Rev. 35, 1337 (1930).

10 W, Heisenberg, Ann. d. Physik, 10, 888, 1931.
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=V—‘ZUm%=Z{~*~+H0LS-—WM}+§:* (2.1)
i i ¥ i<j ¥ij

where the first term represents the attraction between the electrons and the
nucleus, the second the spin-orbit interaction, and the last the mutual re-
pulsion of the electrons. In the central field U(r), electron ¢ with the in-
dividual set a7 of quantum numbers will have the eigenfunction

~ Ri(nl)
wi(a?) = ——— 0, (l7ml)<1> (mz)(S(m, Ms) (2.2)
The zero order eigenfunction for the atom, going with the complete set
A =(a% a? - - -, a") will be the antisymmetric combination
- _ %
y(4) = (N/)II"Z( 1)?Pui(aV)us(a®) - - - uy(a?), (2.3)

where P represents a permutation of quantum numbers relative to electron
indices and p has the parity of P. (It is assumed that the Pauli exclusion
principle is satisfied.) The zero order energy going with this ¥ depends only
on the configuration, i.e., on the set of nil*of 4.

We are at the moment interested in the diagonal elements, in this repre-
sentation, of the matrix of that part of ¥’ which does not refer to the magnetic
(spin-orbit) interaction. These terms fall into two classes: First we have

Ze?
Z[————wm} 2.9
i 7
which is of the form Y _;f(r;). Slater has shown that for a given configuration
the matrix of a quantity of this type is diagnoal, and that the value of the
diagonal element depends only on the configuration; hence since at the
present stage of the theory we are only interested in the disposition of the
energy levels of a given configuration we need not consider these terms
further. If it were of use, the calculation of the matrix of a quantity of this
type is capable of a similar reduction to that which is made below for the
quantity
Zg(lxj) = 262/rifa . (25)
i< j i<j
which is the second type of quantity occurring in V”.

The calculation of the relative electrostatic energies of the different
multiplets in a configuration thus reduces to a calculation of the part of the
matrix of G which refers to that configuration: in particular, it is necessary
to calculate only the diagonal elements unless the configuration leads to
more than one multiplet of a type. Slater has shown that the diagonal ele-
ment of G for the state 4 is given by

1t The different factors of this function, also the F's and G’s which occur later, are as in
Slater’s paper, with the corrections suggested in reference 2, p. 1026.
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alGlay = 3 [ f f 21(a)a(a)g(1, 2)va(a*)va(a?)dridry

B> t=1
ot
— 8(ms, my) ﬁ1((1k)1—)2(dt)g(1, 2) v1(at) D2(a*) dndn]

k t
= 2k 1) — s(mam) K (, 1)), (2.6)
k>t
where v(a) is the spin-free eigenfunction #(a)/8(s, m,). The first integral here
is known as the direct integral, the second as the exchange integral. J and
K are of course symmetric in k2 and ¢ and independent of m,* and m,°.

§3. A summation over a closed shell

We shall need to consider a sum of terms like the summand of (2.6),
in which a! runs over the individual sets of the #’l’ closed shell, and in which
a® has the fixed value nlmm,. We do not assume that all the sets a? are differ-
ent from a*, as is the case in (2.6). This sum is, in detail

DI [ f f 8(1, D) Ri(al) Ry(w') O (Im)Os('m{ ) (2)~*drrdrs

ms’ my=—1

Y- f f o(1, 2)Ra(nd) Ry(Wl') Ra(nd) Ro(w') O (Im Y1 (m) (3.1)
. @1(l'ml' ) <I>1(ml' )@2(11’}1/1) @2(1’}11)@20/1’”{ )‘52 (m{ )dTlde] .

Now the summation over m,’ gives a factor two in the first term and a factor
one in the second. The summation over m,;” may be carried out by the use
of the spherical harmonic addition theorem in the form

v - 2041
2o 0uU'mi)@o(U'mi ) ®1(mi) Ba(m!) =

myp=—1

P (cos w), (3.2)

where w is the angle between the radii vectores 1 and 2 from the origin; in
particular if 1 and 2 are identical, Py (cos w)=1. This gives for our sum

2 f f (1, 2)Rf(nz)R§(n'z')®f(zml)<Z_l'4+ 1> (})drld‘rz

™ ™

- f f ¢(1, 2) Ra(nl) Ra(n'V") Ra(nd) Ra(n'V')®(Ime) By(my)

041
- @o(Imy) Bo(my) < 2 > Py(cos w)dridr,. (3.3)
T
Now writing
62 0 K
g(1,2) = — = e ) i P,(cos w),

712 P
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where 7 is the lesser and 75 the greater of 7, and 7, each of these integrals
can be written as a sum over « of integrals involving e?_*/rs"*1- P (cos w)
in place of g(1, 2).

