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ON PHYSICALLY SIMILAR SYSTEMS; ILLUSTRATIONS OF
THE USE OF DIMENSIONAL EQUATIONS.

By E. BUCKINGHAM.

1. The Most General Form of Physical Equations.—Let it be required
to describe by an equation, a relation which subsists among a number of
physical quantities of »n different kinds. If several quantities of any
one kind are involved in the relation, let them be specified by the value
of any one and the ratios of the others to this one. The equation will

then contain n symbols Q; - -+ Q,, one for cach kind of quantity, and
also, in general, a number of ratios ', r"’, etc., so that it may be written
f(O1, Qay -+ Quu 1 1", -o0) = 0. (1)

Let us suppose, for the present only, that the ratios r do not vary
during the phenomenon described by the equation: for example, if the
equation describes a property of a material system and involves lengths,
the system shall remain geometrically similar to itself during any changes
of size which may occur. Under this condition equation (1) reduces to

F(Q1, Q2 - -+ Qn) = 0. (2)

If none of the quantities involved in the relation has been overlooked,
the equation will give a complete description of the relation subsisting
among the quantities represented in it, and will be a complete equation.
The coefficients of a complete equation are dimensionless numbers, 1. e.,
if the quantities Q are measured by an absolute system of units, the coef-
ficients of the equation do not depend on the sizes of the fundamental
units but only on the fixed interrelations of the units which characterize
the system and differentiate it from any other absolute system.

Toillustrate what is meant by a ** complete ' cquation, we may consider
the familiar equation

%v = constant,

in which p is the pressure, v the specific volume, and 6 the absolute
temperature of a mass of gas. The constant is not dimensionless but
depends, even for a given gas, on the units adopted for measuring p, v,
and 6; the equation is not complete. Further investigation shows that
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the equation may be written

v

Re-

in which the symbol R stands for a quantity characteristic of each gas
and differing from one to another, but fixed for any given gas when the
units of p, v, and @ are fixed. We thus recognize that R is a quantity that
can be measured by a unit derived from those of p, z, and 6. If we do
express the value of R in terms of a unit thus derived, N is a dimensionless
constant and does not depend on the sizes of the units of p, ¢, and 6 but
only on the fixed relation which the unit of R bears to them. The equa-
tion is now a ‘‘ complete "’ equation.
Every complete physical equation (2) has the more specific form

SMQPQgb + -+ Qubr = 0. (3)

Such expressions as log Q or sin Q do not occur in physical equations; for
no purely arithmetical operator, except a simple numerical multiplicr,
can be applied to an operand which is not itself a dimensionless number,
because we can not assign any definite meaning to the result of such an
operation. The reason why such an expression as (* can appear, is that
Q? may be regarded as a symbol for the result of operating on Q by Q.
For example, when we write 4 = [2, I* is a symbol for the result of oper-
ating on a length I by itself. We are dirccted to take the length 7 as
operand and ‘“ operate on it with the length I *" by constructing on it as a
base, a rectangle of altitude /; and the result of this operation, which fixes
an area A, is represented by 2. Whenever functions that do not have
the form of the terms in equation (3) appear to occur in physical equations,
it is invariably found upon examination that the arguments of these
functions are dimensionless numbers.

2. Introduction of Dimensional Conditions.—\We have now to make use
of the familiar principle, which seems to have been first stated by Fourier,
that all the terms of a physical equation must have the same dimensions,
or that every correct physical equation is dimensionally homogeneous.
Let equation (3) be divided through by any one term and it takes the
form

ZAV0101Q202 e Qn“" +1 =0, (4)

in which the N’s are dimensionless numbers. In virtue of the principle
of dimensional homogeneity the exponents ay, @s, -+ @» of each term of
equation (4) must be such that that term has no dimensions or that a
dimensional equation

[Q121Q2 -+ - Qa2 =[1] (5)

is satisfied.



VoL. IV.
No. 4. ON PHYSICALLY SIMILAR SYSTEMS. 347

Let II represent a dimensionless product of the form
I = Q%10 - -+ Qnen. (6)
so that equation (4) may be written more shortly
SNII 41 =o. (7)

Since TI is dimensionless, 117 is dimensionless; and furthermore, any
product of the form II,#1[I;%: - - - T is also dimensionless. Hence if Iy,
ITo, - - - 11, represent all the separate independent dimensionless products
of the form (6) which can be made up in accordance with equation (5)
from the quantities Q, equation (7) may be written in the form

SN oIl - - %41 =0 (8)

and still satisfy the requirement of dimensional homogeneity.

Now there are, so far as this requirement is concerned, no restrictions
on the number of terms, the values of the coefficients, or the values of
the exponents. Hence the ¥ merely represents some unknown function
of the independent arguments II,, --- II; and equation (8) may more
simply be written

Y(Ily, Iy, - -+ II,) = o. (9)

By reason of the principle of dimensional homogeneity, every complete
physical equation of the form (2) is reducible to the form (9) in which

(M) =[] = -+ =[II,] =[1] (10)

and the number 7, of separate independent arguments of ¥, is the maximum
number of independent dimensionless products of the form (6) which can
be made by combining the n quantities Q1, Q2 - -+ Q. in different ways.

We have next to find the value of i. Let k be the number of arbitrary
fundamental units needed as a basis for the absolute system [Qi],
-+-[0.] by which the Q's are measured. Then in principle and if we
disregard the practical considerations connected with the preservation
of standards, etc., there is always, among the 7 units [Q], at least one
set of £ which may be used as fundamental units, the remaining (n — k)
being derived from them.

Now each equation of the form (5) with a particular set of exponents
a (corresponding to a particular dimensionless product II) is an equation
to which the dimensions of the units [Q] are subject. But since (n—k)
of the units are derivable from the other k and the units are otherwise
arbitrary, it is evident that each equation of the form (5) is in reality
equivalent to one of these equations of derivation. There are therefore
(n — k) equations of the form (5) and the number of products II which
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appear as independent variables in equation (9) is
it=n—k

Furthermore, if [Q.], [Q:] --- [Q] are k of the n units which might be
used as fundamental, the 7 equations (5) may be written

(] = [Q™Q: - -+ Qu*rPy] =[1]
(o] = [Q1*:Q:%1 - - - Qu*rPs] = [1] (11)

(M = [ Q% -+ Qe P) =[1]
in which the P's represent Qi.y -+ ()a, i. e.. the quantities that are,
temporarily, regarded as derived.

To make use of any one of equations (11) for finding the specific form
of the corresponding II, we replace ecach of the [()]'s and the [P] by the
known dimensional equivalent for it in terms of whatever set of k funda-
mental units (such as mass, length, time, etc.) we may happen to find
convenient. The resulting equation contains the %k independent funda-
mental units, and since both members are of zero dimensions, the ex-
ponent of each unit must vanish. We therefore obtain kb independent
linear equations which suffice to determine the k exponents and so to fix
the form of the Il in question. \We have still, however, one arbitrary
choice left which it is sometimes convenient to make use of.  Since the
II's occur in equation (9) as arguments of an indeterminate function ¢
and are subject only to the condition of being dimensionless, when we
have found the specific form of any one of the II's, we are at liberty to
replace this by any function of it; for this function will also be dimension-
less and will be independent of the remaining II's.  This remark enables
us to dispense with fractional exponents, when they happen to result
from equations of the form (11), and so to simplify the writing down of
our results.

3. Illustration—To make the meaning of the foregoing developments
more evident we may treat an example. Let us suppose that we have
to deal with a relation which involves one quantity of each of the following

n = 7 kinds:
Name. Symbol. Dimensions.
1. Force. .......... ... ... ... ..... F [mle—2)
2. Density............... ... ... o [mi—]
3. Length........................ D 1
4. Linearspeed................... S () o (12)
5. Revolutions per unit time. ....... n [t
6. Viscosity. ................. ... u [mi-11)
7. Acceleration. ................... g (&3]
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Three fundamental units are needed, 1. e., # = 3, but they need not be
[m, 1, t] for we could also use [F, p, S] or [p, n, ) or several other com-
binations. On the other hand, such combinations as [I, S, n] or [S, n, g
could not be used.

