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ABsTRAcT

The derivation of the Kelvin relations for the reversible heat development and
the thermo-electric force in crystals is shown to depend only on the assumption of the
principle of detailed balancing. Previous treatments of this subject have been less
general. The work of Nordheim is valid only for isotropic materials, and that of Ehren-
fest and Rutgers, though applicable to crystals, depends on the assumption of elastic
collisions between the electrons and the atoms of the metal. In both treatments the
electrons are assumed to be completely free and to be described by an energy function
which is spherically symmetrical. All of these restricting assumptions are removed. The
solution of the integral equation describing the distribution function of the electrons
is obtained by a general method which depends only on the assumption of detailed
balancing. This principle gives the integral equation an essentially symmetrical kernel,
as a consequence of which a formal solution may be obtained. One may use this solu-
tion to derive the electric and heat current equations and to prove certain reciprocal
relations from which the Kelvin equations follow. The proof of the existence of these
relations, involving as it does only the assumption of detailed balancing, may be con-
sidered as a substantiation for the case of conduction in metals of certain very general
considerations of Onsager.

)1. INTRODUCTION

KINETIC derivation of the Kelvin relations for the reversible heat dc-
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velopment and the thermo electric-force in metals has been given by
Nordheim' for isotropic materials and by Ehrenfest and Rutgers' for crys-
tals. In addition to the principle of detailed balancing which plays an es-
sential role in all kinetic interpretations the following assumptions have been
used: (a) Both treatments make use of an energy function which in terms of
wave numbers or of the electron velocities is spherically symmetrical. This is
equivalent to the assumption that the electrons are completely free. (b)
Nordheim makes assumptions that restrict the application of his conclusions
to isotropic materials. (c) Ehrenfest and Rutgers consider crystals as well as
isotropic materials, but they introduce the restricting assumption of elastic
collisions between the electrons and, the ions of the crystal lattice. Both
treatments are entirely general with respect to statistics. '

' L. Nordheim, Ann. d. Physik, f5j, 9, 607 (1931}.Zur Elektronentheorie der Metalle. I, II.
' P. Ehrenfest und A. J. Rutgers, Proc. Kon. Acad. Amst. 32, 698, 883 (1929}.Zur

Thermodynamik und Kinetik der thermoelektrischen Erscheinungen in Krystallen, insbeson-
dere des Bridgman-Effektes. II. A. J. Rutgers, Dissertation Leiden, 1930.

' Independence of statistics is obtained by using the function:

f& = g(Ae-'«~} (1}
to describe the equilibrium distribution of the electron energies. In this equation e is the total
energy of an electron in a certain cell in momentum space, f0 represents the number of electrons
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The author proposes to show that the restricting assumptions a, b, and c
are unnecessary, and that a derivation of the current equations and the Kelvin
relations can be given iohen one retains only the principle of detailed balancing.

)2. THE ELECTRIC AND HEAT CURRENT EQUATIONS

Using the special assumptions described, Nordheim obtains the following
equations for the electric and heat currents in an isotropic material:

ET BA eE2 BT
=eEg eF, —

A Bx T Bx

m, =E3 eF, —

(2)

E2 E3 ~

The validity of the Kelvin relations is shown to depend upon the existence
of this condition.

Ehrenfest and Rutgers, using the special assumptions described, obtain
the following equations for the electric and heat conduction currents in
anisotropic crystals:

where F, is the electric field, 8 7/I)sc is the temperature gradient, X is the Boltz-
mann constant, and A is the coefficient in the distribution function (1). The
four coefficients, X~, X2, X3 and X4 are functions of the temperature and the
coordinates, and they depend, furthermore, upon a function which des-
cribes the behavior of the electrons in collisions, and upon the choice of sta-
tistics. Among these coefficients Nordheim finds the important reciprocal re-
lation

()

(&)
i,(x~x2x3) = eE„, eF„—

ET BA

A Bx„

eErs

T t3 xt.

