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ABSTRACT

Slater's theory of the complex atom as modified and extended by Zener and
Eckart is applied to the 2p~ and 2P' configurations of the carbon atom. The energy
levels resulting from these configurations are computed. Some of the computed energy
differences agree roughly with the experimental values, others indicate either that the
method is not applicableor that theexperimental data are not reliable. The 2p',

'bilevel

is found to lie nearest to the normal 2P', 'P level. Of the levels for which experimental
data are lacking or doubtful, the 2p', 'D is computed to lie 12.9 volts above the normal,
the 2P', '5, 13.7 volts and the 2P', 'P, 14.7 volts above the normal.

INCE the completely rigorous solution of the complete wave equation for
the more complex atoms seems to be impossible, many attempts at ap-

proximate solutions have been made. This paper is an application of certain
of these approximate methods to the calculation of the lower energy levels of
the carbon atom. Two principles must be considered in any such method.
First, only those levels exist which are characteristic numbers of Schrod-
inger's equation for the atom. Second, only those levels exist which are as-
sociated with characteristic functions that are antisymmetric in the electrons.
The electron spin is introduced from the beginning in connection with the
second of these principles but is neglected with respect to the first. In deter-
mining approximate functions, it is assumed that each electron moves in a
Coulomb field of force but that electrons with different total or different
azimuthal quantum numbers move in fields of slightly different strengths.
The best values for these fields, that is the best effective nuclear charges, are
determined.

Following Slater, ' the wave function for a single electron, that is, a solu-
tion of Schrodinger's equation for a single particle in a central field, may be
written as u(n;/x;) where n; stands for the four quantum numbers: n„, f;, m. ...
m~,. and x; stands for the four coordinates, three of position and one of spin.
It is known that a product of N of these functions approximately satisfies the
wave equation governing Xelectrons but is not antisymmetric. A linear com-
bination of these solutions is also an approximate solution and that one which
is antisymmetric may be written as a determinant:

n(n, /x, ) n(ng/x2) n(n, /x~)
~ ~

n(ng/xg) n(ng/xm) . n(ng/xg)

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
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This form is frequently shortened to ~u(mq/x&) u(n~/xrr)
~

by writing
only the elements on the principal diagonal. WVhen the subscripts are omitted,
it is understood that they are in the normal order of cardinal numbers.

From this wave function, the diagonal terms of the energy matrix are
then computed:

5'„= Q„EIIt/„*d~ P„p„*d7.. (2)

Here H is the energy operator neglecting spin:

H = g(pP + 2Z/r;) — g(2/r;, ).

Distances are measured in units of a~ =0.528A and energ'ies in units of EA
cm '=13.529 volts =109678 wave numbers. Z is the true nuclear charge in
units of e.

In the development of these integrals, theorems and methods given by
Slater' and also by Zener' were used. Slater shows that except where energy
levels lie very close together or are degenerate the non-diagonal terms of the
energy matrix are negligible. As a spherically symmetrical energy operator
without spin has been assumed, the non-diagonal terms involving transitions
between states with the same n and l values but different vs~ and rn, values
can not be neglected since these states will have the samee nergy. However,
use of the principle of the constancy of diagonal sums as discussed by Slater, '
enables one to get the correct sums of energy values without actual use of
pertubation calculations. This principle is: Given an orthogonal set of wave
functions: If q lt~, make an orthogonal set of linear combinations of them:

P~'. Let the diagonal terms of the energy matrix, referred to the
original set of wave functions, be W~ W~, and the diagonal terms of the
energy matrix, referred to the new wave functions be W&' W&'. Then
Wy+ ' ' + W/ = Wy + ' ' ' +Wg, that is, to the zeroth approximation,
the sum of a number of energy values is not changed by applying a pertuba-
tion even if the individual values are. If, in such a sum, each of the energy
values except one is known, that one can be determined by subtracting the
known values from the sum. This "method of sums" is frequently used in
this paper.

If the determinants of Eq. (I) were substituted directly into the integrals
of Eq. (2), (Xl)' terms would appear in each integral. However, Zener'shows
that if but one term in the expansion of the first determinant is substituted
into each of the integrals, there will be no change in W. This leaves only M
terms. In developing the remaining determinant, terms containing all pos-
sible transpositions of the X electrons would be found. Any of these terms
which contains the electron function of a particular electron with a spin op-
posite to the spin of that electron in the single term of the first determinant
which was retained, will also vanish. Lastly, since all the electron functions
except those for 1s and 2s electrons are orthogonal and since H acts on at

' C. Zener, Phys. Rev. 36, 51 {1930).
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most two electron functions at a time, those terms containing three or more

transpositions (except for Is and 2s) from the order of the single term will

vanish. These conditions greatly reduce the number of terms involved in

computing t/V.

