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ABSTRACT

Calculations of the absorption probabilities in the continuous spectrum of the
potassium atom were made to investigate the possibility that the second maximum in
the experimental photoionization curve is of atomic origin. The model for the K atom
is a single normal state valence electron moving in a non-Coulomb central force field.
Two fields were used. The first was determined to satisfy the quantum conditions on
the radial phase integrals for the x-ray and optical levels. This field is in error in the
region of the deeper shells, and was replaced by Hartree's self-consistent field for the
K atom, corrected for polarization of the core to give the observed term values for the
normal state and 3; orbits as eigenvalues of the wave equation. The wave functions
were obtained by numerical integration, and the matrix integrals for transition proba-
bilities determined graphically. The resulting probability curve was found to decrease
steadily from the series limit, with no hint of the experimental maximum. It further
appears that no reasonable changes in the field will produce such a variation. The mag-
nitude of the absorption coefficient at the series limit is about 2 X 1072 by our calcula-
tions, and

— dffde = 1/3 v/R [I],

where I is the matrix integral, is 0.0024, much smaller than for lighter hydrogen-like
atoms. From the percentage association of the vapor and —df/defor the atom it is esti-
mated that the second maximum could be attributed to molecules if —df/de per
valence electron at the molecular threshold were about 2. This value seems very
large, but not impossibly so.

HE photoionization per unit light intensity in potassium vapor as a func-

tion of the frequency of incident radiation shows two maxima,! one at the
series limit, 2856A, and another at 2340A. The number of molecules present
in the K vapor under the conditions of the observations was not very large,
and it has seemed probable that the observed absorption was due to atomic
K. If this were so the course of the absorption coefficient for the K atom
would be very different from that of hydrogen or any other alkali atom, for
except in the case of K the absorption falls off rapidly and steadily from the
limit. It seemed of interest to determine whether this anomalous behavior
could be understood theoretically. We have therefore calculated the absorp-
tion coefficient quantum mechanically, taking as a model for the K atom a
single valence electron moving in a suitably chosen non-Coulomb field. Calcu-
lations similar in some respects to ours have been made earlier for other alkali
atoms. Thus Hargreaves? determined relative intensities in the continuous
spectrum of lithium, using the central field of Hartree, with numerical and
graphical integration. During the progress of this work calculations by
Trumpy?® for lithium and sodium have appeared.

! Lawrence and Edlefsen, Phys. Rev. 34, 1056 (1929).
2 Hargreaves, Cambr. Phil. Soc. XXV, 75 (1929).
3 Trumpy, Zeits. f Physik 71, 720 (1931).
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We have used two methods to determine the field in which the valence

electron of our atom moves, in both of which the core electrons are taken into
account only by the addition of their field to the field of the nucleus. One is
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Fig. 1. Relative ionization probability, By, of potassium vapor as a function of the frequency

as obtained by Lawrence and Edlefsen. 0.32 is the term value for the normal state, and thus the,
frequency of the series limit in units of R.

———
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Fig. 2. Fields representing the K ion. Curve K was obtained by the phase integral method.

Curve H is the Hartree self-consistent field, corrected for polarization of the core. 7 is in units
of aq.
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substantially that applied by Zwaan* to the computation of the line inten-
sities of Ca*. In this method the field is so chosen that the radial phase inte-
grals have the proper half integral values when the corresponding experimen-
tal term values are given to the energy. In the second method we started with
the self-consistent field for the K ion; for this we are greatly indebted to Dr.
Hartree, who communicated his values to us. This field we adjusted to give
the correct term values for the normal state and the 3; orbit, by a theoret-
ically derived correction for the polarization of the core. We shall discuss
these two methods in order, and shall return later to a consideration of the
possible error in our determination of the field, and its effect upon the ab-
sorption coefficient. The two fields differ appreciably, but they give approxi-
mately the same absorption curve; in both cases the absorption decreases
steadily from the limit, and thus fails to agree with the experimental results.

It is convenient to work with “atomic units”, which are defined:

Unit of length, ao=h?/4n?me?, radius of the first Bohr orbit of hydrogen.

Unit of energy, Eq=¢?/2a,, equal to the ionization potential of the H atom
with a fixed nucleus. This is one half the unit adopted by Hartree.’

Unit of time, 1/4wcR. ‘
Then — E=¢E,, V(r) =v(r)E,, and 7 is expressed in terms of a,.

For the first method we proceed as follows: The Kramers phase integral
with these units is

1 Tmax |

n—1—3=— —(—e® — (I — 3)? — r¥(r))‘/2%dr.

w Tmax !