We know by section (2) that any relation whatever which involves
all the above seven quantities and no others, must be expressible by an
cquation which can be reduced to the form

v(I1y, Mo, 11, ) = o (9, a)

because n — k =7 — 3 = 4.

To find a specific form of this equation, we select 3 of the quantiiies
as fundamental and proceed to use equations (11).

Let us, to start with, set

F=0. p=0s D=0

these being a possible set of fundamental units sufficient for deriving the
others. Then S, n. . 2. act as Py, Pa. P, Pyand we have, corresponding
to cquations (1),

[P0 = 1))
[F*2p3:DYm] = [1],
[Pep® Dl = (1],
[Fep® D] = (1],

(11, a)

from which to determine the a's, 8's, and v's.
Taking the first of these equations and substituting the dimensions
of [F. p. D, 8] in it we have
[md=ae=20 X m®=8 X Mo X Y] = (1]

and since m, I, and ¢ are independent, this can be satisfied only if ay, 81,
and 7, are related as shown by the equations

ai + 1 = o, lar = = 1,
ay =31 +m+1=0, or%ﬁl=%,
2a,+ 1 =o0, lm=1

We therefore have II; = F-4piDS, which will be more convenient to
write and satisfy the condition of being dimensionless equally well if
we square it and write I, = pD*S$*'F.
If we follow a similar method with the remaining three equations of
the set (11, @) we have
pD'n* u pDg

"1 =""7r na = K II. = “F‘_
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and equation (9, a) takes the form
pD2S? pDn?  u? pD3g
( F ' F Fp _F"“)=°' (9, )

Our conclusion is that any equation which is the correct and complete
expression of a physical relation subsisting among seven quantities of
the kinds mentioned is reducible to the form (9, ).

If [F, p, D] were the only triad that could be used as fundamental units
for the seven kinds of quantity, equation (9, b) would be the only general
form of the equation; but in reality several other triads can be used, so
that other equations may be found which, while essentially equivalent to
(9, b), present a different appearance. If, for instance, we select the
triad [p, D, S], a process like that which led to equation (9, ) gives us
the equation

(pD“’S2 Dn  pDS %)=0, (9, ¢)

F' S u' &
to which we shall have occasion to refer later.
4. The General Form to Which Any Physical Equation is Reducible.—
Equation (9), subject to equations (11), gives the necessary form of any
relation which subsists among 7n quantities of different kinds: it is the
final form to which the dimensional conditions reduce equation (2).
Now equation (2) describes a particular form of the more general relation
described by equation (1), in which several quantities of each of the n
kinds may be involved,—all but one of each kind being specified by their
ratios to that one. Dimensional reasoning can not furnish any informa-
tion regarding the influence of these dimensionless ratios on the phenome-
non which is characterized by the relation in question, nor can it tell
us how they are involved in the equation which describes the relation.
But we can not assume that they are without influence, and the possi-
bility of their entering into the relation must be indicated in the final
equation which corresponds to (1) as equation (9) does to (2). Since
equation (9) follows from equation (2), it is correct for any fixed values
of the 7's, and it may therefore be generalized so as to be applicable to
any and all values of the ratios r by introducing the 7’s as independent
arguments of the unknown function ¢, which is then a function of all the
independent dimensionless combinations of powers of all the quantities
of all the n kinds which are involved in the relation to be described.
The general conclusion from the principle of dimensional homogeneity
may therefore be stated as follows: If a relation subsists among any
number of physical quantities of n different kinds, and if the symbols
Q1, Q2 -+ Qn represent one quantity of each kind, while the remaining
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quantities of each kind are specified by their ratios 7/, ", ---, etc., to
the particular quantity of that kind selected, then: any equation which
describes this relation completely is reducible to the form

Yy, Mg, -+ My, 7" --2) = 0. (13)

If % is the number of fundamental units required in an absolute system
for measuring the » kinds of quantity, the number of the dimensionless
products II is

i1=n—k.

If [Qi], [Q:] - -+ [Qx] are any k of the units for measuring the Q’s, which
are independent and so might be used as fundamental units; and if the
remaining units needed are denoted by [Pi], [Ps] - - [P,], each of the
I's may be determined from a dimensional equation

[M] = [Q*10Q%: - - - Q%P] = [1] (14)

after substituting in this equation the known dimensions of the [Q]'s and
of [P] in terms of any suitable set of k fundamental units.

5. Remarks of the Utilization of the Foregoing Results—Equation (13),
representing a single relation connecting a number of variables, can, in
principle at least, be solved for any one of them and put into the form

Hl = ‘p(HZy n?l MY Hi'y r,y r”v r”,v °t ') (15)
in which II, is any one of the II's; or into the form
r’ = ‘pl(nly sz M Hiv r”l r”,v s ') (16)

in which 7’ is any one of the r’s.

Although the form of ¢ is unknown so that neither of these equations
gives any definite general information, they may nevertheless be useful
in particular circumstances. Equation (15), for example, tells us that
if M, My, -, Iy, ¢/, 77, etc., are all kept constant, II; is also constant,
regardless of the form of the unknown function ¢. And since II, is a
product of known powers of Q1, Q2, - Q, P1, we know how any one of
these (k + 1) quantities varies with the others under the given conditions.
To illustrate; equation (9, ) may be put into the form

PP _ (oD oDy
F ~°\UF ' Fp F) (17)
and if pD*n?/F, u?/Fp and pDg/F are kept constant we have
F
S? = const. X —; (18)

pD*
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If we wish to treat some one quantity X as the unknown and get an
equation of the form (15) with this quantity absent from the second
member, X must be a factor of only one of the I's. This means that in
selecting the variables which are to act as Q’s and P’s in equations (11)
or (14), X must be one of the P’s.

To illustrate the application of the above remarks, let us consider the
screw-propeller problem. Let F be the thrust exerted by a screw propeller
of a particular shape specified by a number of ratios of lengths 7, 7"/,
etc. and of a size specified by the diameter D. The thrust must be
supposed to depend on the number of revolutions per unit time #, the
speed of advance S, and the density p and viscosity u of the liquid. It
may safely be assumed that the very slight compressibility of the liquid
has no sensible effect on the thrust, but unless the propeller is very
deeply immersed, there will be surface disturbances and we must expect
the thrust to be'affected by the weight of the liquid, 4. e., by the intensity
of gravity g. It does not appear that any other circumstance, except
the depth of immersion which may be specified by its ratio to D and
represented by an extra 7, can influence the thrust, and if we are right
in this assumption there must be an equation

f(F, Py Dv S» n, Kk, g, 7,7 7”, "') =0 (19)

corresponding to equation (1). This equation must be reducible to the
form (13), and we have already given in equations (9, b) and (9, ¢), two
of the forms which it might have in the case of constant 7’s, 7. e., for a
propeller of fixed shape and immersion.

Now suppose that we wish to find out how the thrust depends on the
density of the liquid, the diameter of the propeller, and the speed of
advance. Then in using equations (11) we must use F as one of the P’s
and take [p, D, S] as [Q1, Qz, Q3]. We then get the II's which appear in
equation (9, v) and the equation corresponding to (13) is

¢(p0252 Dn oDS Dg

F 1?7 )3\2—17,’7"1”')=0‘
m

By solving for pDS?/F, this may be put into the form

Dn pDS Dg , ,
<. 2 P ) (20)

F = pD25'2¢(
which tells us without any experimentation at all, that if we can keep
Dn/S, pDS/u, and Dg/S? constant, the thrust of a propeller of any given
shape (7, 7', etc., constant) is proportional to the density of the liquid,
the square of the diameter, and the square of the speed of advance. The
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meaning of this result and the value of the infor mation willbe discussed
later: at present we may return to generalities.