Eckart' has shown that if arbitrary screening constants, or as has been
used in this paper, arbitrary eAective nuclear charges are introduced into the
electron functions and then these charges varied to give maximum negative
values to 8", the resulting value of S' is a good approximation to the cor-
responding term value. From what has gone before, it is evident that this is

true even when 8' has been calculated by the method of sums. Actually it
was found in the cases tried that the numerical result was essentially the
same whether the maximizing process was applied before or after the method
of sums was used, though this is not theoretically necessary.

APPLICATION TO THE CARBON ATOM

It was found convenient in the actual calculations to replace the general
notation u(n;/x~) by a shorter non-systematic notation as given in Table I.

1s
2s
2p(~& =0)
2P(HEI = —1)
2p(m) ——+1)

TABLE I.

~(100/x;) ~ =2(~3)1~2e-"V, , ,
N(200/x;)
u(210/x;) x = (y'/6)1~'(yr/2)e 'y"~'YI

p

n(21 —1/x;) m=(p'/6)'~'{&r/2)e y"~ YI,
z(211/x;) y=(y3/6) ~ (yr/2)e 'y"~ Y1,+1

(2l+1}(l —m )!
e' I&P, (cos0)

4~{l+mI}!
~«= (1/4&)112
rl, p = (3/4')'~'cos e

1= (3/871)1l'2 sjil 0 e '~
p'I &1

——(3/8~)&~& sjfI 0 e+'@

F2, p = (5/4m. )'~'(1/2) (3 cos' 0 —1)
V2, y 1

——(15/8w)'f2e+ '&sjn 0 cos 0
y2 + 2

——(15/32~)&1-'e+2'&sin 0

In this new notation the spin quantum number is not directly included but is
represented by a (+) or ( —) sign written as a superscript. The undetermined
nuclear charges which are to be determined by the maximizing process de-
scribed above are represented by n for 1s electrons, P for 2s and y for 2P elec-
t«ns. It was found desirable in making the numerical calculations to trans-
form these quantities by P =o/x and y =n/(x+y).

The lowest states of the carbon atom arise from the configurations 1s'2s'
2P' and»'»2P'. The possible wave functions for the first of these configura-
tions are given in Table II and for the second in Table III. The fourth col-
umns in these tables give the allowed states assuming Russell-Saunders coup-
ling and noting that in the first configuration there are two "equivalent"
P-electrons outside of the closed shells while in the second configuration there
are three "equivalent" p-electrons and an s-electron outside of the closed
shell. These allowed states are discussed in "Structure of Line Spectra" by

' C. Eckart, Phys. Rev. 36, 878 (1930).
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TABLE II.

|te=
fb=
fc=
Ps=
6=
Pa=

u+u v+v y+y
u+u v+v y+x+
u+u, v+v m+y+~
u+u v+v y+x
u+u v+v x+y
u+u v+v y+m
u+u v+v x+x

~

u+u v+v m+y

ZmI
2
1
0
1
1
0
0
0

Zm,
0
1
1
0
0
0
0
0

1D
3P
3P
1D 3P
lD 3P
1D 3P
lD 3P
1D 3P

1S
lS
1S

TABLE III.

u u v 5') x y j

P&= u+u v+y+x+y
u+u v+y+x+x

tt 4
——u+u v+y+m+y

$5= u+u v+y+x+m

f6 =
I
u+u v+y+I+x

P~= u+u v+x+m+y
@3= u+u v y+x'+~+
$9= u+u v+y+y x

&10= u+u v y+y x+
P» ——u+u v+y+y m

Q u v x y x
|t13= u+u v y y+m+~

P,4 ——u+u-v-x-y+x+
I

and six others

Zml
0
2
1
1
0
0
0
0
2
2
1
1
1
1

Zm,
2
1
1
1
1

1

0
0
0
0
0
0

'S
3D
'D 'P
3D 3P
'D 'P 'S 'S
3D 3P &S 3S
'D 'P 'S 'S
3D 3P 3S 3S
'D 1D
3D 1D
3D lD 3P 1P
3D 1D 3P 1P
3D 'D 'P 'P
3D lD 3P '1P

Pauling and Goudsmit, Chapter IX and in many other places. The wave func-
tion of a state having a given value of 3f = Zm~ and a given Russell-Saunders
symbol is a linear combination of the P s appearing opposite these entries
in Tables II and III. Thus for example:

f(3P, M = 1) = age + bP,

P('D, M = 1) = egg + dg, .