The field is determined graphically, using in this expression the empirical
values of € for each level in turn, with the proper quantum numbers. Values
for the x-ray terms were obtained from Siegbahn’s tables, or from the Mose-
ley diagrams. Fine structure differences were neglected and a mean value
taken for multiplet terms. Data for the optical levels were those given by
Paschen and Goetze. For each orbit e2+4(1+3)? is a parabola, and an initial
v7% curve is assumed, to be varied until the integral, evaluated by means of a
planimeter, is as nearly (n—1—1%) in every case as possible. In thus attempt-
ing to satisfy simultaneously the quantum conditions for all the terms it is
assumed that the field is the same no matter from which shell an electron is
missing. The error introduced by this assumption could amount to almost a
whole unit of charge for the inner shells, since the charge density of the va-
lence electron near the nucleus is small compared with one belonging to the
K or L group. When the curve of calculated intensities failed to reveal the
experimental maximum the Kramers field was abandoned in favor to the self-
consistent field of Hartree; for small radii, however, it serves as a lower limit
to variations possible in the field, as will be explained later.

In the self-consistent field the actual field of every electron is represented
by the field of its mean charge distribution. Such a field does not take into

4 Zwaan, Doctor’s Dissertation, Utrecht, 1929,
8 Hartree, Cambr. Phil. Soc. Proc. XX1IV, 19 (1928).
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account the polarization of the core by the valence electron, and in the case
of K the ionic field given by Hartree fails entirely to give the observed term
value for the normal state. For large radii we may introduce a polarization
correction by subtracting from the potential ae?/74, where « is the polariza-
bility of the core, 0.8 X107 for K. This correction was made directly for » >
3ay; in the region » <0.8a, the Hartree curve was left unchanged; in the inter-
mediate range 0.8a¢<7<3a, the Hartree curve was so lowered that it joins
the other portions smoothly, and that it gives, on numerical integration of
the wave equation, the experimental term value for the normal state and very
nearly that for the 3; orbit.
The radial factor of the wave function satisfies the equation:

2 110+ 1)
x”—{——;x’—}—(‘v—e— —>x=0

72

If we write P =ry, the equation for P is

P+ (v—e— 1+ 1)/r)P = 0.

Fig. 3. Wave functions for the normal state, 4;, and two points in the continuum:
e=0, e= —0.06. The range of 7 in the diagram is 21 a,.

The observed term value for the normal state (4; orbit) is 0.32, and I =0. The
general method for determining wave functions was numerical integration,®
starting from a series solution of the equation with v =38/7 very near =0,
but approximations suggested by Kramers?’ served for comparison and check-
ing; at large 7 the analytic solution for a Coulomb field was used, being fitted
on smoothly to the curve at a point beyond which it was justified. The maxi-
ma and nodes of the normal state wave function are almost independent of
reasonable changes of the field, (0.8a,<7<3a,), but the term value deter-
mines the point of inflection, so that the requirement that the function ap-
proach zero asymptotically for a given eigen energy gives a sensitive check on
the field. Such a field is not unique, but, starting with Hartree’s determina-
tion and keeping the condition on the phase integrals satisfied, a polarization
correction is fairly well defined.

8 See reference 5.
7 See reference 4.
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For transitions to the continuous spectrum of energy values we must have
I =1, to satisfy the selection rule. The wave equation becomes

P’ 4 (v —e—2/r)P =0

where — e is now positive. The wave function is oscillatory, and the solutions
of the asymptotic form, P’/ —eP =0, are circular functions. The solution is
chosen which is zero at » =0, and behaves there as 7'*'. The wave functions
are found by numerical integration throughout the region in which there is a
contribution to the matrix integrals.

The normal state function is normalized in the usual fashion, by deter-
mining graphically f,°P?dr, but normalization in the continuous case is more
troublesome. Hargreaves shows that the normalized solution is

1 al + bM

wli2el/4 ((12 + b2)1/2

with
:aG—BH M_ozH;}-ﬁG'

— =

Here
a+ i = (2 + €/?)exp(—ie/2n/2)

and G and H are power series solutions of the equation P"'+(2/r—e—2/r?) =

0.

G 02(a0+a10'+(120'2+a3a3+ . )

Il

1
H = —(bo + b0 + byo? + bio® + - - - ) + ¢G(o) log o
o2

with o =27,

In practice G, H, G’, H', were evaluated? for the point nearest the origin at
which the field may be assumed Coulomb, « and 8 calculated, and thus L, M,
L’, M’, determined. These were fitted onto the values of P and P’ obtained
by numerical integration at that radius by means of determining @ and b in

1 al + bM
7'.1/261/4 (a2 + b2)1/2 ’

It is obvious that this method fails for €e=0. The normalized solution® for
this case is

(1/2)t aGi + le.
(a2 + b2)L/2

Gl = 0.1/213(2(71/2)

H1 = 0’”2Y3(20'1/2)

8 ] wish to thank Mr. R. Edwin Worley for his assistance in the computation of these

series.
9 Hartree, Cambr. Phil. Soc. Proc. XXIV, 430 (1928),
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J is the ordinary Bessel function and Y is Neumann’s Bessel function of the
second kind:

0 (___ 1)n
Js(2 1/2) — — 3+2n/2
(202 nZ_)_o wln+3)1°
2 1 2 n) + ¢ (3 + n
V3(201/2) = — J3(201/2) log ¢}/2 — — > (— 1)n¢< )+ ¥ )0(3+2n)/2
T T a0 nl(3 + n)!
2 —
— _1_ E M o 2n=3)/2
T n=0 1’1;'

where Y(n) =—0.0557216+1+%+ - - - +1/%.