(3)
(g) ET BA E„, BT

Iv, (z,x,x,) = ez„, eF, —
A Bx, T Bx„

(6)

where the appearance of a letter twice as an index in a single term indicates a
summation for that letter over the numbers 1, 2, and 3. The three coefficients
are symmetrical tensors which are functions of position and temperature, and
which depend, furthermore, upon the nature of the function which describes
electron transitions in collision, and upon the choice of statistics. The reci pro-
cal relation existing between the two current equations is in this case the
appearance of the same coefficient E„& in both equations. Since it is sym-
metrical

(2) (2)E„„=E„„,

in such a celli T is the absolute temperature, X is the Boltzmann constant, and A is a coe%cient
depending on temperature and position, which is determined by setting the sum of fo over all
cells of momentum space equal to the total number of electrons. The form of the function g
depends on the choice of statistics.
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This condition is essential in the derivation of the Kelvin relations from the
current equations.

Assuming only the principle of detailed, balancing one obtains the follow-
ing equations for the electric and heat currents in crystals:

12)
(g) ET BA eE„, BT

f, (xgxmx, ) = eE„, eP„——— (g)
A Bx„T 8x„

ET BA K„, BT
u, (x,x,x,) = Z'„,' cP„— Bx„T Bx„

These equations differ from those of Ehrenfest and Rutgers in the meaning
of the tensor coef6cients and in the existence of four such functions instead
of three. Unlike the tensors E'„&' of Ehrenfest and Rutgers, the coegcfents
X an8 X q are not, i n general, symmetrical in their indices. ' Nevertheless, one
may show that under all conditions the reciprocal relation:

(10)

exists between these equations. The other two coefficients E„„'. and X(, are
always symmetrical in their indices. These conditions are just sufhcient for
the derivation of the Kelvin relations. ~

Conditions (4), (7) and (10), which have been found to exist in the three
different treatments of this subject, are special cases of a general class of such
relations. Onsager, who has considered irreversible phenomena in general,
finds that one may demonstrate the existence of reciprocal relations of this
kind between any two processes which are not independent if the principle
of detailed balancing is assumed. The conclusions described above may be
taken as a substantiation for the case of conduction in metals of these more
general and rather abstract considerations.

)3. GENERAL METHOD

The foundation of these derivations is the well-known Boltzmann equa-
tion for the distribution function f of the electrons. This equation tnay be
written in the form:

The explicit form of these tensors which is to be given later shows that they are symmetri-
cal in their indices only when the function representing the total energy of the electron is
separable in three terms, each of which depends on a single quantum number and is the same
function of its argument as each of the other two; i.e. , the energy must be of the form:

e = f(k1) + f(k2) +f(k3).
Since it may rarely, if ever, be possible to express the energy for any actual metal in this form,
the coeScients K„, and IC„~ of the current equations are not, in general, symmetrical.

' Since the current equations have been derived under the single assumption of detailed
balancing with all restricting assumptions removed, these relations may be considered as the
necessary and sufhcient conditions upon which the validity of the Kelvin relations is based. As
is to be expected, these conditions are in general weaker than those found by Ehrenfest and
Rutgers and by Nordheim.

' Lars Onsager, Phys. Rev. 3V, 405—426 (1931). Reciprocal Relations in Irreversible
Processes. I.
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X„+$„=t w(P'P)f(P)[1+Of(P)]dkg'dko'dko'
Bf Bf