These linear transformations are always orthogonal and it is thus possible
to apply the method of sums.

In expanding the integrais of Eq. (2), the methods of Zener' as discussed
above were followed. For example:

fgHPg*d7- Ii gP ~*dg

, f,HP, dr =
t uuvwxy H [uuvyxw —vuuyxw —yuvuxw —xuvyuw

—muvy xu —uuyvxm —uuxyv@ —unmyxv —uuv w xy —uuv xy w

—uuvym x + vuum xy + vuuxym + vuuywx + yuuvxm + xunymo

+ wuuyxv + vuyuxw + vuxyuw + vuwyxu]d~

gqfq*dr = ~tuuvwxy[uuvyxw —vuuyxwjdr.
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Here the conjugate complex functions have been replaced by their equivalents
as given in Table I. Hence from here on, orthogonalities are computed with-
out using the conjugate of one of the functions.

Because of orthogonalities between functions of s- and p-electrons and
between those of two p-electrons, the sum of whose m~ values is not zero,
If(u or 2[)(w or x ory)dr =fwxdr =fxy dr = fww dr fy=ydr =0] these integrals
fall into two groups. In the first two integrals of the above example, there
are no such orthogonalities and an integral takes the form:

jf uu([wxy g(p 2 + 2Z/r;) — g(2/r;;) uu([yxwdr.
sj

In the others, the presence of two orthogonalities causes all terms coming
from the first summation to vanish and only integrals of the form:

J
Nnvmxy 2 y;; ulvyxmdv-

remain. In expanding the summations, two distinct types of integrals result~

those coming from the first summation and those from the second. The first
of these types involves the product of two normalized spherical surface har-
monics. Eckart2 gives the following formulas (here corrected for certain
typographical errors which appear in his paper) for reducing these to integrals
of more familiar algebraic functions and for evaluation of the new integrals.

Jl f [i( )[»(2 [)I 1( )i'
00 r,

=- 4x f(r()r( I g(r2)r2'dr2dr1
r t=0 rs——0

+421 f f(r1)r1 f g(r2)r2dr2dr1
r,=o P2=r t

JIjf If(r, ) V,(8„41)g(r2) I 1(02, 42)/r, 2I dr, dr,

00 r1

421 f(rl)rl g(r2)r2 dr2dr1
r t=0 rg=0

00 00 1
+421 f(r1)r, '+'

~ g(r2)r2' 'dr2dr1
„=2 j,, „(21+1)

00 n

J
ms nrdr —(22[/(2m+1)s a~ Q—(sr) 2—/p [

and of course
nt 00

yng —ardy yng —ar Jy
an+' r

since only integral values of n are involved. The second type involves the
product of four harmonics. These can be reduced to products of two only by
the following relations which are easily shown to be true by substituting the
actual values of the harmonics.
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1 1
~1,o2 = I'o, o+ ~2, O

(47r) '~' ' (Sx)'"
1

I"o,o— ~2, O

(4u)'" (20m)'"

Table IV gives all the resulting integrals.

TABr.E IV.

b =fuvdr = (2x)u'(x —1)/(x+-,')'
b " fu[q='u+2Zu/r]dr = (2Z —n)n
k." fv[V'=v+2Zv/r]dr = (2Z n/x)n/4x—

3 1/2

~1,+1I 10 I 2, +1
20m

3 1!2
I'1,+12 = — ~2,+2

10~

b,*=fx[a'x+2Zx/r]dr =fw[p'y+2Zy/r]dr = —[2Z — ]
4{x+y} x+y

b " f[ug='v+vg'u+4uvZ/r]dr = [2abx/(x 1) ] [Z—n/4 ——(Z —a)/4x']
aA =ful u2 2dr/r» = 1.25n

2x —1 60X' —8x —1
aB =fu, v,u22dr/r» =a8(2x)V'[ — ]