6. Physically Similar Systems.—Equation (13) isa convenient expression
of the conclusions to be drawn directly from the principle of dimensional
homogeneity. It is useful in various ways, as will be illustrated later,
but at present we may develop from it the notion of similar systems.

Let S be a physical system, and let a relation subsist among a number
of quantities Q which pertain to S. Let us imagine S to be transformed
into another system S’ so that S’ “ corresponds ”’ to S as regards the
essential quantities. There is no point of the transformation at which
we can suppose that the quantities cease to be dependent on one another;
hence we must suppose that some relation will subsist among the quan-
tities (0’ in S’ which correspond to the quantities Q in S. If this relation
in S’ is of the same form as the relation in S and is describable by the
same equation, the two systems are ‘‘ physically similar ’ as regards this
relation. We have to enquire what sort of transformation would lead
to this result, 4. e., what are the conditions which determine that two
systems shall be similar as regards a given physical relation.

The original relation subsisting in S is reducible to the form (13), or

‘b(nlv Tty Ilir f) =0, (13)

r representing all the independent ratios of quantities of the same kind
which enter into the relation. The changes of the Q's during the trans-
formation will, in general, result in a change of the numerical value of
each Il or . But these expressions remain dimensionless, so that to
each of the arguments of y there corresponds, after the transformation,
an expression I’ or 7’ of the same form in terms of the transformed quan-
tities Q’; and these are all the independent dimensionless products of
powers that can be made up of the quantities ¢”. Hence the equation
which describes the relation subsisting in S’ among the quantities Q' is
reducible to the form

d’,(n,l’ e H’I'r r’) = 0. (13,)

The requirement that S and .S shall be similar as regards this relation,
means that the operators ¢ and ¢’ must be identical, and this will occur
if the transformation leaves the numerical values of all the II's and 7’s
unchanged. For ¢ and ¢ will then be applied to identical operands:
and while two different functions of the same variables may vanish
simultaneously for discrete sets of values of the variables, they can not
do so for a continuous infinity of sets, and yet equations (13) and (13’)
are satisfied without restriction. It follows that ¢ and ¢’ can not be
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different, or in other words; the systems S and S’ are similar as regards
this relation if corresponding II's and 7’s are equal in the two systems.
The nature of the transformation which leaves a system similar to itself
may therefore be specified as follows:

(a) Any k quantities of independent kinds may be changed in com-
pletely arbitrary ratios, after which we must

(b) Change one quantity of each of the (» — k) = ¢ remaining kinds
in such a ratio as to keep the numerical value of its II unchanged; and
finally we must ‘

(¢) Change the remaining quantities of each of the » kinds in the same
ratio as the one quantity of that kind already mentioned, thereby
keeping the ratios r unchanged.

The last and simplest of these conditions means that the system must
remain similar to itself as regards each separate kind of quantity. If,
for example, the sizes and shapes of some of its parts are essentially
involved in the relation, the transformation must leave the system geo-
metrically similar to itself as regards these parts, although other and
unessential parts may change in any way. We have, in all, k arbitrary
choices of ratios of change and since each of these may be made in an
infinite number of ways there is a k-fold infinity of systems .S’ which are
similar to any given system S as regards any particular physical relation.
If the above conditions are fulfilled for all possible physical quantities
which can pertain to a physical system, the transformed system will
be similar to the original one as regards any possible relation between
physical quantities and the two will be physically similar in all respects.

When absolute units are used, the validity of a complete physical
equation is unaffected by changes in the fundamental units. Hence in
changing from a system S to a similar system .S’ it is immaterial to the
validity of the equation in question whether we do or do not retain our
original fundamental units. If we alter the sizes of the fundamental
units [Q4] - -+ [Qx] in the same ratios as the kinds of quantity Q; -+ Ok
which they measure, the numerical value of any quantity of one of these
kinds will be the same in both systems. And if we do not change the
relations of the derived and fundamental units of our absolute system,
every derived unit [P] will change in the same ratio as every quantity P
of that kind, so that the numerical value of every quantity in the system
S will be equal to the numerical value of the corresponding quantity in
the similar system S’.

This change of units will occur if the concrete primary standards which
preserve the units partake of the transformation. To an observer whose
quantitative information was all obtained by measurements based on
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such standards, not only all physical relations, but the numerical values
of individual quantities, would appear the same in two similar systems:
he could not distinguish the two systems nor detect a transformation of
one into the other.

The foregoing theorem may, if we choose, be applied to an imaginary
transformation of the whole physical universe, but in this grandiose
general form it is of only metaphysical interest; for it is merely a state-
ment about what would happen if we were to bring about certain changes
which it is obviously quite beyond our powers to effect. Nevertheless
in particular elementary instances the notion of physical similarity is
useful and it is convenient to have the conditions of physical similarity
formulated in a general way. One of these is always that of similarity
with respect to each separate kind of quantity, such as length, speed,
density, etc., which may enter into the physical phenomenon with which
we happen to be concerned.

Let us suppose that a relation subsists among certain physical quan-
tities. Dimensional reasoning suffices to tell us that if the relation is
complete, the equation which describes it is reducible to the form (13);
and if Q; --- Qx are the quantities which are used as independent in
finding the II's of equation (13), the equation can always be solved in

the form
P = 01°02 - -+ Qiko(Ily, I, - -+ 114, 7)

the form of the operator ¢ remaining to be found by other means. With-
out going into any abstruse consideration of conceivable modifications of
the universe to which the various quantitics may be regarded as pertain-
ing, it is obvious that so long as we can, experimentally, control enough
of these quantities to keep all the I's and 7’s constant, any function of
these arguments must also remain constant, no matter what its form
may be. The practical application of the notion of similarity is based
on this remark. The conditions necessary for this simplification are
given by setting each II and 7 equal to a constant: and when this is done
the nature of the possible simultaneous variations which fulfil the re-
quirements at once becomes evident.

It usually happens that some of the quantities concerned in the relation
are obviously attached to or are properties of some body or some material
system of limited extent and can be changed in value only by changing
to a different body or system. If this second system is similar to the
first as regards each separate kind of quantity all the 7's which pertain
to the system are the same. If we can so arrange the circumstances in
which the system is placed that upon substituting one body or system
for the other, Iy, T3, - - - II; as well as any remaining 7’s, retain their values
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unchanged, the equation
P; = 0:°Qq® - -+ Q¥ X const.

is satisfied for both systems with the same value of the constant. The
phenomenon characterized by the relation then occurs in a similar manner
for both systems, and we say that the bodies or systems are similar with
respect to this phenomenon. If the relation is a dynamical one, all
essential parts of the two systems must be geometrically similar and have
similar distributions of density, elasticity, etc., so far as these properties
affect their behavior. If, in addition, the II's of the relation are kept the
same for one system as for the other, the systems are said to be ‘“ dy-
namically similar,”” though they might, of course, not be similar as regards
some other dynamical relation nor behave similarly in some different
sort of experiment.

The notion of physical similarity does not appear to have been developed
and used to any extent except in this most obvious form of dynamical
similarity. But the more general conception of a similarity which
extends to other than merely dynamical relations, evidently follows
directly from the dimensional reasoning, based on the principle of
homogeneity, which culminated in equations (13) and (14).