8$„"Bx„

—Jt JIJt w(PP') f(P) [1 + Of(P')]dk, 'dko'dko'

where X„is the rth component of the acceleration of an electron, („is the rth
component of the mean velocity of drift, w(PP') is a function describing the
transition probability of an electron in a cell I of momentum space to a cell
I ', k„ is the quantum wave number in the rth direction of space, and 0 has
the value 1, 0, or —1 depending on whether the choice of statistics is Ein-
stein-Bose, Maxwell-Boltzmann, or Fermi-Dirac. Introducing the principle
of detailed balancing:

f.(P) [1 + Of.(P')] (PP') = fo(P') [1+Of.(P)] (P'P) (12)

one obtains a relation between the probabilities of the direct process (P~P')
and the restituting process (P' +P) which—for all statistics is given by the
equation:

w(pp')e" «r = w(p'p)e'&r = W(pp') = W(p'p). (13)

The new function W(PP') defined by this equation is obviously symmetrical
in all of the primed and unprimed variables on which it depends. Since no
further assumptions have been made, it must be considered as a function of
all the variables by which a cell in momentum space is specihed and, in gen-
eral, of the coordinates as well. Then it may be written as W(x&xoxokk'a&aoao-
a''ao'ao') where x~xoxo are the coordinates, k the absolute magnitude of the
wave number, and aIa2a3 the direction cosines of the electron velocity. ' The
introduction of this function into the Boltzmann equation eliminates the un-
symmetrical probability function from the equation and gives the foundation
for the further treatment which is to follow.

One attempts to solve this equation by writing:

f= fo+ fi
where f~ is a small perturbation term. Introducing Eqs. (13) and (14) into Eq.
(11), neglecting second order terms, and writing x for xoxoxo and a for a'aoao
one obtains:

Bfo Bfo8(„"Bx„ Jt dQ'If ( kk'x)sss ~ '~Er — s—'«r (1$)
fofi' -, fo'fi

0 0

where dP'=dkj'dk2'dk3'. This equation is to be solved for the unknown per-
turbation function f,. Various methods of accomplishing this result, which
are possible when certain restricting assumptions are made, have been used

~ An essential difference in the three treatments exists at this point. Nordheim, consider-
ing isotropic materials, writes the probability function as m(x&x2x3kk 8) where 8 is the angle
between the vectors representing k and O'. Ehrenfest and Rutgers, considering crystals but
assuming that all electron collisions are elastic, write m as m{x&xsxs&; +jff N a~i'~s'+s')
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in the previous theoretical treatments of conduction in metals. ' When no
such assumptions are made, a very general method of solution, according to
which the unknown function is formally expressed in terms of a symmetrical
solving function S(xkk'aa') must be used. This method, like all others, de-
pends essentially on the principle of detailed balancing, but, unlike these
other methods, it requires no restricting assumptions of any kind.

(4. FORMAL SOLUTION OF THE INTEGRAL EQUATION) DETERMINATION OF

THE ELECTRIC AND HEAT CURRENT EQUATIONS

The left member of the integral equation must be written in terms of
wave numbers before a solution can be obtained. The foundation of this trans-
formation is the Peierls theorem' which relates the mean velocity of drift of
an electron through a crystal lattice to the differential quotient of its total
energy with respect to the wave number:

1. BE

h Bk„
(16)

where I. is the length of the crystal, and h is Planck's constant. Using this
theorem one obtains for electrons of any degree of binding subjected to an ex-
ternal electric fIeld of components F„, (r = 1, 2, and 3).

I. B$„X„=eF„—"h Bk„

Bfo k Bfo Bfr

B(„1. B6 Bk„

8 Nordheim, using a method of solution introduced by Lorentz, writes f1 as the product of
two functions:

f = kcosHX(k) = k,x(k)

where k is the absolute magnitude of the wave number, and 0 is the angle between the direction
of the electron velocity and the direction of the potential and temperature gradients. The equa
tion in f1 is reduced in this manner to an equation in g(k) which may be solved by general
methods. The assumption that f1 is a function of this form is easily justified when the funda-
mental equation is descriptive of processes in isotropic media, but not otherwise, for it is only in

such materials that the heat and electric currents can be assumed to have the same direction
as the temperature and potential gradients. Ehrenfest and Rutgers obtain a solution in the
anisotropic case by writing the perturbation function as

f1 P,(xv) G„(xv; aiagas)

where P„(xv) is the coefficient of a„ in the left member of the Boltzmann equation, and the
functions G„(xv; aia2a3), where r has the values 1, 2, and 3, are the solutions of the three integral
equations into which the original one is decomposed. This method of solution is possible only
when the absolute magnitude of the electron velocity v, or its corresponding wave number k,
is not one of the integration variables. It cannot be used, therefore, when the assumptions of
Ehrenfest and Rutgers are not made.