(2x+1)' (6x+1}'
a 2 {4x+1) 4(5x+ 1) 3(6x+1)

aC =fuPv2 2dr/r» =—[1— + 1

2x (2x+1}' (2x+1)4 (2x+1)'
6(x+y)+1

nD =fu, 'xP2dr/r» fuPw=ay~2dr/r» —— [1— I
2 (x+y) (2x+2y+1)5

20x' —30x+13
aB =fu, v, u2v$2dr/r» n32x'[ j

(2x+1)~
2x —1

aG=fu&v&x2 2dr/r« fu, v,w,y22dr/rj2 n8(2x)V'
(2x+1)3

(x+y)' 6X(X2+xy —y)
2x~+ 2xy+x —y+ +

{2X2+2xy+3X+y)3 2x'+ 2xy+3x+y
6x'(2X'+2xy —x —3y) 16x'{x'+xy—x —2y)

+
(2x'+2xy+3x+y)' (2x'+2xy+3x+y)'

224m(x+ v)'
nH =fu, w, u&y ~2dr/r» = fu&x&u. x&2dr/r « ——

3[2X+2y+1]'
aI=fu &y,v aw z2 dr/r i a =fu ix iv &x & 2 d r /r» ——(—)(25 6/3) n(2 x)V ~(x+y) ~

2x +2xy+x —y+ +
(2x+2y+1)5 (2x+y)' (2x+2y+1)5 (2x'+2xy+3x+y)'

4x(x'+xy —y) 3x'(2x'+ 2xy —x —3y)
—+

(2x+2y+ 1)4 (2x'+2xy+3x+y)4 (2x+2y+1)' (2x'+ 2xy+3
6X3(X2+xy —x —2y)

(2X+2y+1)' (2x'+2xy+3x+y)'
cz X4(45x'+ 106x'y+ 86xy'+ 24y')

aE fv gxP2dr/r» ==
2 (x+y) (2x+y)'

2~X4(x+y)&
nI. =f»x pixa2dr/r» = [45X'+132xy+ 101y']

3(2X+y)'
aO = m&y&xp2d2-/r» =894m/2560(x+y)
aP = m~x~y~x22dr/r» =540I/2560(x+y)

(O+2P)cx = XPXP2d7. /r»
(0+P)n = m&y&m&y&2d7/r»

2nP= wPyP2d7/r»
aQ = v Pv P2d7-/r» = 77n/256X

——+
x+y)'
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1
nT= fvPvmus2dr/r&2 =n812x1'i' I 32+80(2x+1)+

(2x+3)' (2x+1)'

24(2x+1}'+10(2x+1)'+(2x+1}4— [128+384(2x+1)+
(2x+1) (2x+3)

490(2x+1)~+100(2x+1)3+36(2x+1)4+3(2x+1)']/
Certain useful contractions in notation.

Ri ——2h„+h;+3h *—a[A +2C+6D+3X]
R2=b h '"+2bh v+3b2h x n[2bB+2b'D+E+6G]
R.=2h„~+2h„v+2h.*—n[A+4C+4E+Q]
Rf, b'hat'+b'hvv+bhav+2b2h, *—n[2bB+b'C+2b2D+E+4bG+2b'X+2b1 ]
R, = 2bah„"+2b4h *—n[6bgE+8bG]
Si = —n[ —3H+6bI —3L] 0.8369 (1—bg)

$2 = —a[ —{3—b')H+4bI —2I.] 0.5841 (1—b')
S = —[—3(i —b')H] O. O785 (1—b')
S4 = —a[ —(3 —2b')H+2bI —Lj 0.3313 (1—b')
S = —n[ —2(i —b')H+4b(1 —b')I —2(1 —b')L] O. 558O (1—b~)2

F =[S +R —R ]/(1 —bg) 77.8358
F2 = [S2+Ri—R2]/(1 —b') 77.5830
F3 = [S3+Ri—R2]/(1 —b') 77.0774
F4 ——[S4+Ri—R2]/(1 —b') 77.3303
Fa = [Sa+Ra 2Rg+Rc]/(1 b2)2 75 ' 8699

(R,—R,)/(1 —b2) 76.9989
(R.—2R,+R,)/(1 —y)~ 75.3119

NUMERICAL RESULTS AND COMPARISON ViTITH EXPERIMENTAL DATA

In evaluating the Ws for different assumed values of n, x, and y, it was
found that n = 5.7, x = 1.3, y =0.6 or n =5.7, P = 4.37 and y = 3.0 gave maxi-
mum numerical values to all the 8"s of both configurations. The numerical
values given in the different tables are all computed for these values of the
effective nuclear charges. In varying n, x and y to'get these values, the maxi-
mum was very Hat, i.e., considerable changes in these parameters changed the
value of the maximum but little. Hence this method is not at all critical for
the determination of the best effective nuclear charges. However, this very
flatness makes it unnecessary to vary n, x and y by excessively small steps.