7. Remarks.—In his article entitled “ The Principle of Similitude,”
appearing in the April, 1914, number of the PHysicaL REVIEW, Mr.
Richard C. Tolman announces the discovery of a new principle and
illustrates its value in reasoning about the forms of physical equations,
by treating several examples. The statement of the principle is couched
in such general terms that I have difficulty in understanding just what
the postulate is, but it seems to me to be merely a particular case of the gen-
eral theorem given in the foregoing section. Mr. Tolman selectslength,
speed, quantity of electricity, and electrostatic force as the four inde-
pendent kinds of quantity which suffice for his purposes, and after
subjecting them to four arbitrary conditions, he proceeds to find the
conditions to which several other kinds of quantity are subject in passing
from the actual universe to a miniature universe that is physically similar
to it. Now I do not know whether the developments set forth above
have ever been published in just this form, but it is certain that they are
merely consequences of the principle of dimensional homogeneity, which
is far from being either new or unfamiliar. The unnecessary introduction
of new postulates into physics is of doubtful advantage, and it seems to
me decidedly better, from the physicist’s standpoint, not to drag in either
electrons or relativity when we can get on just as well without them.
Accordingly, my object in publishing the foregoing sections, which are a
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fragment of a longer paper that I have had in hand for some time, is to
call attention to the fact that in the present instance no new postulate
seems to be needed. My feeling that Mr. Tolman’s ‘‘ Principle of
Similitude "' is not really new may, of course, be mistaken. But for the
purposes to which he puts it, it is, at all events, superfluous, and this I
shall proceed to prove by treating some of the problems he has used as
illustrations.

The relations that involve temperature may be passed over, because
Mr. Tolman'’s reasoning is based on the assumption that absolute temper-
ature has the dimensions of energy, and this assumption is not permissible.
If by “ absolute temperature '’ is meant temperature measured by what is
commonly called the thermodynamic scale, then the ratio of two temper-
atures is, by definition, the ratio of two quantities of heat. In a similar
way, two intervals of time, measured by our ordinary time scale, have
the same ratio as two angles through which the carth has rotated about
its axis during these intervals; or two forces have the same ratio as the
lengths by which they can stretch a given spiral spring. We do not,
however, conclude that time has the dimensions of angle and force the
dimensions of length; nor can we say that temperature has the dimen-
sions of energy. The units nceded for measuring thermal quantities
can not all be derived from mass, length, and time or from any other sct
of three fundamental units which suffice for mechanics, and a fourth unit
is indispensable. In practice, this special thermal unit is nearly always
temperature; it is fixed by the arbitrary sclection of the interval between
the freezing and boiling points of water and the arbitrary assignment of a
particular numerical value to this interval. We do not at present know
of any method by which this or any other interval of temperature can
be fixed by, 1. e., derived from, purely mechanical quantities without some
further act of arbitrary choice than the sclection of three mechanical
units. We may therefore turn to Mr. Tolman’s electromagnetic problems.

For the measurement of electric and magnetic quantities, one new
fundamental unit is needed, beyond the three of mechanics, so that there
must, in general, be four in all. In the electromagnetic system the new
unit is permeability [u] and the four are [m, /, ¢, u]. In the electrostatic
system it is dielectric inductivity [e], and the four are [m, [, ¢, ]. Other
sets are sometimes more convenient, for example [/, ¢, C, R], [C] being
current and [R] resistance: this system corresponds to the * international "’
units, a system in which the ampere and the ohm are, by definition, funda-
mental units. Various systems might be used in dimensional reasoning
without altering anything but a little algebra; the only important thing
is the number of fundamental units required as the basis of the system.
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8. Illustrations of the Treatment of Electromagnetic Problems by the
Method of Dimensions: (A) Energy Density of an Electromagnetic Field.—
We assume that the energy density # is completely determined by the
field strengths E and H, and by the permeability u and dielectric induc-
tivity e of the medium. If, or when, this assumption is valid we have

fu, E,H, u, &) =0. (21)
The dimensions of these quantities on the [m, [, ¢, u] system are
(E] = [m*Be2d), (u] = [ml~'t77],
(22)
(H] = [m}l=4'ub], [ = [I72271).

We wish to get a relation that can be solved for #; hence # must not
be one of the Q's of equation (14). Although in general, electrogmagnetic
units require four fundamental units, three are enough in this instance:
for example we may take [E], [u], and [¢] as fundamental units and from
them derive the remaining two units

(H] = [Ee*u‘*].}
(4] = [E?¢].

With # = 5and £ = 3, # — k = ¢ = 2 and there are only two of the
II's. To determine them we have by equation (14)

(L] = [E®e#w"H] = [I],}>
(] = [Ee*wru] = [1].

(23)

(24)

To determine the exponents, we might substitute the dimensions given
in equations (22); but since we already have the dimensions of [H] and
[«] in terms of [E, ¢, u] by equations (23), it is easier not to refer back to
the complicated [m, , ¢, u] equations but use the [E, ¢, u] system at once,
Equations (24) then give us

(] = [Eue® wnEdu] = [1]

(25)
(o] = [E*2e®w":E%] = [1]. ]
From the first of these we obtain the values

- — 1 _ 1
a = — 1, Br= — 73 Y1 =72

so that we may write
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J

or more conveniently

uH?
Hl = €E2 .

From the second of equations (25) we have

a = — 2, B‘Zz—ly 72=0|
whence

My = ——
Y X

and the equation which corresponds to (9) or (13) therefore has the form

('ip =)= 6
4 E2 )T (26)
Solving this for u/eE? and multiplying by ¢E?* we have, finally,
. (eI
u = eF?p (?E . (27)

For the sake of illustration we have chosen to obtain this result by
means of the general process described in the earlier sections: but the
result is obvious without the aid of any such claborate machinery. For
since by equation (23) [«] = [eE?], it is evident directly from the principle
of dimensional homogeneity that if # is to be expressed as a function of e
and E it can only be in the form eE? multiplied by a dimensionless
number.

By taking [H, ¢, ] as fundamentai, instead of [E, ¢, u] we should have
got the obviously equivalent result

eE?
u = pHp, (ﬁ) .
Assuming that the complete formula is

4 = ——(eE? + uH?)
87

we have

1+ x
e1(x) = pa(x) = ryn

If the medium is not isotropic, certain angles which fix the directions
of E and H with respect to the principal axes of e and x must also appear
as arguments of the unknown functions ¢; and ¢s.

(B) Relation between Mass and Radius of an Electron.—There is no
object in limiting our considerations to a particular kind of disembodied
charge moving in free space, and we may as well make the treatment
more general.
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Let T be the energy of a charge e of any fixed distribution and of a
size specified by any one of its linear dimensions D, when it is moving at
the speed S through a medium of permeability u and inductivity e. If
', 7", etc., are ratios of lengths which specify the distribution of the charge,
and if we assume that, for a fixed distribution, T does not depend on any
other quantities than those already named, we must have

f(T,e,D, S u e, r, --)=o. (28)

For measuring all these quantities, an absolute system requires four
fundamental units, the only new electrical quantity not mentioned in
equations (22) being ¢, which has the dimensions

[e] = [mPu—].