9 This theorem has been proved by R. Peierls (Zeits. f. Physik 53, 255 (1929), Zur Theoric
der galvanomagnetischen EA'ekte) for nearly free electrons. It is valid, however, for electrons
of all degrees of binding. A general proof of the theorem has been received from J. R. Oppen-
heimer in a communication by letter to G. E.Uhlenbeck.
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Also

Bfp l9 pX„=eF„$„-B(„B6
Bfp Bfp KT BA e BT+-Bx„B~ A Bx„T Bx„

(20)

for all statistics. Then the left member of the integral equation becomes:

Bfp KT
eF„—

Be A

BA 6 BT

Bx„T Bx„
(21)

B p

[P,(x,x,*,) + .Q„(x,x,x,) )
B6

(22)

where

P„(x,x,x,) = eP„—
ET BA

A Bx„
(23)

1 BT
Q„(x,x,x,) = ——

T Bxt.
(24)

and n„ is the mean velocity of drift considered as a completely arbitrary func-
tion of all the quantum numbers.

Now define a new function g& by means of the equation

~fp fp ~lET

ART
(25)

Introducinp this function into the integral Eq. (15), using expression (22)
for the left member, and multiplying both members by k', one obtains

fp'e'xrk'pe [P (x) + eQ, (x) j

= g~ I
k'k"dk' der'5' xkk'aa' p pJ I i ~l

d~'W xkk'aa' g,
' «'.

w'

The kernel of this integral equation is symmetrical in all primed and un-
primed variables, since W(xkk'ao') is symmetrical in these variables. Then a
formal solution containing a symmetrical solving function may be obtained
directly. This solution is:

f pe&IKTkpg P (x) f pea(KTkppe eQ (x).

e(ks) a(ks)

fp
"e"«r k "pe, 'P,(x)
8' k'a' H{ku

(27)
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where

+ J
dk'

JI
d/e' —S(xkk'aa')

= P„(*)G„(xka) + eg„(x)J,(xka) (28)

f 'e'&rk'u fe' e"«rk"u„'
G„(xka) = — —+ dk' dw' S(xkk'aa') (29)

H ka EI k'a' JJ ka

f 2ee/xrk2u foi ee'/Icrk& u &

J,(xka) = + I dk'
i

dw' — — ——S(xkk'aa')
IJ(ka) a J (a(k'a') JJ(ka))»2

e/*s ) = I z'I "uk' f a w/xs's )//' ' (3i)

and S(xkk'aa') is the symmetrical solving function.
The first order perturbation term f) is obtained from this expression for

g&, and the electron and heat current equations are obtained by introducing
this expression for f, into the equations:

Ge
II Jl JI u,f,dk, dk, dk,I3 J

G
I Il I uqefgdkgdkgdke13 J

One obtains:

fi =—

zg x J xmx3

I'q xyx2xa

where

j 34)

8
r„,(xk) = Jtd u, 6„

86

{P,(*)G,(xka) + .g,(x)J,(xka) I
86

Ge Ge
k'I'„x F„, xk dk — k' „xA„„xk dk 35

G G
k'P„(x)II„,(xk)dk ——t k'Q (x)A„,(xk)dk (3|))

LS J3

A„,(xk) = d(uu, eJ„
86

8 p

II„,(xk) = Jj d/»u, eG,
86

8 p

D„,(xk) =
JI d'eau, e'J„

8t

(38)