The numerical values for the different W's are given in Table V.
TABr.E V.

For the is'2s'2p' configuration

W(D) =W. =W, =W, =F.—O —P
w( p) =w&=w. =F-

Wd= W, =F,—nO
WO=F, —nO —2nP

and by the method of sums,
- W('S) = Wf+W +WI, —W('D) —W( P)

For the is'2s2P' configuration

W('S) = Wi = Fi —3nOy3nP
w{'D) = W2 = W6 = W7 = F2 —3nO

W3= W4= F2 —3aO —nP
W4 ——F2 —3aO+nP
W8 = F3 —3nO+3nP
wg = W10= F4—3nO

Wii = Wi~ = W13= W14= F4 —3nO —aP
and by the method of sums,

w('P) = W4+ W3 —W('D)
W('S) = W5+ W6+ W7+ Wg —W('D) —W('P) —W('S)
W('D) = Wg+ W10 —W('D)
W('P) =4 Wii —W('D) —W7 ('D) —W('P)

Maximum numerical value

74.7589
74 ' 8855
74.8222
74. 6956

74.5691

74.8826
74.4401
74.3769
74.5034
74. 1243
74. 1837
74. 1241

74.3135
73.8717
73.9345
73 ' 8083
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A comparison of the results of these computations with experimenta14 data
is given in Table VI. In the fourth column of this table are given some ex-
perimentally' determined intervals for the N+ ion. Except for the effect of the
increased nuclear charge, this ion should have the same possible levels as the
carbon atom. The rather high value for the 2P', 'S level of carbon is suggested
by the corresponding high value for this level in N+.

TABLE VI.

1s22s22p2 configuration

2p2 3P 2p2 1D
2p', 'P —2p', 'S

1s22s2p' configuration

2ps 3D 2ps 3S
2ps, 3D —2ps, 3P
2p3 3D 2p3 1D
2ps'3D 2ps 3S
2p', 'D —2p', 'P

2p' 'P —2p', 'S
2p2 3P 2p3 3D
2p-, 'P —2p', 'P
2p2 3P 2p3 lD
2p2'3P 2ps 3S
2p', 'P —2p', 'P

Computed

0.1266
0.3164

—0.4425
0.1266
0.5056
0.5684
0.6318

0.0029
0.4454
0.5720
0.9510
1.0138
1.0772

Experimental

0.0925
0.1970

0.1018
0.1288

0.1296

(O. 12)
0.5839
0.6857
0.7127

0.7135

N+ Experimental

0.14
0.298

0.84
1.0

1.42

It has been suggested from band spectra data, but the evidence is of
doubtful value, that the 2P', 'S level might lie about 1.6 volts above the
normal and that is the only basis for the 0.12 value given in the table.

CONCLUSIONS

One of the reasons for undertaking this set of caluclations was to deter-
mine the position or the 2P', 'S level. According to certain theories of valence
as applied to the carbon atom, this level should lie near the normal. ' While
these calculations are not able to 6x its exact value, they do suggest that it is
the level lying nearest to the normal 2p', 'I' level.

It is to be noted that except for the 2P', 'D and 'I' levels, the computed
intervals between different levels, of the same configuration are all larger (24,
37 and 55 percent) than the observed intervals. On the other hand, computed
intervals between levels of different configurations are smaller (17 and 23 per-
cent) than the observed intervals. In the case of the 2p', 'D and 'I' levels, it
seems uncertain whether this form of calculation gives less satisfactory re-
sults for these levels or if, as is more probable, the published data which is
admitted to be questionable, is wrong.

4 Experimental data for carbon from Paschen and Kruger, Ann. d. Pkysik 7', 1 (1930).
' I. S. Bowen, Phys. Rev. 29, 231 (1927).
' Molecular Binding and Low 'S Terms of N+ and C. L. A. Turner, Nat. Acad. Sci. Proc.

15, 526 (1929).
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The value of Slater's P'(in: ln) comes out as 25nP/3 =0.5273.
This set of calculations seems to show that while something can be learned

of the location of energy levels by such approximations, still the accuracy of
the results is rather worse than might have been expected from similar work
on the still more simple atoms.

In conclusion I wish to express my sincere thanks to Professor Carl Eckart
who suggested this problem and under whose general direction this work was
done, and also my thanks to Professor R. S. Mulliken for his active interest
in the work.