Since we wish finally to solve for T, this must be one of the [P]’s of
equation (14) and for the [Q]'s we must take four of the five units
le, D, S, u, . The five different combinations of these units, taken four
at a time are

D, S,e,e;D,S,e,u; D, S, e,u; Dye,eu; S eeup

But since [ue] = [S?] as is seen from equations (22) S, ¢ and u can not
be used simultaneously as fundamental units, so that our choice is
limited to the combinations

D, S,e ¢; D, S,e,u; D, e e p
The three separate sets of units are then as follows:

1. [D,S,e ¢, [4] =[S, [T]=[De],
2. [D, S, e, [d=I[S%, [T]=[D"S5%4u], (29)
3. (D6 eul, [S]=I[etw™], [T] = [D7ee],
and we can get a solution by using any one of these sets in equation (14)
for finding IT; and II,.
In any case, it is easily seen that S?ue will be one of the two II's. The
remaining II is to be found from one of the equations
(1] = [D*SPe*e D-1e2e1] = [1],
(0] = [D*SPe"u’D1S%%] = [1], (30)
[] = [D%’ eu’D1e2e1] = [1].
From these three equations we get successively

DeT DT DeT

e’ H=§e?;¢’ = e
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Since the first and third solutions are identical we have only two different
forms of equation corresponding to (13), and they are

DeT
‘/’l(—_e';vy#f; r’c f”"')=0, (3])

DT
12 (3»6—# Stue, 1’y 1" .- ) = o, (32)

or solving for T,
eZ
T =p eiSue 'y 17, (33)
ye2# ’ rn

T =—D"‘(pz(52[l€,r,7 ’ "')- (34)

It is interesting to consider the physical meaning of these results. We
did not restrict T to being merely cnergy due to motion: it is the total
energy and it must therefore reduce to Ty, the clectrostatic energy of the
charge, when S = 0. Equation (33) accordingly gives

82 ’ ’
T, =b—6¢1(0y',f yort)
and the agrees, as it should, with the known fact that the work done in
collecting a charge e, in a medium of inductivity e, into a distribution of
linear size D is proportional to e?/De, the proportionality factor depending
on the shape of the distribution, 7. e., on the ratios 7/, 7"/, etc. Since
equation (34) must give the same result, ¢. must contain the factor
1/S2ue in order to keep T finite as .S vanishes. If this factor is taken out
the two equations become identical.

If we had originally let T represent only T, the part of the energy
due to motion or the work required to start the charge going from rest,
nothing in the reasoning would have been changed and the resulting
equations would have had the same form as above. If we define T./.S*=m,
as the electrical mass of the moving charge, equation (34) gives us

e2u

me = L ou(Stue, ¥, 1),

and if we set ue = ¢~2, we have
ew (S, ., )
ml_D¢4(crr)r!'.' . (35)

If we now let the charge be an electron of fixed quantity moving in free
space so that ¢, u and ¢ are constant, the equation takes the simpler form

Me = %f(sr ’,r r”¢ . ) (36)
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or in words: the electrical mass of an electron of fixed distribution is
inversely proportional to its linear dimensions; it also depends on the
speed and on the distribution, but the nature of this dependence is not
determinable from dimensional reasoning.

(C) Radiation from an Accelerated Electron.—Let a disembodied
charge e be moving with the velocity S through a medium of permeability
u and inductivity e. Let the distribution of the charge be specified by
the length ratios 7, v/, etc., and its size by some linear dimension D.
Let the charge have a resultant acceleration ¢ which makes an angle 6
with S, 6 being dimensionless like the 7’s. Let R be the total time rate
of loss of energy by radiation.

So far as we can tell a priori, R may depend on all of the circumstances
mentioned above, and if it does not depend on any others, we may write

f(Ry Dr S! a, e, u, € 01 f,, r””') = 0. (37)

We have, in this instance, » = 7, k¥ = 4 hence 4 = 3 and the equation
will be reducible to the form

‘P(Hl, H21 115, 01 rlv r”l . ') = 0. (38)

It shortens the process of solution to remark that S?ue and Da/S* are
both dimensionless, so that as there can be at most only three such
independent dimensionless products, only one remains to be found and
these two can be used for two of the II's, whatever form of solution we
choose.

Since we wish ultimately to solve for R we must make [R] = [P] in
finding the third II, and the four [Q]'s are to be selected from among
[D, S, a, e, ¢ ul. Since the two relations [S?%ue] =[1] and [DaS~?]=[1]
are already given among the 6 units, these two combinations can not
occur and there are only 6 combinations of 4 independent units each,
instead of the 15 which there would otherwise be. Using these 6 com-
binations, together with [R] = [P], successively in an equation of the
form (14), we find that the resulting forms obtained for our third II are

2S5 erS e2ain ela? eaty, ea?
T RD*’ RD*’ RD!' RDie’ RS' RS

I (39)
The 6 resulting forms of equation (38) are all equivalent, and it is sufficient
to consider any one of them, e. g.,

e’a’u Da " ) —o,

'l/ _RT’ Szﬂey §—,0,,r',r,--- (40)
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which we may put into the form

e’a? Da
R=—‘~S.—“¢(S’ye,—~§2—0,r',r",---). (41)

Since D, a, and S appear in the unknown function, this equation gives
us no definite information except that R is proportional to €?, and we can
not tell anything about how R may depend on a or S. It is therefore
evident that we must assume a more limited range of dependence of R
if we are to get any more definite results. If we assume that R does
not depend on the linear size of the charge, ¢ must be independent of D,
therefore of Da/S?, and therefore of a. Hence on this hypothesis equation
(41) reduces to

2q2
R =55 o (Sue, 0.7, 1", ). (42)

If we assume that R is independent of S but make no assumption as to
D, we can not eliminate a from the unknown function because S appears,
in equation (41), in two of the independent arguments of ¢. If we assume
that R does not depend on either S or D, ¢, of equation (42) must contain
S as a factor and therefore Su'e!, so that the equation reduces to

R - 82(12/1;(’(02(0, f" f”, .o .). (43)

Either (42) or (43) might have been obtained by making the necessary
exclusion of variables from equation (37) and working the result out
separately. It is, however, much more instructive to include, at the
start, all the quantities which we can reasonably suppose might be of
importance, and then carry out our exclusion after the general equation
(41) has been obtained.

If we now restrict our considerations to a charge of fixed amount and
of fixed shape and size; and if we further suppose it to move always in
the same medium, e, D, u, ¢ 7', 7'/, etc., are all constant and equations
(41), (42), and (43) degenerate into

R = a*\(S, a, 0), (41, @)
R = a’fz(S, 0), (42v a)
R = a?f3(0). (43, a)

These are the equations for the radiation of an electron of specified
shape and size moving in free space. As we see, the simple form (43, a)
can not be obtained without assumptions which are far from plausible.

9. Thermal Transmissivity—For variety, we may illustrate the use
of the same general method by applying it to a thermal problem, namely
that of the transmission of heat between the wall of a metal pipe and a
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stream of fluid which is flowing through it and is hotter or colder than
the pipe. Although a great many experiments have been made on this
important practical subject, our information is still very incomplete,
and the method of dimensions may be of service, both in planning ex-
periments, and in analyzing and interpreting the results obtained.

Let the pipe be of uniform section and long compared with its greatest
diameter. Let the shape of its section be specified by a number of length
ratios, which we will represent by a single symbol 7, and let D be any one
dimension, such as the diameter if the pipe is round. Let S be the mean
linear speed of the fluid at any section, as measured by the rate of dis-
charge. Let @ be the absolute temperature of the wall surface at any
section, and Af the difference between this and the mean temperature
of the fluid at that section. There will be a flow of heat between the
pipe and the fluid in one direction or the other, according to the direction
of the temperature drop, and until the contrary is shown we must assume
that this rate of heat transmission may depend on D, S, 8, A6, and the
properties of the fluid.

We shall suppose that the part played by radiation is negligible, thereby
excluding the consideration of such cases as flame in boiler tubes; and
the thermal properties of the fluid which need attention are then its
thermal conductivity \ and its specific heat C. The rate of transmission
will, in general, be affected by convection, so that we must take account
of the mechanical properties which determine the nature of the motion
of the fluid, namely its density p and viscosity p. If the fluid is a gas,
the compressibility may also need to be taken into consideration; but
it appears that at speeds which are less than one half that of sound in
the medium, this element may be disregarded, gases behaving sensibly
like liquids of the same density and viscosity. We shall limit our
considerations to these moderate speeds, so that such results as are
obtained will not be applicable without modification to the transmission
of heat between a steam-turbine nozzle and the jet flowing through it,
or to similar cases where the speed is very high.