In the direct integral one may choose a new coordinate system for the
variables 6;, ¢, with the direction 6;, ¢; as pole, in which case w=#0,. Then
all terms vanish except for k=0, in which case the integration over 6, ¢,
gives a factor 4. The integration over 0, ¢; may then be performed directly,
giving for the value of the direct integral

0 © 62
2021 + 1) f f - Ri(nd) Ry(wV)dridry = 2020 + D)F(nl; w'l) (3.4)
0 o 7>
or just the number of electrons in the closed shell times F°(nl;#’l’).1t This
result is seen to be quite independent of #; and m,.

The exchange integral, on using the same expansion, becomes

- Z e? fli Rl(ﬂl)Rl(n,l/)Rz(ﬂl)Rg(%’l')@Klml) <I;1(m;)
B prtl

’

2 1 .
. @2(lml)d>2(ml) < > Pl'(COS w)PK(COS w)dTﬂiTZ

To evaluate this we expand the product Py (cos w) P,(cos w) in-a series of
Legendre polynomials Py(cos w). This we may do since the Py(cos w) form
a complete set of functions in the interval 0 to w. The coefficient of Py(cos w)
in this expansion is given by
N o e .
Cre = 5 Py(cos w) Py(cos w) P(cos w) sin wdw
0
AN+1

T+ DB+ 1

where the last factor is the positive square root of b as given in the tables
of Slater and of Condon and Shortley.!?
When we substitute the relation

Py(cos w)P(cosw) = ZC:"KP)\(COS w),
x

{B*(1'0; k0) } 112

the above exchange integral becomes a double sum over x and \. In each
summand the dependence on 0, ¢ is through the factor

Os(Im,)P2(m1) Pr(cos w).

The integral of this over the whole range of 6; and ¢, vanishes unless A =/,
in which case it becomes®

12 A closed expression for the integral of the product of three ordinary Legendre poly-
nomials in known. See Hobson, Spherical Harmonics, p. 87, or Gaunt, Phil. Trans. Roy. Soc.
A228, 195 (1929).

13 This is a well known integral in the theory of spherical harmonics, see, .g., Mac Robert,
Spherical Harmonics, p. 137.
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4
_2;17 O, (Imy) ®,(m;) .

The integration over 0, ¢; can now be performed to give simply a constant
factor. Thus we are left with

2004+ 1 ® © o<
—-~<Zdw2f j'_?kmmmmwkmmmm%wﬂm
¢ >

20+ 1 = 0
204+ 1

= — —L ZC;’KG"(WZ; w'l’)
2041 =

for the value of the exchange integral. Note that this result is also inde-
pendent of #; and m,. The values of k which can occur in the summation are
those which satisfy the triangular conditions

£+ 141V =2¢g (gintegral)
li—V|=k=s141.

This calculation, incidentally, furnishes a formal direct proof of the fact
that the electrostatic interaction of any electron with a closed shell is inde-
pendent of the m;, m, of that electron.

§4. Calculation of the matrix of electrostatic energy

Consider the state A of a configuration which consists of a closed shell
minus ¢ electrons plus 7 other electrons in addition to any number of com-
pletely closed shells. Denote the individual sets of the closed shell by a!,

a% - - -, a4 a¢tl, - - - a* where a¢tl, - - - | @ are the sets occurring in 4
and a' - - - a¢ are the “missing” sets. Denote the rest of the sets occurring
in A by 8%, 8%, - - -, b". In the diagonal element (2.6) of G we will have first

a sum over all pairs of electrons belonging to the closed shells present plus
a sum of terms between each of the other electrons and all electrons in closed
shells. These are just as in Slater’s calculations—dependent only on the con-
figuration—and may be given in terms of simple expressions involving radial
integrals. In particular we have found in the last section the expression for
a sum of the latter type. The remainder of the diagonal element is given by

z": [J(a’a?) — B(m:, m:)K(aiaf)] (o)
> et 1
+ 2

i=et1l 7

[V @) — m, m)K(a®)] (8) | (4.1

1

]
-~
ik

[ (ib7) — 6(my, mDK(bib7)]. ™)

1

+

M-

>

I

Call these three terms («), (8), (v) respectively. We wish now to reduce the
inconvenient summations over the range e+1 to # to the more convenient
summations over the range 1 to e.
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Consider first the term (). We may write
@ = > [(aia) — 6(m, m)K(aia?)]
> j=et1

- X Tl1- 3 [

I
™

S L o K
— iél['”]—é g[...]+§ E:[...]_ i)z;[...J
= 3 @) ~ s, m)K(aia)]
- ; gl[f(aiaf) — 8(my, mK (aia?)] (4.2)
+ ]_El 7 (aia?) — 8(may m)K (aia?)] + ;[J(aia") — K(@id)].

