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ABSTRACT

§1. It is shown by statistical quantum mechanics that the vapor pressure constant
of an ammonia molecule whose principal moments of inertia are 4, 4, and Cis
B4,3/2 b4 1/2
647w kAC—+ZDrlogEr~
i r ro
at ordinary temperatures; where m is the mass, k is Boltzmann’s constant, % is
Planck’s constant, and the D,’s are the gram molecular fractions of the two varieties;
and where the G,’s and ,wo's are constants.

§2. The rotational partition functions of ammonia molecules of both varieties are
evaluated, and G; and G: are found to be equal to 4/3.

§3 and §4. The spherical oscillatory motion of ammonia molecules in crystal lat-
tices is investigated by quantum mechanics, and jwe and swo are shown to be equal to
4; if the spins of the hydrogen nuclei are taken into consideration but the spin of the
nitrogen nucleus neglected, which is permissible.

§5. With the values 4 =2.79 X1074% and B=5.47 X107¢° CGS units, we find that
the vapor pressure constant of ammonia, for common logarithms and atmospheres, is
—1.55. This agrees with the experimental result given by Eucken, —1.50 +0.04.

§6 and §7. When the reaction N.+3H.22NHj; proceeds to the left between the
crystalline phases at the absolute zero, there is an increase in entropy of (9/4) R
log 3E.U.

§8. The value of the constant I’ in the equation for the equilibrium constant in
the above homogeneous gas reaction is found in accordance with the previous sections
to be equal to —7.17; which agrees fairly well with Eucken’s experimental value
—7.04+0.10.

i = log

INTRODUCTION

N RECENT papers which appeared elsewhere,':2:3 the author has studied
the vapor pressures of hydrogen, of chlorine, and of hydrogen chloride.
The work was an extension of that of R. H. Fowler,’ who first investigated,
theoretically, the vapor pressure of hydrogen made up of the two non-com-
bining varieties para-hydrogen and ortho-hydrogen.
It may be shown by using the first and second laws of thermodynamics
that the vapor pressure p of a substance is given by the expression
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1 _ Ao (Cp)ﬂ 1 T T 41’ T'[ C c ]dT” .
ogr =~ rt o T4 [ 20 [IC) — Coumlar 4.
Here A, is the work which must be done to evaporate one gram molecule of
the substance at the absolute zero; R is the gas constant; (C,), is the constant
and (C,); is the variable part of the specific heat per gram molecule of the
vapor at constant pressure; and (Cp)so1 is the specific heat at constant pres-
sure of the condensed phase. < is a constant called the vapor pressure constant
of the substance, and since its value depends upon the choice which is made
of (C,)o, the latter should be specified whenever one states the value of 4.
At ordinary temperatures, for monatomic gases, (C,)o=5R/2; for diatomic
gases itis 7R/2, and for non-linear polyatomic gases (C,)o=4R.

The theoretical values for the vapor pressure constants of monatomic
vapors are also well understood (see, for instance, Fowler’s Statistical Me-
chanics, Chap. VII) that nothing more will be said about them here. In an
article which is expected to appear shortly in The Reviews of Modern Physics
by Fowler and the author, it is shown that the vapor pressure constant at
ordinary temperatures of any diatomic vapor at all should be given by the
expression

i = ZDrir (1)

where

(2wm,)3 127128721, G:
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Here D, is the gram molecular fraction of the molecules of the 7’th species
present; m, is the mass of a molecule of the #'th species; k is Boltzmann’s
constant; % is Plank’s constant; I, is the moment of inertia of a molecule of
the 7'th species; G, is the constant factor which appears before 87, kT/h?
in the rotational partition function for the #'th species; and ,w, is the number
of linearly independent wave functions capable of representing a molecule of
the #’th species when it is in its lowest quantum state in the crystalline phase
at the absolute zero. This equation is quite general; it can be used to find the
vapor pressure constant of a substance with a diatomic vapor even if the
structural units in the crystalline phase are not the same molecules as those
that exist in the gas, but are groups of molecules, or separate atoms, or even
atomic ions and electrons. All that one needs to do is always to interpret
wo as being equal to CYP,, where C is the number of linearly independent
wave functions which can represent the crystal of the #'th species, containing
in all 2P, atomic nuclei, at the absolute zero. It is shown in the article by
Fowler and the author, referred to above, that there is in general a satisfactory
agreement between the observed diatomic vapor pressure constants and
those calculated by the use of Eq. (1).