Let A6 be the heat transmitted per unit time through unit area of wall
surface, 7 being known as the transmission coefficient or transmissivity.”
To obviate the need of introducing the mechanical equivalent of heat,
we may suppose quantities of heat to be measured in absolute work units
derived from the fundamental mechanical units [m, J, {] which, together
with the temperature unit [6], will suffice for all the quantities with which
we have to deal. We do 7ot assume that the transmissivity r is inde-
pendent of Af; that question is left open.

If we have not overlooked any of the circumstances which have a
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sensible effect on the heat transmission, we may now write
f(fv Dy Sv Ao, Py Ky k; Cv Aa/or ’) =0 (44)

6 and A6 being quantities of the same kind, so that only one of them
appears in the list of variables while the other is represented by a ratio,
A6/6. The number of different kinds of quantity is » = 8; the number
of fundamental units required is # = 4; hence ¢+ = 4 and the equation,
whatever its precise form, must be reducible to

¢(H1, n?r H31 Hh Ao/ov f) =0, (45)

We wish to find an expression for the transmissivity; hence in finding
the II's by means of equation (14), r must be one of the P's. In the
process of solution let us set

[Po Dy Sv Ao] = [Qly Q?y QI!; Q4];
[7’, My )\, C] = [Pl, Pz, Pa, P4]

The dimensions of these quantities on the [m, I, ¢, 6] system are
(o] = [ml7?], [7] = [mt2671],
[D] = [1, [u] = [ml't7,
[S] = (1], N = [mit=2671],
[a6] = [6], [C] = [P0,

and if we use these values in solving equations (14) for the four II's, the
usual routine procedure gives us the equation

TAf [ AAG CA0  Af
G5 s o5 s 0 o 69
or
oS3 n NG CA6, A8
=S5 e (b5 5 50 7) 47

as a form to which the equation for 7 must be reducible if our initial
assumptions regarding the dependence of 7 on the other quantities were
correct.

Equation (47) conveys no definite information whatever, but we may
give a few indications of how such an equation may, nevertheless, be
utilized in supplementing incomplete experimental data or in planning
new experiments.

Since dimensional reasoning can give us no further help, we turn to
experiment. It is known that while at low speeds we may have stream-
line motion of a fluid through a smooth straight pipe, this form of motion
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becomes unstable at higher sp :eds and breaks up into turbulent rotion.
We shall suppose that the spe :d is high enough and the pipe suf :iently
rough that the motion of the fi .id is very turbulent. It is known, further,
that under these conditions the mechanical behavior of the fluid and the
nature of its motion are nearly independent of the value of the viscosity.
And since in turbulent motion, convection will certainly play an important
part in the phenomenon of heat transmission, and the nature of the fluid
motion will therefore be important, it is legitimate to assume, as an
approximation at all events, that u does not appear in the equation for =
which applies to these conditions of flow. The variable u/pDS will
therefore be absent and equation (47) will assume the simpler form

(48)

T

_»rS (W’ Caf Ab )
“a0 ¢\ s g )

We must now resort to experiments on transmission, for information
about the form of ¢, varying the arguments of ¢ separately and deter-
mining corresponding values of 7. To vary one of these arguments we
have to vary its separate factors, which are the physical quantities over
which we have direct control; and it is usually most convenient in practice
to vary these separate factors one at a time,—for instance, to find the
relation of = to S when everything else is kept constant. If we are to
vary a single one of the arguments of ¢ by varying a particular one of
the physical quantities in question, that quantity must appear in only
one of the arguments. This is true, in equation (48), of p, A, C, and 6,
so that we could proceed at once to investigate the form of ¢ by making
experiments on the relations of 7 to these quantities separately. On
the other hand, D, .S, and Af appear in more than one argument, so that
we could not at once interpret the results of experiments in which one of
these quantities was varied.

Now it is not practicable to vary the density, conductivity, and specific
heat of the fluid arbitrarily and independently, though we may keep
them all constant by making all our experiments on the same fluid.
Furthermore, while § may be varied independently of D, S, and A6, ¢
inevitably influences the properties of the fluid, which can not be kept
entirely constant during variations of temperature; and, in addition,
attempts to vary 6 over a wide range may encounter formidable difficul-
ties. The quantities p, A, C, and 6 are thus precisely the ones which we
do not want to use as independent variables. In practice, the most
natural and convenient mode of experimentation is to vary S or Af; and
if we have various pipes available, D also may be varied. Hence equation
(48) is not at present in a suitable form for our purpose and the argu-
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ments o1 ¢ must be replaced by others which are still independent and
dimensi 1less but in which D, S, and A6 ar«, if possible, separated.

Before proceeding to this transformation,we shall first limit our con-
siderations to pipes of a particular shape, e. g., round pipes, which are the
the most important. The ratios 7 are then constant, and so long as it is
understood that we refer only to round pipes, r may be omitted from the
equations, the effect of varying shape being left for separate investiga-
tion, after the study has been completed for round pipes.

Since the speed S is the casiest of our quantities to vary arbitrarily,
we attend to it first: it appears in two of the arguments of ¢ and we will
therefore replace one of these by another which does not contain S.
Since the form of ¢ is unknown, we may raise any onec of its arguments
to any desired power. We take the 2,3 power of the first and notice that

(er *_C_\o( 2 )*
pDS?] T S \pCiD2agl
Let

A2 .

bzcs =K,

K being then a quantity which involves only properties of the fluid and
may be regarded as one of its characteristic constants. We may now

write
()\Ao )‘ 3 CAO( K )*
pDS?] S \Duag)
But any function of xy and y may be expressed as a function of x and

y or of x™ and y": hence we may replace (48) by the equivalent equation,
referring to a fixed shape of cross section,

pS? (K CA é&), )

T a0 \Dnmer S e

in which D, S and 6 are separated, though A8 remains involved in all three
arguments. Equation (49) is suitable for the interpretation of experi-
mental data on r obtained by varying D, S, and 8 separately, for the
variations will vary the three arguments of ¢, separately and so tell us
how ¢, varies with the whole of any one of its three arguments.

A sufficiently complete and accurate experimental investigation of this
sort would, in principle, always enable us to find the complete form of the
operator ¢;, and the use of dimensional reasoning has the advantage
that it enables us to plan the experiments rationally. It may turn out
that the form of ¢; is so complicated and the investigation so laborious
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that a complete solution of the problem is virtually impossible, or the
result to be obtained not of sufficient importance to warrant the labor
involved. In such instances the use of the principle of similarity, 7 . e.,
reducing the unknown function to a constant by keeping all its arguments
constant, sometimes permits of our securing partial information which
suffices for particular practical purposes, and this will be illustrated in
the following section. On the other hand, especially in cases where the
quantities in question can not be measured very accurately or where no
great accuracy in the results is required, it may happen that, to the
approximation needed, the form of the unknown function is very simple.
The method of procedure in such an instance may be illustrated by con-
tinuing the consideration of transmissivity.

Returning to equation (49), let us consider variations of the speed S.
It appears from experiment that the transmissivity is nearly proportional
to the 0.8 power of the speed when other things are constant; and merely
to illustrate how such a result might be used, we shall suppose this
relation to be exact. It follows that S can not be involved in ¢; except
as a factor S—22. And since S appears only in the argument CA6/S?,
@1 must contain the factor (CA8/S?)!'l. Equation (49) must therefore
have the more specific form

7 = pS®3CL1A0 10, (K /DA, AB/6). (50)

This is simpler than before and suitable for continuing the work by varying
the diameter and wall temperature of the pipe, or by using various fluids
so as to vary K, the values of p, \, and C being assumed to be known for
the fluids used.

We will suppose, however, that it is not practicable to vary 6 through
any wide range and that we prefer to make experiments with various
values of the temperature drop A8 before altering D, which requires the
dismantling of the apparatus and the substitution of a new pipe of dif-
ferent diameter. We must then transform equation (50) in such a way
that A8, which we are to use experimentally as the independent variable,
appears in only one of the arguments of the unknown function. This
is evidently accomplished by writing

7 = pSO8CIIAR1p3(K /D?*AS, K /D), (s51)

which is suited to the interpretation of experiments on the dependence
of 7 on A6.