Now since J(a'a?) =K (a’a®) the last term vanishes identically. The first term
is a summation over the closed shell and so depends only on the configura-
tion. The second term is of the form of the sum of terms like (3.1) in which
nlmym, takes on the values 1 to e. Since (3.1) was shown to be independent
of m, and m;,, this term depends only on the configuration. Hence the only
term of (&) which may vary within the configuration is

€

S U(aiad) — 8(ms, mYK(aiai)], (4.3)

1> j=1
which has the required simple summation.
The term (B8) becomes similarly

@B = X T - s, mhK@b))]

€+1

i

3

[J(aib?) — 8(ms, mi) K (aid)] (4.4)

It
M:

i=1 j=1

— Y D) — by m K (@]

i=1 =1

i

of which the first term depends only on the configuration.
Since the term (y) is already in its simplest form we find for that part of
(4 [G [A) which may vary within the configuration, the value

> [J(atai) — (m, m)K(aiat)] (@)

> =1 .
— i Zﬂ:[J(aibf) —6(m:, m:)K(aib')] B) t 4.5)
+ 3 ) — sim!, mhK G, @)

> =1



192 GEORGE H. SHORTLEY

This gives a perfectly simple and definite procedure for calculating the
electrostatic energies for such a configuration. Since ) m,; and D>_m, over a
closed shell is zero one can proceed as follows:

Calculation of the electrostatic energy for a configuration consisting of a
closed shell minus e electrons plus n other electrons (call the group of e missing
electrons group a, the group of 5 other electrons group ) :

I. Make a table of all allowed complete sets of quantum numbers for the
configuration consisting of groups @ and b. Call this Table I, and label the
different complete sets 4, B, C, - - - . This table lists all possible complete
sets for the configuration in question, each labelled by the quantum numbers
of the “missing” electrons and the additional electrons.

II. Make a second table which is identical with the first except that the
signs of m; and m, for the electrons of group a are reversed. Denote the entries

which correspond to 4, B, C - - - by 4o, Bo, C, + - - . The values of Zml and
st as obtained from this table will be the true values for the states 4, B,
C - - - of the configuration we are calculating. Call this Table II.

ITII. Combine the values of M and Mg from Table II into a double entry
table as in Slater, determine the multiplets, and arrange for their calculation
by the diagonal sum method.

IV. Calculate the Y [J—8K] for each complete set as outlined in Slater,
using the quantum numbers of Table I, and assigning a plus sign if both elec-
trons lie in group a or group b, but @ minus sign if one electron lies in each
group, in accordance with (4.5).

This procedure involves exactly the same amount of calculation as for
the corresponding configuration with ¢ electrons foward a closed shell.4
However, because of the various reversals of sign that occur the results will
in general be quite different in appearance from the corresponding results
for the analogous simple configurations.

As an illustration we will sketch the calculation of the electrostatic energy
matrix for p%p. The missing electron a then belongs to the shell n%p, the added
electron b to the shell #®p. There are nine possible assignments of 2, values
and going with each of these there are four possible assignments of m, values.
These are listed below along with the {rue values of My and Msg.

m‘; my My m: m: Mg
-1 1 2 (o) — + 1)
0 1 (B) — - 0 (2)
-1 0 () + + 0
0 1 1 (5) + — -1 4)
0 0 ()
-1 — 1 (0)
1 1 0 (v
0 — 1 ()
-1 -2 ()

14 Table II is not actually constructed: one simply calculates the true Mz, and Mg from
Table I by reversing the signs of the electrons of group a. Table II will be useful in the consider-
ations of §5.
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For the calculation of the electrostatic interaction sets with M1, Mg=0
are arranged in the following double-entry table.

My =2 Q203 (251
B2Bs B

L N

Y2v3 Y1

0| $afs &1

tat3 tr
Mg = 0 1

Using Slater’s table of a’s and &’s and the signs as directed above, we obtain
the electrostatic energies® as follows
3D = () = — Fo— F» 3D = — Fy — F»
1D 43D = () + (a3) = — Fo — Fo + 6G: 1D = —Fy — Fp 4+ 126G,
3D + 3P = (B1) + (61) = — 2F, + 4F, 3P = — Fo + 5F;
SP +3D + 1D + P = (B2) + (Bs) + (82) + (83)

I

= —4F, + 8F, + 12G, IP=— —Fy+35F
5§ + 3P + 2D = (y) + (1) + (u)
= — 3F, — 6F, 8S = — Fo — 10F,
3S+3P 43D + 1S+ 1P 41D = (v2) + (v5) + (§2) + (&) + (12) + (1a)
= — 6Fy — 12F, 4+ 6Go + 12G, LS = — Fo — 10F; + 6Go

where
Fo = F(n“p; ntp)
Fy = (1/25)F*(n"p; n’p)
Go = G'(n*p; n®p)
Gy = (1/25)G:(n%p; nbp).

These energies are seen to be quite different from those for the correspond-
ing configuration pp as on p. 1029, reference 2, especially in regard to the
singlet-triplet separations.

One can generalize this scheme to include configurations which involve
two or more almost closed shells.* The procedure is essentially the same as
above with the additional direction that one assign a plus sign to the integral
J — 6K connecting electrons “missing” from two different shells.