(39)

(4o)
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and 6 is the weight attributed to an energy level. These equations are equiv-
alent to (8) and (9) where

(i)X„=—— k r„(xk)akTq Tq

(2)E„, = —— k'h. „q xk dk

(3)
Z,. = ——„f k2n„(xk)dkTq Tq

(4) 6Z„= —— k2', (*k)dk.Tq rq

(43)

Introducing the values of G, and I„from (29) and (30) into the four tensors
F, A. , II and 6 one finds readily that the coefficients X„", and X„," are not
symmetrical in their indices unless the conditions described in note 4 are ful-
filled. Therefore these coefficients are, in general, unsymmetrical. But the re-
ciprocal relation

does exist, for

(2) (3)
ETq EqT

(2) Bf f 2galICTk2

E = —— k'dk i~ des uquTeI.2 ~ B2 H(ka)

t'dk J~dco jtdk' Jt dx'k2k' a,g„'
G

L3

f2"s"IKT2'
S(xkk'aa')

B. (a(k'a') a(ka))'~

Q p p Bf f2g&IICTk2

G——
i dk i/d(o ltdk' ll'd-k2k'N„a2'

L3J
2's"IET2

S(xkk'aa').
B, (a(k'a') e(ka))

(lo)

Since S(xkk'aa') and (H(k'a')H(ka)"2 are symmetrical in primed and un-

primed variables, and

fo'

AET

these expressions are equal, for primed and unprimed quantities may be in-
terchanged in the second term of either expression without changing its value.
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5. THE KELVIN EQUATIONS
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Following Ehrenfest and Rutgers one may write the current equations in
the form

where

is = Are~I'r + ~e

~g = CrqeF„+ D,

(4&)

(4s)

(&)
A re &Ers

(l)ET BA
8, = —eErs

A Bx„
(3)

Cr, =Er,
(3) ET BA

Dq = —,'E„,
A Bx„

eEre 8 T
(2)

T 8xr

T 8xr

(so)

(s2)

The Kelvin relations for the reversiqle heat development and the thermo-
electric force are obtained from these equations and a third equation giving
the total heat development 0:

O'Ky
0 =F,i~-

Bxp
(ss)

One obtains for the reversible part y of the total heat developed the expres-
sion

~ye
x = —&.&. ——(&"&C.)

e Bx„

and for the thermo-electric force Ii, :

(s4)

where a„ is a tensor which is the reciprocal of the tensor eE'„(') and is de-
fined by the equation:

()i) ~or
a~sE„e

e
(s6)

The coefficients E'„(') and E'„(4) unlike the coefficients E„(') and X„(')are
always symmetrical. Therefore

~ps = ~eq ~ (s7)

Introducing the expression for 8„ the general reciprocal relation (10), and
Eq. (57) into Eqs. (54) and (55), one obtains the Kelvin equations:

(ss)
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where

BE BT
F,. = —S~,

B&s Bxy

S,„ (3)
S,„=K log A —a,,Eq„

e ET
ET

E = logA.
e

(59)

These equations are equivalent to those originally obtained by Lord Kel-
vin on the basis of thermo-dynamic reasoning. They have now been derived
kinetically using only the assumption of detailed balancing. The essential role
of this principle has been to provide the necessary symmetry in the integral
equation which describes the distribution function of the electrons, on the
basis of which a solution, also having certain essential symmetry character-
istics, is possible. These characteristics have served to establish the symmetry
of the tensor a„and the existence of important reciprocal relations between
the current equations. The Kelvin relations depend essentially on these con-
ditions.

I wish to express my gratitude to Professor G. E. Uhlenbeck for suggesting
this problem.

Note added for correction: The index r of equations (17), (18), and (19)
is not a dummy index. These developments are not strictly true unless the
energy is separable in three functions, which may be different, of the three
quantum numbers individually.