It would be interesting to extend these methods, so as to apply them to
polyatomic vapors. The simplest type of polyatomic molecule from the point
of view of our methods of investigation would be the type for which the three
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moments of inertia 4, B, and C about the principal axes were all equal; the
next simpler type would be that for which two of these moments of inertia,
A and B say, were equal with C differing from 4 and B. The vibration-rota-
tion spectra of both ammonia®” and methane have been rather completely
analysed. Since methane molecules are of the former type, while ammonia
molecules are of the latter type, it might be supposed that it would be simpler
to commence the study of polyatomic vapors by considering methane.
The non-combining groups of terms, however, are simpler in the case of am-
monia than they are in the case of methane; for there are fewer possible
nuclear and vibrational arrangements in the case of ammonia; and we shall
therefore proceed in this paper to discuss ammonia first in some detail, in
order to make it clear in just what fashion the vapor pressure constant arises
in statistical mechanics, in the case of polyatomic vapors. We shall consider
the vapor pressure of methane in a subsequent paper.

§1. THE VAPOR PRESSURE OF AMMONIA

The ammonia molecule NH ; very probably consists of a regular pyramid
with the nitrogen nucleus at the vertex. There are two varieties of ammonia
molecules, which should retain their separate identity over fairly long periods
at ordinary and low temperatures. The first variety is characterized by wave
functions which are completely symmetrical S(3) in the spins of the three
hydrogen nuclei, so that the part of a wave function depending upon the spins
of those nuclei does not change its sign when any two of them are inter-
changed. The second variety of ammonia molecules is characterised by wave
functions partly symmetrical S(2+41) and by wave functions partly antisym-
metrical 4(241) in the spins of the hydrogen nuclei. Following Dennison,8
we say that there are 4 spin wave functions for the first variety with the sym-
metry characters «, and 2 degenerate spin wave functions for the second vari-
ety with the symmetry character (y, §) each. At ordinary temperatures, or
after cooling from ordinary temperatures, the two varieties of molecule should
exist in equal numbers, so that D;=D,=1/2.

We suppose that the reader is familiar with the methods of enumerating
wave functions described in chapters II, IV, V, and XXI of Fowler's Statss-
tical Mechanics, and in the author’s papers.!* Consider an assembly con-
taining in all X; molecules of the first variety, and X, molecules of the second
variety. Let there be numbers P; and P; of the two varieties in the crystalline
phase, and N; and N; in the vapor phase. Let the crystalline partition func-
tion for normal modes of oscillation of the molecules as a whole in the crystal
lattice be in the form [k(z) |P1+P2. Then the normal modes of oscillation con-
tribute to the total number of linearly independent wave functions capable
of representing the entire assembly a factor equal to the coefficient of 22 in
[k(2) |P+Pe, if the total energy of these modes is Q. Let a partition function for
a molecule of the #'th variety for rotations or spherical oscillations in the

6 Barker, Phys. Rev. 33, 684 (1929).

7 Badger and Cartwright, Phys. Rev. 33, 692 (1929).
8 Dennison, Rev. of Mod. Phys. 3, 280 (1931).
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crystalline phase be f,(2). Then these motions, if their total energy is .S, con-
tribute to the total number of wave functions a factor equal to the coefficient
of 2% in f1(2)Pifa(2)P+(P1+ Py) |/ Py ! P, . Thus the whole crystal, if its energy is
U, contributes a factor equal to the coefficient of x,P1x,P2g" in

1/{1 = k(@) [2:f1(2) + xofa(z)]} .

We may use the classical approximation, with sufficient accuracy, to the cor-
rect Einstein-Bose statistics for the vapor. The vapor, if its total energy is F,
contributes to the total number of linearly independent wave functions
capable of representing the entire assembly a factor equal to the coefficient
of x1Mix.M22F in

exp [2:F1(z) + x2Fa(3)]

where Fi(z) and Fi(2) are the partition functions for the two varieties of gas
molecules. We have of course that N1+ P; =X, and No+ Py = X,. Accordingly
the entire assembly, if its total energy is E, and if we allow all possible par-
titions of the molecules between the different phases, can be represented by a
total number of linearly independent wave functions equal to the coefficient

of x%1x,%X22% in
eOF1 (2)+asF s (2)

1 = ¢ [m/12) + xfo@)]

and hence this number is given by

LY dx1dxedze® F 1D +e.F ()
v ST N
2w J o X, X b gBr ] — (5) [ f1(2) + x2fa(2) ]} .