15 These energies check with those calculated by Ufford (unpublished) for the same con-
figuration by the straightforward method. The F's and G’s with subscripts are defined as on
p. 1026, reference 2, to be Slater’s F's and G’s divided by the denominator of a* or b* as it occurs
in the tables.

* This case is not completely uninteresting from the spectroscopic point of view: it
furnishes the most pleasing way of inferring that the electrostatic energies for the configurations
p5s and d% are given by the same formulas as for the configurations ps and ds.
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§5. The matrix of magnetic energy

In this section we shall show quite generally that the matrix of the spin
orbit interaction

1
Vi= 3 Vi= 2 &(r)Ls-S: (5.1
is the same, in LS coupling,' for the configuration consisting of a closed n?*
shell minus e electrons plus n other electrons as for the configuration con-
sisting of e electrons #n2* plus the 7 other electrons, except for a reversal of
the sign of the spin orbit coupling parameter

Cure = (nole| £(r) | mele). (5.2)

For convenience we shall speak of these two configurations as “configuration
R” and “configuration " (right and left in the periodic table). Our procedure
will be as follows: To each of the zero order eigenfunctions of configuration
R with a definitely chosen phase, we correlate a zero order eigenfunction of
configuration . in a definite way. We shall then see that the matrix of V*
in these two configurations differs only in the sign of (%, while the matrices
of L?, S? and L- S are identical. The latter fact shows that the transformation
to LS coupling will be the same for the two configurations; and the former,
that the matrices of V!, when so transformed, will differ only in the sign of
{z2e. Now the matrices of magnetic interaction have been calculated?® in
LS coupling for various configurations of the type .(; in particular for all
two electron configurations,” which correspond to the important cases of
the type p%x, d%x, etc. Hence this calculation, which is in general rather com-
plicated, will not have to be made independently for configurations of the
type R.

According to this program, we will first adopt a standard order of listing
quantum numbers in the eigenfunction (2.3). The individual sets will be
listed first in increasing order of the n values; the individual sets with a
particular z will be arranged in increasing order of the / values; those with
particular # and ! will be listed in decreasing order of the m; values; and the
set with m,= 41 will be listed before that with m,= —1 in case the two sets
agree in regard to », /, and m;. With the individual sets arranged in this order
in (2.3) we obtain what we shall call (4). We shall now wish to choose the
phase of the zero order eigenfunctions of configuration R in a particular way.
For the complete set 4 we shall take +y/(4) if the sum of the m; values of the
electrons in the almost completed shell is even, —¢/(4) if this sum is odd.
We shall correlate to each complete set 4 of configuration R in Table I the
complete set 4, of configuration . as given in Table II, the eigenfunction

16 The fact that we determine this matrix in LS coupling does not mean that the energy
calculation is in any way limited to the Russell-Saunders case. The energy matrix will not be
diagonal in LS coupling, and the transformation necessary to diagonalize it will represent the
socalled dreakdown of the coupling.

17 M. H. Johnson, reference 3; this method needs a justification, however, which is given
in Part IT of this paper.
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being taken with the 4 phase when the set is in the standard order. These
two complete sets have the same M and Mg values.

We must now verify our assertions regarding the matrices of V!, L2, S?,
and L-S. Formulas for the matrix elements of such quantities have been ob-
tained by Johnson? using the general formulas given by Condon.” These
formulas will have to be supplemented by an exact determination of the sign
of the non-diagonal elements. A general rule may be stated as follows.1®
To the matrix component between two states, Y(4) and ¢ (4’), differing
in regard to one or two individual sets, one prefixes + or — according to the
parity of the permutation which changes the set A’ from its standard order
to the order in which equal elements in 4 and A’ occupy the same places.

We will use the following notation for the matrix components of angular
momentum for one electron.

L.| ndldmldm:)

(c| L] d) = (wlemms,

c c 5-3
= s(nelome; nlim)o(m; £ 1,m)a[(a £ m) (14 F mi + 1)]”2§( :

c c d
(cl SxI d) = s(nlemy; ndldm;i)a(ms + 1, m )17, (5.4)
c d, c ¢
(clL-SId) = K2 (nlom;; ndldm,-){é(c, dymmms + %6(7%,:, m;l + 1)
_ ¢, (5.9)
e = mi o+ D+ mi+ DY

where m; =m ;-+m,. One fact we shall need particularly is that the matrix com-
ponent of any of these quantities between the states m{m and m{m? is the
same as that between —mf, —mS and —mf, —m2.