It is commonly assumed that so long as A8 is small, 7 is independent of
Af. If experiment were to show that this relation was a general one, it
would thereby be proved that ¢; must contain (K/D?A6)°* as a factor,
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and equation (51) would receive the still more specific form

pSO 8C11K0.1
T Doz ‘Pl(Dza) (52)

Having reached this point, the investigation might be completed by
varying D, or changing the fluid so as to vary the value of K, the two
methods providing a mutual check. If 6 also were varied, a second
check would be provided.

If, to take a purely hypothetical case, it were found that, in pipes for
which 7 is sensibly proportional to S°8, and within temperature limits
such that r is sensibly independent of A8,  was also sensibly independent
of the diameter D, we should know that within these limits ¢4 could be
represented with sensible accuracy by (D%0'k)°! X constant and 7 by
the equation

T = const. X pS03(C1-16%1,

Or if, to take another imaginary result, it were found that the trans-
missivity, beside being independent of the viscosity, proportional to the
0.8 power of the speed, and independent of the temperature difference,
was also independent of the temperature of the wall surface, we should
know that the expression for r must be

pO SSO 8C0.8X0.2
= const. X "~y -

It would be out of place here to pursue this subject into an analysis
of the numerous but unhomogeneous data which have been published
concerning transmissivity. Enough has been said to illustrate the pro-
cedure and to show that the utility of the dimensional method is by no
means confined to its applications to hydrodynamics or electromagnetic
theory.

10. An Illustration of Dynamical Similarity—The application of di-
mensional reasoning to mechanical problems is often useful in the inter-
pretation of model experiments designed to furnish, at a comparatively
small expense, information about the performance to be expected from
full-sized machines. Advantage is then taken of the idea of dynamical
similarity—a particular case of physical similarity in general. Since
this subject seems to be less familiar to physicists than it deserves to be,
a single illustrative example may, perhaps, be worth giving.

It was found, in section 5, that if the thrust F of a screw propeller of
given shape and immersion can be assumed to depend only on the di-
ameter D, the speed of advance S, the number of turns per unit time 7,
the density and viscosity of the liquid p and g, and the acceleration of
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gravity g, we must have the relation given by equation (20) or

Dn opDS D
F=pD252¢ —§'o p_“—y TST;Z' r,v f","’) (53)

in which the ratios r specify the shape and immersion of the propeller.
The principle of dynamical similarity states that in passing from one
screw propeller to a second, in the same or in another liquid, any three
kinds of quantity, such as (p, D, S), which can provide fundamental
units, may be changed in any ratios whatever; and that the equation
which connects the thrust with the other quantities will remain precisely
the same if the values of the arguments of ¢ remain unchanged. This
means, in simpler language, that if we find the value of the constant N

in the equation
F = NpD*$?

from an experiment in which the arguments of ¢ have a certain fixed set
of values, the same constant is applicable to any values of (p, D, S) if
the values of Dn/S, pDS/u, Dg/S?, and the r's are the same in the second
case as in the first.

The simplest of the requirements for the useful application of equation
(53) is that the #'s shall be constant; hence the two propellers, whatever
their diameters, must be geometrically similar and similarly immersed;
and the smaller may be called the model while the larger is called the
original. The next simplest condition is that Dn 'S shall remain constant.
Now xDn is the speed of the circumferential motion of a point on the
tip of one of the blades, and x(Dn/S) is the tangent of the angle between
the actual helical path of such a point and the direction of advance of
the screw as a whole, which is supposed to coincide with the axis of the
screw. The blades being of a fixed shape, the condition that Dn'S
shall be constant is the same as the condition that the ** angle of attack "
of the blades on the still water into which they are advancing shall be
constant. If p is the pitch of the propeller so that pn is the so-called
* speed of the screw " or the speed at which it would advance if the water
acted like a solid nut, (pn — S) is the “slip " and (pn — S)/pn is the
“ glip ratio.”” It is easily seen that if Dn/S is constant for propellers of
a given shape, the slip ratio is constant. Our two conditions may now be
expressed by saying that for two screw propellers to be dynamically
similar, they must first of all have the same shape and be run at the same
relative immersion and at the same slip ratio.

When the foregoing preliminary conditions are fulfilled, equation (53)

reduces to the form DS D
p ped 1
F = oS ( = 5 (54)
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and the next question is whether we can obtain any information about
the thrust to be expected from a screw of diameter D run at the speed S,
by experiments on a model screw of diameter D’, run at the speed S’
and at the same immersion and slip ratio as the original. The answer
depends on our ability to arrange matters so that pDS/u and Dg/S*
shall be the same in the model experiment as in the practical operation
of the full-sized original, and we at once encounter difficulties. In the
first place, the intensity of gravity g is sensibly constant so that D/s?
must also be kept constant. But on the other hand, we are virtually
limited to experimenting in water for which p/u is sensibly constant.
Hence DS as well as D/S? must be kept constant, so that neither D nor
S can be varied: in other words, we can not, in practice, run a reduced-
scale model screw propeller so that it shall be dynamically similar to its
original. We must therefore limit ourselves to a less ambitious program
and attempt to obtain an approximate result which may be of some
value, even though it is recognized as incomplete; and to do this we must
find a plausible pretext for omitting one of the two arguments of ¢ from
equation (54).

This presents no difficulty. For it is apparent from various hydro-
dynamic experiments that when a fluid is in very turbulent motion its
mechanical behavior is little influenced by viscosity, density being much
more important. Now the motion of the water about the blades of a
screw propeller at ordinary working speeds is certainly very turbulent
indeed, so that we may safely assume that if u, t. €., pDS/u, occurs at all
in equation (54). it is only in terms with very small exponents. It is
therefore a legitimate approximation to omit it altogether and write the
equation in the simpler form

F = pD'S'e (%5) (s5)

Since gravity is sensibly constant, we can now make two propellers
dynamically similar, if they satisfy the preliminary conditions regarding
shape, immersion, and slip ratio, by running them at speeds such that
D!S? is constant. The condition for * corresponding speeds ” is there-
fore

s g

STND'
accented letters referring to the model and unaccented to the original.
When the two are run at corresponding speeds we therefore have, by

equation (55),
F_» (2 )'
F  o'\DI -
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If the model is run in water of the same density as that in which the full-
sized propeller is to run, p = p’ and we have

e (2).

If a propeller is very deeply immersed so that no disturbance of the
water surface is produced, the weight of the water can have no influence
on the thrust and g can not appear in equation (55). The unknown
function then degenerates into a mere constant and the equation reduces

to
F = NpD2S2,

Any two propellers are then dynamically similar, whatever their speeds,
if they have the same shape and are run at the same slip ratio, so that we
have, for very deep immersion in a given liquid,

F DS \?
7= (55)

By disregarding viscosity we have, in effect, disregarded the effect of
skin friction on the action of the propeller; and we have also left aside
the question of cavitation. But without venturing further into the
chaos of screw-propeller theory, the foregoing example will serve to
illustrate the sort of use that may be made of dimensional reasoning in
attacking mechanical problems which are—like most of those that occur
in practical hydro- and acrodynamics—tco difficult to be handled at all
by ordinary methods.

11. The Relation of the Law of Gravitation to Our Ordinary System of
Mechanical Units.—In our reasoning up to the present point, it has been
assumed that three fundamental, i. e., independent, units are required
in an absolute system for measuring all the kinds of quantity needed in
the description of purely mechanical phenomena, two more being required
for thermal and electromagnetic quantities. If this assumption is
permissible, a purely mechanical system may be kept similar to itself
when any three independent kinds of mechanical quantity pertaining
to it are varied in arbitrary ratios, by simultaneously changing the re-
maining kinds of quantity in ratios specified by equation (14), as de-
scribed in section 6. We must now examine this assumption.