We find by the usual methods that the mean values
N,. = ETFT(B) (1 . 2)

and

o £:f+(0)x(0)
"1 — k(0 [/100) + Ef2(0)]

Here the parameters &1, &, and 6 (=¢71/*¥T) corresponding to the thermody-
namic partial potentials and to the temperature, respectively, are determined
by the unique position of the saddle point of the integrand of W, given by the
vanishing of its three partial differential coefficients. If P+ P; is large, then
we have very nearly

(1.3)

k(0) [£f1(9) + £af2(8)] ~ 1.

If, further, nearly all of the molecules are in the crystal, then we have, very
nearly,

Pl:Pz = Dl:Dz.
It follows from these equations that

Nr = DrFr(ﬁ)/K<0)fr(0) . (1 4)
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Making use of the relation pV =NkT where p is the pressure, it follows
that the vapor pressure

p= 2.D:p, (1.5)
where '
pr = F.(O)kT/V[.(0)x(6); (1.6)

which is not the partial pressure of the 7'th species, but is the vapor pressure
of a crystal made up wholly of the 7’th sort of molecule. We take as the zero
of energy the state when all the molecules are in their lowest quantum states,
in the lattice at the absolute zero and at zero pressure. We suppose the parti-
tion functions f,(6) to be of the form

fr(0) = D7

7

where ,w; is the number of linearly independent wave functions capable of
representing the j'th eigenstate of a molecule of the #'th species in the
crystal, and ,e; is the energy of the state. We denote by C, the specific heat
per gram molecule at constant pressure of a crystal made up wholly of the
7'th sort of molecules. Then we may readily show? that

T o
7" __ _
j; RT'? 0 CTdT - IOg K(T)fT(T) logr wo.

Here R is the gas constant per gram molecule. It follows from this last relation
and (1.6) if we neglect all but the lowest vibrational levels of the gas mole-
cules, that

X T 47’ T
logpp = —— +4log T — —~——-—f c,ar”
g kT & o ERT'2 J

(2mm,)3/2k416(2)1 /277124 CLI2 G, (1.7
og

+ log

ht W0

+1

very nearly. Here G, is a number which appears as a factor in front of
16(2)v2r7124 CY2(RT)3/%/h® in the rotational partition function for a gas mole-
cule of the 7'th sort, when nuclear spins are taken account of. We shall show
how this form results for the rotational partition function, and how G, may
be found, in the next section. The quantity x, which we have taken to be the
same for all five sorts of molecules (the differences are trivial) is the work
which must be done on a molecule in the crystal, in a state of zero energy
defined above, in order to put it in a state of rest, in its lowest quantum state,
at infinity.
We can show? that

10g p = 10g (D1P1 + Dz?z) = D1 lOg Pl + D2 10g Pz (18)
very nearly. Further, we can show by using the complete crystalline partition

9 Sterne, Proc. Roy. Soc. 131, 348 (1931).
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function that if Cs is the specific heat at constant pressure of the mixed
crystal made up of both varieties of ammonia, then
Csol = chl + Dng.

Hence, from Eqgs. (1.7), (1.8), and (1.9), we obtain

X T 4T T
logp=——+41o T—f —_— CoordT" + 1 1.91
5 4 BT g . RT™ . 1 ( )
where
64mEm3I2 A ACH2 G,
i=log————————+ > D.log : (1.92)
VAL 1,2 00

The quantity ¢ is just the vapor pressure constant of ammonia; when, as
should be done at ordinary temperatures, the constant part of the specific
heat at constant pressure of the vapor is assigned the value 4R per gram mole-
cule. We have neglected the vibrational levels other than the lowest in the
gas molecules, but by adding to the right-hand member of Eq. (8) a term

T 4T T
174
j; =77 ), (Cp)1dT

where (C,); is the “vibrational”, or variable, part of the specific heat at con-
stant pressure of the vapor we may take account of the vibrations; and no
change need be made in the value of 1.