Fig. 4. Plot of 7Py P_.dr as a function of 7. Curve I is for e= —0.06, and curve
II for e=0. Again the range of  is 21ao.

A value of » may be chosen for which 2¢¥/2 is an integer, and values of J and
Y obtained from tables of Bessel functions. J' and Y’ are determined by their
relations to the functions of adjacent order.

The absorption coefficient!? is given by

0 2
l: f rP41P._¢dr:|
8m3ey 0 87!'3821//

g = = \

3he ® 2 3he
[ f P412d7’
0

where P_, is normalized as above. The coefficient was computed for four
values of €: ¢ =0, the series limit, ¢ = —0.02, corresponding to the minimum

10 See reference 2.
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of the experimental curve, e= —0.06, its maximum, and €—0.10. The re-
sulting curve of probabilities falls off monatonically from the series limit, as
shown by Fig. 5, somewhat faster than the A\* law, and exhibits no suggestion
of the experimental peak. Calculations made earlier with the Kramers field
gave a curve of much the same form. The absolute value of the atomic ab-
sorption cross-section at the series limit is about 2.2 X1072°, while Mohlert
gives 1 X10 from estimations on Ditchburn’s experiments, and 8 X107 as
that for sodium. The values of —df/de=»(I)?/3R at the series limits for the
hydrogen-like atoms are:

H (Sugiura)®? 0.8

Li (Trumpy) 0.46
Na (Trumpy) 0.038
K 0.0024.
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Fig. 5. Absorption coefficient as a function of frequency. The initial point and the three
crosses represent calculated points, and the dotted curve shows the N law.

We now examine the field of the atom to find whether any possible changes
will give the anomalous intensity maximum. It may again be divided into
three parts. For > 5a, it is fixed, being, except for ae?/r, very nearly Cou-
lomb. For »<a/2 Hartree’s field should be a good approximation, and any
polarization effect would not bring it lower than the Kramers field, which, as
we saw, also gave a decreasing curve of intensities. In the range ao/2 <7 <3a,
the field is not precisely determinate, but we have examined the effect of
changes in this region in some detail. In the first place the nodes of the wave
functions in the continuum (see Fig. 3) will for any field move in with an in-
crease of energy. From the plot of the matrix integrals (Fig. 4) we see that the
two regions @ and b nearly cancel each other; for our field b is the larger. In
order that an increase in energy should increase the absorption coefficient it
would therefore be necessary: (1) that a be larger than b for small energies;

i Mobhler, Phys. Rev. Suppl. 1, 219 (1929).
12 Sugiura, Jour. de Phys. VIII, 113 (1927).
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or, (2) that the absolute magnitude of the normalized wave functions for the
continuum should increase rapidly with the energy. We have convinced our-
selves that no change which leaves correct the term value of the normal state
can give a field satisfying condition (1); that is to say, it is impossible to
change the field in the region @¢/2 <7 <5a, in such a way that the nodes are
moved out appreciably and that the point of inflection of the normal state
wave function remains in place. As to (2) we may say that for both the fields
for which we have made calculations the magnitude of the continuous wave
function decreases markedly and uniformly with increasing energy; we see no
reason why an electron of energy 0.04, say, should spend a relatively very
much larger time in the atom than one of energy 0.02. The analysis involved
in the normalization of the continuous wave functions is, however, highly
complicated, and we have not been able to exclude with complete rigor the
occurrence of such anomalous behavior as suggested in (2).

We have seen that the absorption coefficient falls monatonically from the
limit, and that its magnitude there is approximately 2 X 10729, It also appears
that no reasonable changes in the atomic field will yield such a variation of
the coefficient with the frequency as is shown in the experimental curve. It
has been suggested by some authors that the second maximum is due to
molecular ionization. According to calculations by Loomis and Nusbaum?? of
the percentage of association from the spectroscopically determined heat of
dissociation, the ratio of molecules to atoms at 210°C, the temperature at
which Lawrence and Edlefsen worked, is 2:1000. Their maximum could then
be explained as a molecular phepomenon if df/de for the molecules at the
threshold is approximately 2, as compared to the atomic df/de of 0.0024. This
value, while not impossible, seems unreasonably large. Experiments are in
progress in this laboratory to determine the velocities of the emitted elec-
trons, and to find whether there is any dependence of the relative heights of
the maxima on temperature, which should furnish a conclusive answer to the
question.

The writer wishes to thank Professor H. A. Kramers for suggestions at the
beginning of work on this problem, and to express appreciation of the advice
and encouragement of Professor J. R. Oppenheimer, under whose supervision
the investigation was carried out.

13 Loomis and Nusbaum, Phys. Rev. 39, 89 (1932).