Matrix of V'. One obtains a non-diagonal element of V' only between
states differing in regard to one individual set, say that ¢ occurs in 4 while
¢’ occurs in 4’. The value of this component is

+ ter(c| LS| ¢, (5.6)

where the sign is determined in accordance with the above convention. If the
element ¢ occurs in the group & of additional electrons one obtains the same
value for configuration R and configuration .. If ¢ is in the almost closed
shell ¢ and ¢’ must be of the form (m;)~and (m;—1)* respectively. Aand 4’ are
already in the same order, as are 4, and 4. Buty(4) and ¢(4"’) are taken
with opposite signs by our rule for choosing the phase. Hence in the matrix
components

Al vtan

= Cuoplm, — [ L-S|mi — 1, 4),
o] V1| 4d) = com(—mi+ 1, = | L-S| — my, +) = — (4| V1| 49,
{»e ¢ occurs with opposite sign. For the diagonal element of V! one has

18 Communicated by Professor Condon.
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A V] 4) = top Smme 4+ D(0%] V1| b7)

i=€e+1 t=1

. n . . € o N n
= G omumy — Cooe Somamy 4+ DO(6| Vi
=1

i=1 i=1

b%),
where the first sum is zero. For the configuration . one obtains

Vi b%)

€ . . n
(o] V1| 40) = Corw Sommy + (b
=1 =1
since the product mim’ is the same for a missing electron as for the cor-
responding electron in 4,. These two elements are seen to be the same except
for the sign of {,%¢ This completes the proof of our assertion concerning
the matrices of V*.
Matrix of L?. We get non-diagonal matrix components of L? only between
states differing in regard to two individual sets, say ¢ and d. This component
has the value

(A L2 47 = + 4{(c| L.| )@| Lo | &) — (| L.| &)@| L.| )} .

Now if both ¢ and ¢’ are in group b the value is obviously the same for R and
L. If ¢ is in shell @, d in group b, one obtains no value from the second term.
In order to obtain a value for the first term ¢ and ¢’ must be of the form
(my)*, (m,—1)F. If the element lying between these two is present in R, so
far as the shell ¢ is concerned 4 and A4’ differ by an odd permutation, while
A, and 4.’ do not differ in order. The converse is true if this element is
missing. This introduces one difference of sign between (4 ]L2 [A') and
4, L? (AO’); however we get a second difference of sign from the different
choice of phase of ¥(4) and ¢¥(4’), which makes these two elements just
equal. In a similar way one demonstrates the equality in case ¢ and ¢’ are
both in shell a.
The diagonal element of L? is

(| L2| 4) = 12M; + 7 {0 + 1) — (m3)?} — 4;(c|L,| d)?,
c cSNd

where ¢ and d run over all the individual sets of 4. The first term is the same
for A and A4,, as are also the parts of the second and third terms arising from
group b. The part of these terms which arises from group ¢ is the same if
calculated for 4, as for the group of missing electrons. The equivalence of
this to the calculation for . is a direct consequence of the following interesting
relation: If one takes the integers /, - - -, 0, - - -, —1 and arranges them
into two groups a and 83, then the following sum has the same value for groups
o and B (the individual integers are denoted by m ;) :

S+ 1) —mi] + T+ 1) +mi — ml,

my

where the second sum is taken over those m,’s for which m;—1 is also in the
group.
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This completes the proof that the matrix of L*?is the same for R and .(.
The calculation for S?is very similar and will not be discussed in detail.

Matrix of L-S. If A’ differs from 4 in two electrons, the calculation is
much the same as for L? and S2. If 4 differs from 4’ in regard to one electron,
¢, one obtains!?

(A|L-s|4) =+ {(c|L-S|¢") — 22 (c| L.| d)(d]| S.]| )
- 22(6’|Lx!d')(d'15,|c)},

where d and d’ run over all the individual sets common to 4 and 4’. If cis in
group b we obviously get the same result for . and R. If ¢ is in shell a, we
get no value unless ¢, ¢’ are of the form (m;)~, (m;—1)*. Then to obtain a
value for the second term d must be (m;—1)~, for the third term d’ must be
(m)+. With these values for d and d’, the second and third terms each be-
come —(c iL- S ’c'). One may easily verify that 4 and 4’, 4, and 4/ always
differ by the same permutation. One obtains a minus sign in the element
(A |L-S|A") due to the difference in phase in the eigenfunctions. Then if
neither d nor d’ is in configuration (’), they must both be in R, hence in this
case

(4| L-S|4") = = (c|L-S]|¢)
(40| L-S| 4J) = (¢| L-S| ¢') — 2(c| L-S|¢') = (4| L-S| 4").

Similar considerations hold for the other two possibilities.
The diagonal element of L- S'is given by

(A|L-S|4") = M Msh2,

which obviously equals (4, fL S’A J). This completes the proof as outlined
at the beginning of the section.

We will not at this time go further into detail concerning calculations of
special cases for configurations of this type. The writer is preparing a sequel
to this paper which will consider all the special cases of interest and their
comparison with experiment.