§2. TaE RoTATIONAL PARTITION FUNCTIONS OF
FREE AMMONIA MOLECULES ’

Two of the moments of inertia of ammonia molecules, 4 and B, are equal;
the third moment of inertia about the axis of figure, C, differs from these. The
energy levels are given by'®

W = hzl:l '('-%—1)—{—(1 1>K2:| (2.0)
gnil 4 7Y c 4 ’ '

where 7 and K take on positive integral values. The weights of the levels
appear to be given correctly by Villars.! For each value of j, K can take on the
values 0,1, 2,3, - - - ,j. When K is 0, there are 4(2j+1) linearly independent
wave functions for ammonia molecules of the first variety; when K is divisible
by 3 there are 8(2j-+1) linearly independent wave functions for this variety;
and for all other values of K the weights for the first variety of ammonia mole-
cules are zero. For ammonia molecules of the second variety, there are 4(2f
+1) linearly independent wave functions when K is neither 0 nor divisible by
3. For K =0, or a multiple of 3, the weights for ammonia molecules of the
second variety are zero. We have of course only considered those complete

10 Dennison, reference 8.
1 Villars, Phys. Rev. 38, 1552 (1931); Table II.
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wave functions which are antisymmetrical in the hydrogen nuclei, in accord-
ance with the Pauli exclusion principle. Let us calculate the partition func-
tions'? given by the energy levels (2.0) when we use these statistical weights.
Let us denote the rotational partition function for the first variety of am-
monia molecule by R, and that for the second variety by Rs. Then we have
by the definition of partition functions generally, the above rules for weights,
and Eq. (2.0),

R, =4 Z(Zj + 1)e= @/ iG+D
7=0
4 8 D e aicm1amt H ()5 4 1)gm (/A iGH)
n=1 j=3n (2' 1)
and
Ry = 4 Y eow/ca1/a@am® ¥ (25 | 1)@/ aGiH)

n=0 j=1+43n

(2.2)
44 Yoo et N (95 4 1)@/ iGHD,

n=0 j=2+43n

where o =h?/8n2kT. We wish to evaluate these sums for the case of ordinary
and high temperatures, for which both ¢/4 and ¢/C are small. C is of the
same order of magnitude as 4, but larger. To evaluate these sums approxi-
mately, and at the same time obtain some idea of the order of magnitude of
the errors in the resulting approximate expressions, we proceed thus.

To evaluate the first sum, we make use of the following relations:

0 1/2
325 + e /it = A_ eI+ o<<£> )
!

[ o
A 1/2
ifl < (-—) -
20
3 27 4 1)e— (/) i+ = é_e—wm)z(m) 2] 4-1)e—(c/A)i+1)
(2j+ 1) - + 0o[(2 +1)
l

A\ (2.4)
ifl = <—> —
20

To show this we have only to compare the series with the corresponding inte-
gral

(2.3)

ol

and

[N

f (2f 4 1)e@liG+Dg;,
l

12 These partition functions seem to be calculated incorrectly by Villars, reference 11.
The expressions (19) and (20) in his article, which differ from those derived here by the author,
do not have the correct limiting forms at high temperatures. It is for this reason that the calcu-
lations in the text above are given in considerable detail.



1000 T. E. STERNE

It is easy to show, if necessary by breaking up the sum and the integral into
two parts at the maximum of the integrand which is then monotonic in each
part, that they differ at most by a term of the order of the largest term occur-
ring in the series. We have, also,

1 g

© S/ CN\V? ©
Ze—a(ll(]~1/A)9n2———3n(3n+1)z7/,4 = %(_) £7C 447 f e'dx + 0(1);
3(a/C)2 4 (0C)1/2/ 24

which is true since the series is one made up of decreasing positive terms; so
that the integral differs at most from the series by the first term of the series
which is of the order of unity. Hence

£
Zeﬁ(1/0—1/A>9n‘tsn(sn+1>a/,4
1

A Tl o) s oo e

We have, too, that the series of increasing terms

Ze—a(l/c—llA)an - O((AC/cr(C — A))113) (2.6)
1
where
o ~ $(4/20)1?
and that the series

ie—v(llC—l/A)an(én + 1)6—(cr/A)3n(3n+1) — O(C/U’) (2.7)
ny
Substituting Egs. (2.3), (2.4), (2.5), (2.6), and (2.7) in Eq. (2.1) we find for
R;, if we remember that 4 and C are of the same order or magnitude,