When we say that one quantity is derived from another or others which
act as fundamental, we mean that by using or combining particular
examples of these other kinds of quantitity in some specified manner, we
can fix a quantity of the derived kind which has a particular definite
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magnitude. For instance, we derive a unit of force from independent
fundamental units of mass, length, and time, by using these units in a
certain way which is fixed by definition, and we thereby determine a
definite force which is reproducible and may be used as a unit. Now
by Newton's law of gravitation it is, in principle, possible to derive one
of the three fundamental units of mechanics from the other two. Let
two free masses be placed at rest at a distance apart which is very large
compared with their linear dimensions.  Let them be released and allowed
to approach each other by a certain measured distance, and let the time
required to cover this distance be observed. This interval of time is
fixed by the masses and the distances: in other words, an interval of
time can be derived from masses and lengths, and by adopting a suitable
form of definition, a unit of time can be derived from the units of mass
and length. It is, of course, immaterial which one of the three units is
derived from the other two; the point is that if we utilize the law of
gravitation, only two fundamental units are needed for mechanical

" quantities, instead of the three which physicists ordinarily use. By
carrying out this process or some other equivalent to it, we should cli-
minate one of our three primary standards,—the international kilogram,
the international meter, or the standard clock, namely the rotating carth
which preserves the mean solar second. For practical purposes we
should still use these three standards, but one of them would be reduced
to the rank of a secondary or working standard.

One reason for not proceeding in this manner is that we do not yet
know the value of the gravitation constant accurately enough to bring
the proposition within the range of practicability. But since we must
admit the theoretical possibility of such a procedure if we recognize the
law of gravitation, it is incumbent upon us to consider what bearing
this possibility may have on our dimensional reasoning and on our appli-
cations of the theorem of physical similarity; for the number of funda-
mental units needed is a matter of vital importance to our conclusions
regarding any practical problem. For example; in treating the screw
propeller, we assumed that [m, J, {] were independent units and therefore
that two propellers could be made to constitute dynamically similar
systems when three quantities p, D, and S were varied in arbitrary ratios
upon passing from one system to the other. The question now evidently
presents itself: ought we not co have limited the arbitrary variations to
two; are we not bound to treat mechanical quantities as derived from only
two and not from three independent fundamental quantitics?

To see the answer to this question, we may read over again the definition
of physically similar systems given in section 6. It was found that a
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physical system remains similar to itself, as regards any relation among
a number of kinds of quantity, when certain of these kinds—equal in
number to the fundamental units required for the absolute measurement
of all the quantities involved in the relation—are subject to variation in
arbitrary ratios, if we fix the ratios in which the remaining kinds of quan-
tity shall then change by imposing the condition that the II's shall
remain invariable. We now see that the answer to the question: how
many fundamental mechanical units are to be used? i. e., to the question
whether we are or are not at liberty to ignore the law of gravitation,
depends on the nature of the relation in question. If the relation with
which we happen to be concerned refers to and characterizes some phe-
nomenon which does not involve and is not affected by the form of the
law of gravitation, we can carry out a complete investigation of the
phenomenon and represent our results by a complete equation without
ever knowing of the existence of the law of gravitation: this law does not
concern us, and our knowledge of the phenomenon under investigation
does not depend on our knowing the correct expression for.the law of
gravitation. We are therefore plainly at liberty to ignore it altogether,
and if we do so, three fundamental units are indispensable because the
only means of eliminating one of them is to use the law of gravitation.
It is not necessary that the phenomenon be unaffected by the weight of
material bodies, but merely that it be not sensibly dependent on the
fact that weight is proportional to the mass of the Earth and to the inverse
square of the distance from its center.

In the most general case, when we include within the field of our reason-
ing all kinds of physical quantity and all possible relations among them,
we must admit our familiarity with the law of gravitation and limit
ourselves to two fundamental mechanical units. But if for ‘* all possible
relations ”’ we substitute ‘‘ all relations that do not involve the law of
gravitation,” we may ignore the law and proceed as if it were non-existent.

With this single proviso all our foregoing reasoning retains its full
validity. The limitation is seldom felt, because, in practice, physicists
are seldom concerned with the law of gravitation: for all our ordinary
physical phenomena occur subject to the attraction of an earth of constant
mass and most of them occur under such circumstances that the variation
of gravity with height is of no sensible importance. In precise geodesy
and still more in astronomy, the observed phenomena do involve the
operation of the law of gravitation in such a way that they can not be
completely described without making explicit use of it. If the physical
relations which characterize such phenomena are under discussion, we
must recognize the law of gravitation, we must regard all mechanical
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units as derivable from two and not three independent fundamental
units, and if a physical system is to remain similar to itself only four
and not five arbitrary changes are possible, or if we exclude thermal and
electromagnetic quantities, only two. The geodesist and the astronomer
must therefore, in using dimensional reasoning, submit to one restriction
from which the physicist is usually free, though this formal restriction is
offset by the power of using the law of gravitation explicitly.

To take an illustration, let us suppose that we have to consider a
phenomenon which involves mechanical and electromagnetic but not
thermal quantities, and that the law of gravitation in its general form
does not influence the phenomenon. The physical system in which this
phenomenon occurs may remain similar to itself while four independent
kinds of quantity Q are changed in any four arbitrary ratios, if all the
other kinds P involved in the phenomenon are changed in the ratios
specified by equation (14) taken with the arbitrary changes of the Q's.
We may, for example, divide all lengths by x, divide all times by «x,
multiply all masses by x, and leave all electrical charges unchanged: the
altered system will be similar to the original one as regards all phcnomena
that do not depend on the law of gravitation, if the remaining kinds of
quantity are changed as shown by equation (14). But if the phenomenon
involves the law of gravitation we can impose only three arbitrary ratios
of change, of which one must refer to purely electromagnetic quantities:
we can no longer impose arbitrary conditions on lengths, times, and masses
but only on two of these kinds of magnitude. To put it in another way,
and omitting electromagnetic quantities, which so far as we know have
nothing to do with the case in hand, we may keep a gravitational system
similar to itself while we change its size and its time intervals in any
arbitrary ratios; but after the change, corresponding gravitational forces
must stand in a determinate ratio which is not arbitrary. Or to make
it less abstract, if we construct a miniature universe by multiplying all
actual lengths by a, and if we change the densities in such a way that the
mass of every volume element of the miniature universe is b times the
mass of the corresponding volume element of the actual universe, then
if the miniature universe is to be mechanically similar to the actual
universe, the gravitational forces in the miniature universe must bear
to the corresponding gravitational forces in the actual universe a ratio
fixed by the law of gravitat’on. And if the speeds at which gravitational
phenomena occur in the miniature universe are to have the same numer-
ical values as corresponding speeds in the actual universe, the unit or-
time or speed can not be fixed arbitrarily but must have a particulaf
relation to our actual unit.
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Conclusion.—A convenient summary of the general consequences of
the principle of dimensional homogeneity consists in the statement that
any equation which describes completely a relation subsisting among a
number of physical quantitics of an equal or smaller number of different
kinds, is reducible to the form

y(I,, I, -+, etc.) = o,

in which the II's are all the independent dimensionless products of the
form Q,%, Q, - - -, etc. that can be made by using the symbols of all the
quantities Q.

While this theorem appears rather noncommittal, it is in fact a powertul
tool and comparable, in this regard, to the methods of thermodynamics
or Lagrange's method of generalized coordinates. It is hoped that the
few sample illustrations of its use which have been given will prove
interesting to physicists who have not been in the habit of making much
use of dimensional reasoning; but if this paper merely helps a little toward
dispelling the metaphysical fog that scems to be engulfing us, it will have
attained its object.
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