Part II. ON Two-ELECTRON SPECTRA

§6. The direct calculation of the magnetic interaction in LS coupling

In a recent paper M. H. Johnson?® gave a clever method for the calculation
of the matrix of magnetic interaction directly in LS coupling for any two-
electron configuration. This method, which was based on the work of Giit-
tinger and Pauli?® on the calculation of angular momentum matrices, at once
disposed of the whole of the two-electron problem which previously had been
attacked configuration by configuration, by Houston,® Bartlett,® and
Goudsmit.* However, in making this calculation, Johnson assumes without

19 This formula is alternative to, and somewhat simpler than, that given on p. 199 of

Johnson's paper, reference 4. )
20 P, Giittinger and W. Pauli, Zeits. f. Physik 67, 754 (1931).
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proof?t that one will obtain correct results by calculating the matrix of
£(r1)Ly-S1+E(rg)Ly-Se in the system of states characterized by definite
values #ls of the quantum numbers of electron 1, definite values #'l’s’ of the
quantum numbers of electron 2, and the values LSJM; of the resultant
momenta; of course calculating nothing at all for states known to be ruled
out by the exclusion principle. This complete neglect of the equivalence of
the two electrons, which is usually taken care of by antisymmetrization,
needs justification; and since our calculations of magnetic interaction for
configurations of the type p%x, d%, etc. depend on the use of Johnson's
matrices, it was thought appropriate to include a justification of this point
at this place.

We are interested in the matrix components of £(71)L;y-Si+&(re)Ls- S
joining antisymmetric states characterized by LSJM; for a given two-elec-
tron configuration. Each such state is a definite known?? linear combination
of states characterized by LSM Mg, or say -y for short. Now our basic states
are characterized by mlimusima; ndld mi se*ms . Call the eigenfunction
going with this state ¢(n; - - - m.d ). We can build up a state characterized
by nilis1; ndldsd ; LSM 1 Mg by taking definite known linear combinations of
these states ¢. Call the state so obtained ¥ (a1, 82, v). Now this state will be
neither symmetric nor antisymmetric in 1 and 2 if 3#£«, since if it were it
would be an eigenstate for both quantum numbers « and quantum numbers
B for each electron, and this is of course impossible. However, to have a
physical significance we must make this state antisymmetric in 1 and 2.
Now since the state ¥(az, 81, v) is also an eigenstate of v, the antisymmetric
combination

Y(y) = [¥(e, B2, v) — (e, B1, )] (6.1)

@

will be an eigenstate of v and will be the only one that satisfies the antisym-
metry condition. We can then consider the state LSJM; in which we are
interested as built up of linear combinations, in the known way, of these
antisymmetric states. The general matrix component joining two states
LSTMjy; L'S'J' My of the 'same configuration will be the sum of matrix
components between these antisymmetric functions, with a constant o and
B. The most general term will be

3V (anBom) (e I [{ 1} + {2} 1 [ (arBev") — (@817
where {1 } =£(r1)Ly - Si, etc. Expanded, this becomes

(e, Bz, v) {1 }(a, Ba, ) + $(e, B1, 1) {1}
+ (as, B, v) {2} ¥ (e, Be, ) + H(as, B1, 7) { 2}y (e, B1, ¥')
- %k_b(ah B2, v) { 1 }‘l/(az, B, v) — %‘Z(azy B1, 7) { 1 }‘P(al, B2, v") (6.2)
— (o, B2, ) {2} ¥ (e, Br, v') — 3l By, v) {2} (e, B2, 7).

2 T am indebted to Mr. Johnson for calling my attention to this point.
22 The matrix of this transformation was first given in general by E. P. Wigner, Gruppen-
theorie, p. 206.

‘lb(a?y ﬁl; 7’)
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Now of this the first term equals the fourth and the second the third,
since the interchange of the electron indices 1 and 2 in a matrix component
does not affect its value. Together these first four terms give

Ylas, Bo, V[{1} + {2} (e, B2, 7). (6.3)

Now as to the last four terms; certainly none of these will have any value
unless f=a, t.e., unless the electrons are equivalent, since any function of
electron 1 is diagonal with respect to the quantum numbers of electron 2 and
vice versa. If the electrons are equivalent, Y(aq, as, 7v) will be either symmetric
or antisymmetric. To show this we note that (a1, as, 7v) is the product of
an orbital function® ,(n1l1, nels, LM 1) and a spin function ¢, (s, s2, SMg).
We express this ¢, in terms of the fundamental ¢,’s by the transformation

Vr(milinolos LM 1) = Z¢r(”1l1mlln2l2m;2) (il ymasnslamig lmlmzlzLML). (6.4)

mp,my’

Now from page 206 of Wigner we have the relation
(mh%mdvml nilmaleLM ) = (— 1)”—"(”1l1muﬂzlzmllzl nilimgls LM 1). (6.5)

In the summation (6.4) m,; and m/ run over the same range —I - - - I. Hence
we may rewrite our summation, using (6.5), as follows:

%(mlmzlzLML) = Z I[¢r(nlllmlln2l27’£l2) + (—“ 1)2l_L¢r(%1llmInnzlzmzz)]

mySmy
 (malymynialamis | nidimalaL M 1)
+ Z¢r(”lllmlln2l2mlz) (milymynalomg l nilinolo LM 1),

my
and this, since ¢, is merely a product of a function of electron 1 with one of
electron 2, is symmetric if 2/ — L is even and antisymmetric if 2/—L is odd.
Similarly ¥, is symmetric if 2s—.S is even, antisymmetric if it is odd. Hence
Y (a1, a2, v), the product of ¢, and ¢,, will be either symmetric or antisym-
metric depending on whether 2(I+s) — (L+.5) is even or odd.