4 ACH?

Ry = —(m)? ~{1 4+ 0[(s/4)"/2] + terms of higher order in (e/4)}. (2.8)

3

0.3/2

In similar fashion we can show that

4 c?
R, = -3(71-)”2——3/—2—{1 + 0[(s/4)"2] 4 terms of higher order in [s/4)}. (2.9)
g

It is conceivable that methods similar to those used by Mulholland®® and
Sutherland™ could be used instead of ours to derive these results, and to give
in addition, exactly, the higher terms in the asymptotic expansions; but for
the present we must be content with our results, which give what should be
the correct limiting forms at high temperatures

4 16(2)1/27T7I2Acll2k3/2T3/2

Ry~ — - (2.91)

13 Mulholland, Proc. Camb. Phil. Soc. 24, 280 (1928).
14 Sutherland, Proc. Camb. Phil. Soc. 26, 402 (1930).
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and

4 16(2)1/27r7/2AC1/2k3/2T8/2
Rz Ng h3 .

(2.92)

These limiting values are in precisely the same form as the rotational parti-
tion function given by Fowler' when 4 =B, except for the numerical factor
4/3 which was introduced by the symmetry properties of the wave functions.
Fowler probably derived his expression from the older quantum mechanics;
for the notion of a “symmetry factor” such as the ¢ which appears in Fowler’s
equation, a notion which was in use at the time when he wrote his book, has
since been replaced by the notion of non-combining sets of terms obeying the
Pauli exclusion principle.

From Egs. (2.91) and (2.92) we see that G; and G, for ammonia are both
4/3; and further, since the ratio at ordinary or high temperatures between
R; and R, is unity, we see that both sorts of ammonia molecules are present in
equal numbers in ammonia gas which has rested for a long time at ordinary
or high temperatures.

We must now determine the values of 1wo and swo.

§3. THE SPHERICAL OSCILLATORY MOTION OF AMMONIA
MOLECULES IN CRYSTALLINE AMMONIA

If we make a calculation for crystalline ammonia similar to that made for
the case of chlorine by the writer,? it appears that at the absolute zero ammo-
nia molecules should “oscillate”, rather than “rotate”, about orientations of
minimum potential energy in the crystal lattice. From the low temperature
thermal measurements of Eucken and Karwat!® the specific heat of the crys-
talline phase appears to be 5 calories per gram molecule at a temperature of
about 76°K; from which one may deduce that kv,/k is equal to about 230°K;
and if one takes the moment of inertia in this calculation to be equal to about
3X107%0 CGS units, one finds Vy to be equal to approximately 3.7 X104
ergs. Taking the combined heat of transition and fusion as 1426 calories per
gram molecule, we find that V, is equal to about 20 X107 ergs. In neither
case should rotation occur until temperatures of the order of 500°K have been
reached. The methods of considering the motion of the molecules of ammonia,
used above, were developed by Pauling!” and the author? to apply to diatomic
molecules, but the considerations of later portions of this section will make it
obvious that the same methods may be used to investigate roughly the be-
havior of polyatomic molecules as well. We may therefore study the spherical
oscillatory motion of a molecule of ammonia in the crystal lattice, with a
fair assurance that this is the type of motion approximated to by molecules of
ammonia in the crystalline lattice at very low temperatures.

We may treat the problem by a perturbation method. We take the origin,

5 Fowler, “Statistical Mechanics”, p. 146, Eq. (442).
16 Eucken and Karwat, Zeits. f. phys. Chem. 112,478 (1924).
17 L. Pauling, Phys. Rev. 36, 430 (1930).
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0, at the mass center of the molecule; and fixed orthogonal axes OX, OY, OZ
such that the orientation of minimum potential energy for the ammonia mole-
cule corresponds to the presence of a nitrogen nucleus at the point (0, 0, a);
and of hydrogen nuclei at the points (—2b(3)'/%/3,0, —¢), (b(3)/*/3, —b, —¢),
and (b(3)1/2/3, b, —c). We have of course that 3¢ =sa, where s is the ratio of
the mass of a nitrogen nucleus to that of a hydrogen nucleus (we neglect the
trivial mass of the electrons). Let us investigate the forms of the potential and
kinetic energies of the molecule, regarded as rigid, for small displacements of
the molecule from this orientation of minimum potential energy. We may
specify the displacement by the small rotations «, v, and 2z of the molecule
about the axes OX, OY, and OZ respectively. Let the moments of inertia of the
molecule about these axes, when it is in its orientation of minimum potential
energy, be 4, 4, and C respectively; the moments of inertia about the axes
0OX and OY of course being equal. Then the kinetic energy of the motion
relative to the center of mass will be, very nearly, for small displacements,