If either Y(a1, asz, v) or ¥(ai, as, ¥’) is symmetric we get zero for our
matrix component. (Either ¥(y) or ¥(vy’) vanishes identically; the last four
terms of (6.2) cancel the first four.) If both are antisymmetric the last four
terms of (6.2) are exactly equal to the first four. But in this case our normaliz-
ation of ¥ is wrong by a factor 1/(2)"/2 so again we get just the result (6.3).

Hence, for any case in which states v and ¥’ are permitted by the ex-
clusion principle we have the result

T {1} + {2} 1) = $la, B2, M{1} 4 {2} (s, B, 7)  (6.6)
which justifies the assignment of the quantum numbers « to electron 1 and

B to electron 2 in calculating the matrix of any function of the type {1}
+ {2} in LS coupling.

2 Note that according to the convention we are using #milinol; indicates that electrons 1 and
2 have the same quantum numbers #l. A difference in quantum numbers is indicated by a prime
or a superscript.
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§7. The addition of an electron to an ionic multiplet

We can treat, by this same method, the problem of calculating the mag-
netic energy matrix for the system of states resulting from the addition of
an electron to a Russell-Saunders multiplet of the next ion. The considera-
tion of such a set of levels as thus arising from a certain “parent” multiplet is
justified only in case the spread of the resulting set of levels (a triad for an
added p electron, a pentad for a d) is small compared to the distances be-
tween the sets arising from different parents; otherwise we should have an
“interaction between parents”. The special case 3P+s was considered by
Goudsmit,* and the general calculation was given by Johnson® in his paper
on two-electron systems for the case in which one adds an electron which is
not equivalent to any electron in the ion. Johnson's calculation was made
with the same assumptions as in the case of two-electron spectra, and re-
quires for justification the considerations we shall now give.

Consider a Russell-Saunders multiplet of an ion. In this case the mag-
netic interaction in the ion is so weak that it can be considered as a small
perturbation applied to the degenerate I¢, s¢ energy level resulting from the
electrostatic interaction. (We will use the letter ¢ to designate resultant
momenta for the ion and e to designate the quantum numbers of the added
electron.) The magnetic interaction energy V'=) £(r;)Li-S; for the ion is
diagonal with respect to 7% and m;:, and the dependence on j¢ and m; of each
term may be obtained from Johnson's formulas (p. 1635):

(Uisijimy| Ly Si| Uisijim’)

FG A1) — B+ 1) — s+ 1>}

- (li‘Lk ;

FX&[SHs%{

Here the first two factors are quite independent of j*and mi. Since the matrix
of £(r) does not depend on j¢ or m; the whole dependence of the matrix of
V'on jt, m;is given by*

G D = B4 D) = s 1>}

sty | V2 bstjindy = e} 2

isijim;) .

= ¢(Fisiim;] LS,

Hence our combination of ionic multiplet and electron is effectively a con-
figuration I's¢, I°s¢ with a magnetic interaction energy {L;-S;+£(r.)L.- S..
Now our resultant states for the atom, characterized by LSJM;, are
known linear combinations of states characterized by LSM ;Mg. Denote this
last set of quantum numbers by v and the eigenstate by ¥(vy). This latter
state must be properly antisymmetrized in all electrons. Now from the
functions ¢(limisimt; lemisem?) we can build up uniquely the state ¢(lisé;
Iese; ) or, for short, ¥ (. . . », Be, ¥) where in place of ¢ we write the names

2 This is, of course, just the Landé interval rule. Note that the numerical value of ¢ can
be obtained directly from the multiplet splitting of the ion.
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of the electrons 1 - - - # in the ion. This state is antisymmetric in all the ion
electrons, but unless the quantum numbers #nls of one of the ion electrons
agree with those of the added electron, it can be neither symmetric nor anti-
symmetric with respect to interchange of the added electron with any of the
ion electrons. In this non-equivalent case, we build up an antisymmetric
V() by taking the following linear combination

1 n
Y(y) = m[‘ﬁ(almm Beyv) — E‘p(al---e'“m Br, M1, (7.2)
where e replaces k in the subscript of a under the summation sign. Now a
general term in our interaction matrix is

V(Y){¢Li-Si + £(ra) La-Sa} ¥ (v), (7.3)

where {L;-S; acts on the ion electrons and £(7,)L,- S, acts on the added elec-
tron.? Now in our case of no ion electrons equivalent to the added electron,
this matrix component will vanish between states having different ion elec-
trons, and hence a different added electron. The (#+1) terms which remain
will all be equal, hence (7.3) becomes simply

Y(ateeon, Bey Y {ELi*Si + £ Lo Sold(ar.. o, Bey 7') (7.4)

which is the expression used by Johnson.