T A ( 2 + '2) + C 52
= —(@ — 3
2 Y 2’
or in terms of the angular momenta p,, p,, and p,,
T 1 ( 2 + 2) + 1 2
SEEYE AR c b

We may regard the potential energy V of the molecule, for small displace-
ments from the orientation of minimum potential energy, to be capable of
expression in the form A(g:®+¢:*+¢s?) + Bgs® plus higher powers in the ¢’s.
Here A and B are constants; and g1, ¢z, and ¢; are the distances of the three
hydrogen nuclei, and ¢4 the distance of the nitrogen nucleus, from the respec-
tive positions of the nuclei when the molecule is in its position of minimum
potential energy. In terms of the small rotations, this expression becomes

V = A[(282 4 3¢?)(x? 4 3?) + 40%2] + a?B(a* + y?)
+ terms of higher order in the «’s, y’s, and g’s,

so that the Hamiltonian

1 1
0 =2+ ) + o 0+ [AQ + 3¢%) + Ba?][2? + 5]
+ 4Ap*2® 4 terms of higher order in the «’s, y’s, and #’s.

Consider now the plane passing through the vertex of the pyramidal mole-
cule, parallel to the base, when the molecule is in its orientation of minimum
potential energy. Take a set of axes O’X’, O’ Y’ in this plane, with the origin
at the vertex of the pyramid, and parallel to the axes OX, OY respectively.
Denote the coordinates relative to these new axes of the projection P’ upon
the invariable plane of the vertex of the displaced pyramid by & and #;
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so that £ =ay and n = —ax, very nearly. Imagine a lamina, of mass 4/a?, and
whose center of mass is P’, to move in the invariable plane; and let its mo-
ment of inertia about an axis through P’ normal to the invariable plane be C.
Let the angular displacement of this lamina from its orientation § =0 in the
plane be denoted by 8, and let 6 =2. Then the position of the lamina is com-
pletely specified by the coordinates &, 7, 0; and these coordinates also serve to
specify the position of the molecule. And finally, if the lamina moves in a
field of force of potential energy ‘

A
V= [t + 8225 + 3¢%) + 4a%?] + B2 + 2]
a

then we may regard the exact motion of the molecule as being completely
specified by the motion of the lamina, when the latter is suitably perturbed.
The unperturbed motion of the lamina is given by the Hamiltonian

a? 1 A
H = —(p:? 2 —| B —(20% 3c? 2 2 4Ab%2.
zA(f"“’")’ch[ + S+ C):I[S—I—n]’*“

The perturbation terms, given by H — H’, are all small for small displacements
of the molecule from its orientation of minimum potential energy.

Let us consider the unperturbed motion of the lamina. The Hamiltonian
H’ is separable in the coordinates £, 9, and 6. The wave functions of the un-
perturbed system can therefore be expressed in the form

v = "l/n,(é)‘//nz(n)‘l/ng (0)

where the ¥’s are the usual wave functions for the linear harmonic oscillator;
and the energy levels of the unperturbed system are given by the expression

E =h\’o<’ﬂ1 + %) + h\’o(%z + %) + kV3(713 "l" %), (3.0)

where the #’s may have any positive integral values, including zero. Here % is
Planck’s constant;

vo = (2[A(20% + 3¢2) + Ba?]/A)'2/ 2,

and
v; = b(8A/C)V/ 2x.