The special cases p’x or d°x of configurations of the type . may be con-
sidered as the addition of electron x to the 2P or 2D multiplet of the p° or d°
ion. In this case since this doublet is the only multiplet of the ionic configura-
tion the “parentage” of our states is unquestioned to the accuracy of the first
order perturbation theory of Part I. The remark of footnote 24 enables us to
obtain an estimate of the value of {,%s for these configurations from the
doublet splitting of the ion, since the { of equation (7.1) equals—{,s¢ in this
case to the approximation in which we use the same central field for the two
cases.

§8. The matrix of magnetic interaction between configurations for two
electrons

We will now extend the results of §6 to show how one calculates the
matrix of magnetic interaction between two two-electron configurations by
using the very convenient formulas of Johnson which give directly the matrix
component of magnetic interaction between any two states with precise
values of I,ly's1so’ LSTM;. This matrix is diagonal with respect to JMj, so let
us consider the matrix component joining state SLJM; of configuration
x(=af) and state S’L’J M of configuration y(=v8).

The state SLJM; will be a linear combination of states SLM Mg, or
say A, while the state S’L’JM; will be a linear combination of states .S’L’
M Mg, or say \'. The antisymmetric ¥(\) will be of the form

% i e, ¢{L;i-S; acts on the electrons belonging to e, £(7a)La S, on the electron belonging
to Bin y.
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1
when we take a0, Similarly

TV

¥(\) = [¥ (a1, B, N) — ¥(az, B1, N)],

= ()12 [‘l’(’)’l, 82, N) — Y(va, 81, )\/)]’

when we take y# 0. The general term in the interaction matrix will be

3[¥(a, B, N) — Wlae, B, VIL{1} + {2} 1wy, 82, N) — w(ve, 81, )]

From this we easily see that we get no value for this interaction unless one of
the electrons retains the same quantum numbers, say a=+~. In this case the
remaining terms reduce to

Y(a, B, N {2} ¥ (e, 82, N).

Hence we have the result that
W(aBSLI M) [£(r1) L1-S1 + £(re) Ly~ S| W (adS’L'T M)
= Y(iBaSLI M) [£(rs) Lo~ Sa ¥ (cu6aS'L' T M),

which becomes, if a=nl; B=n'l'; 6=n""l",
= (ndld | &(ra) | 4" 14)(udd SLIM ;| Lo Sz | Li4 S'L'T M S) (8.1)

The value of the last factor here is given by Johnson, and in particular itis
seen from his formulas to be diagonal with respect to /,. This means that we
may have a magnetic interaction only between configurations differing just
in the # of one electron, the matrix being given then by (8.1).

This was for the case in which neither of the configurations was composed
of equivalent electrons. We have now to consider the case in which the two
electrons of configuration x are equivalent. (If both configurations are com-
posed of equivalent electrons we get no interaction unless the states are
identical, which case has already been treated.) If N is an allowed level,
Y(a1, as, N) will already be antisymmetric. The general term in the interaction
matrix will then be

1 _
E)Tﬂiﬁ(aly ae, N [{1} + {2} ][ (e, b2, N) — Y(a, 81, )]

1 _
= (2)1,2¢(a1, az, M) {2} (s, 82, \) - W‘P(al, az, V) {1}¥(as, 82, \)

= (2)V2%(as, oz, M) {2}¥(eu, 62, \'). (8.2)

The balance of the computation is as above. Hence if one configuration is
composed of equivalent electrons we obtain a factor of (2)/2 which is not ob-
tained in the case of non-equivalent electrons. In this particular case then, one
does not obtain the correct result by simply assigning definite quantum num-
bers to the individual electrons.

The result, that we obtain a magnetic interaction only between configura-
tions which differ just in the # of one electron, holds quite generally for any
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configurations of any number of electrons. This can be readily seen from (5.5)
and (5.6). Such configurations can be considered as two members of the same
series, and in general lie far apart in the spectrum. The type of series per-
turbation found by Shenstone and Russell® cannot be due to magnetic inter-
action, but must be purely electrostatic.

The writer intends, in the near future, to consider more in detail the ques-
tion of the interaction of configurations, especially in connection with the
interesting work of Shenstone and Russell on perturbed series and in an at-
tempt to explain some of the poor agreements found by Condon and himself,
references 2 and 5.

I wish to take this opportunity to express to Professor E. U. Condon my
sincere appreciation of his friendly and stimulating guidance in the study of
quantum mechanics in general and atomic spectra in particular.

26 A, G. Shenstone and H. N. Russell, Phys. Rev. 39,415 (1932).