We thus see that the lowest energy level of the molecule, for spherical os-
cillations, is obtained by setting all of the #’s in Eq. (3.0) equal to zero; and
further that this energy level can be represented by only a single linearly in-
dependent wave function. When we take account of the perturbation terms in
the Hamiltonian, the lowest energy level retains its nondegenerate character
but is perhaps somewhat displaced. The higher levels corresponding to values
of 7, and #, greater than zero will be displaced also, but may in addition be
separated; since they are degenerate. It is easy to see that these displace-
ments and separations must be very small. For in the case of “oscillation”
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the wave functions will be trivially small except for values of £, 9, and 0 very
nearly equal to zero; and for these small values of the variables the perturba-
tion terms are very small. Accordingly the energy levels when the perturba-
tion terms are taken account of are not appreciably different in this case of
oscillation from the values given by Eq. (3.0), and we shall not undertake to
give here an accurate analysis of the amounts of the changes in energy caused
by the perturbation terms in the Hamiltonian.

An inspection of the potential energy functions which we have used here,
and a comparison of them with such expressions as V4 (1 —3 cos ) shows that
the methods of Pauling and the author, employed in the beginning of this
section to find out whether ammonia molecules were rotating or oscillating in
the crystalline phase at very low temperatures, may be used for this purpose;
although the methods were developed originally only so as to be applicable to
the motions of diatomic molecules.

§4. THE VALUES OF 1wy AND OF swg

Since the spin of the nitrogen nucleus contributes the same factor to both
numerator and denominator of G,/ ,w,, we may neglect it in these calculations.
Consider now the motion of the ammonia molecule when it is in the state of
spherical oscillation for which %1, #s, and #; are all equal to zero, in which all
the normal modes of nuclear oscillation are in their lowest quantum states,
and in which the molecule is in its lowest electronic state. We must take ac-
count of the spins of the hydrogen nuclei. The wave functions in these spins
alone are eight in number; there are 4 spin wave functions of symmetry
character @and 2 wave functions of symmetry character (v, 8) each. To find
the number of wave functions for the spherical and nuclear oscillations with
the various symmetry characters we may consider all of the different sorts of
oscillations together. In the lowest state of oscillation there are then six lin-
early independent wave functions when symmetry properties are neglected
altogether; we may denote these six linearly independent vibrational wave
functions by the following six diagrams:

2 1 3
IAB 3A2 ZAI
3 1 2

Here the numbers denote the hydrogen nuclei, and the lines indicate the di-
rections in which the hydrogen nuclei must lie, in the base of the pyramidal
molecule, if the molecule is to be in its position of minimum potential energy.
Thus the upper left figure in the diagram denotes that wave function for which
there is a considerable probability of finding the three atoms close to the posi-
tions indicated in the figure by the numbers, with but a very small probability
of finding them in the positions indicated in the figure below it, for instance.
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We have made the plausible assumption that there is only one position and
not two positions for the nitrogen nucleus, when the molecule is in its orienta-
tion of minimum potential energy. When we take linear combinations of the
above wave functions, we find that there are two wave functions ‘with the
symmetry character (v, §) each, one with the character «, and one with the
character 8 (antisymmetrical in all three hydrogen nuclei). There are still six
linearly independent wave functions, as there should be. If the molecule had
been free to rotate instead of being in a field of force in a crystal, we should
have found but two linearly independent wave functions instead of six, for the
vibrations.

Taking account of both spins and vibrations, we wish to find the number
of linearly independent complete wave functions, antisymmetrical in the
hydrogen nuclei, and capable of representing the ammonia molecule in its
lowest vibrational state in the crystal lattice. It follows from the above enu-
merations and the rules for combining the factors of the complete wave func-
tions given by Dennison,® that there are eight of these linearly independent
complete wave functions with the symmetry character 8 in the hydrogen
nuclei; and of these 4 represent ammonia molecules of the first variety and 4
represent ammonia molecules of the second variety. We have thus found
that wo=qwo=4.

§5. THE VAPOR PRESSURE CONSTANT OF AMMONIA

From §2 and §4 we find that the second term in the right hand member of
Eq. (1.92) is equal to log 1/3. We can now calculate ¢/, the vapor pressure
constant when pressures are expressed in atmospheres and logarithms are
taken to the base 10, by the use of Eq. (1.92). With sufficient accuracy, we
take the molecular weight of ammonia to be 17. Following Giauque, Blue, and
Overstreet'® we take 4 =B=2.79X107% CGS units, and C=35.47X10~%°
CGS units. We find that the vapor pressure constant of ammonia at ordinary
temperatures should be :

i = —1.55.

This is in satisfactory agreement with the experimental result given by
Eucken®?, ¢/ = —1.50 4.04.

§6. THE ENTROPY OF CRYSTALLINE AMMONIA AT THE AB-
SOLUTE ZERO OF TEMPERATURE

Taking account of the nuclear spin (%/2w) of nitrogen, the number of
linearly independent wave functions which can represent a gram molecule of
crystalline ammonia at the absolute zero?® if the molecules oscillate in the
crystalline phase is

18 Giauque, Blue, and Overstreet, Phys. Rev. 38, 196 (1931), who take these values from
the work of Badger and Cartwright, Phys. Rev. 33, 692 (1929), and from the Raman spectral
study of Dickinson, Dillon, and Rosetti, Phys. Rev. 34, 582 (1929).

19 Eucken, Phys. Zeits. 31, 361 (1930).

20 To understand the sense in which the writer uses the expression “entropy at the absolute
zero” the reader is referred to the footnote in the author’s paper on the vapor pressure constant
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C = 12N121282N /(N /2) (N /2) !

and thus the entropy of a gram molecule of crystalline ammonia at the ab-
solute zero, if we use Stirling’s asymptotic expression for factorials and neglect
trivial terms, is by the principles of statistical mechanics

So = klogC = Rlog 24;

where NN is the number of molecules in a gram molecule, and where R is the
gas constant.

§7. THE CHANGE OF ENTROPY ACCOMPANYING THE REACTION
N;+3H;22NH; BETWEEN THE CRYSTALLINE PHASES
AT THE ABSOLUTE ZERO

The entropy of a gram molecule of crystalline ammonia at the absolute
zero has just been calculated; the entropy of a gram molecule of hydrogen!
is R log 4+ 2R log 3, and the entropy of a gram molecule of nitrogen calcu-
lated in the same fashion is 2R log 3. Accordingly, when a gram molecule of
nitrogen in the crystalline phase at the absolute zero reacts with three gram
molecules of hydrogen at the absolute zero in the crystalline phase and yields
two gram molecules of ammonia in the crystalline phase at the absolute zero,
the decrease in entropy is (9/4) R log 3.

§8. THE CONSTANT IN THE EQUATION FOR THE
EqQuiLiBrRIUM CONSTANT

If K, is the equilibrium constant in a homogeneous gas reaction, then?

» 1
log K, = log {[]pen} = — LQ_)E +— 22¢(Cpt)olog T

T dT’ T ,
E t ’
* fo rrnl), GG

In this equation ¢; is the number of gram molecules of the #'th species react-
ing, with a negative sign for those that disappear when the reaction takes
place, and p; is the partial pressure of the #'th species. (Q,)s is the work which
must be done to make the reaction go in this sense at constant pressure at the
absolute zero, and (C,?)o and (C,*), are the constant and variable parts of the
specific heat at constant pressure of the ¢'th species. [ is a constant of integra-
tion which is not to be confused in this section with the use of I, in previous
sections, to denote moments of inertia. Then it is shown in the article which
should appear shortly in the Reviews of Modern Physics by Fowler and the
author that

of chlorine, reference 3, on page 352 of that paper; to §4 in the author’s paper on the vapors of
hydrogen and hydrogen chloride, reference 4; and to the article which should appear shortly in
the Reviews of Modern Physics by R. H. Fowler and the author.

2t R, H. Fowler, “Statistical Mechanics”, §7.2.
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1
! s P \
! ;qm + R log 10 ASe
if atmospheres and common logarithms are used; where AS, is the change in
entropy when the reaction proceeds forwards at the absolute zero between the
crystalline phases, and where the 7’s are the chemical constants which we have
investigated in this and other papers.

We have shown that for the reaction No+3H,—2NH3;, AS, is equal to
9/4 R log 3; and the theoretical 7'’s are for ammonia —1.55; for nitrogen
(this will be shown in the article by Fowler and the author referred to above)
—0.18; and for hydrogen! —3.72. Accordingly we should have for this reac-
tion

I'=—17.17.

The value given by Eucken,” found experimentally, is ['=—7.044.10;
which is in fairly satisfactory agreement with our predicted result.

The author wishes to express his appreciation for the interest taken in his
work by Professors E. C. Kemble and J. C. Slater. He also wishes to thank
the National Research Council for a grant which enabled these investigations
to be carried out.

2 Eucken, Phys. Zeits. 30, 818 (1929).



