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ABSTRACT

Intensity formulae are found for the rotational structure of bands arising from
transitions between a singlet and a triplet state of a diatomic molecule. These inter-
combinations occur because the wave functions which diagonalize the orbit-spin
interaction contain both singlet and triplet terms. In the transition 'Z —'Z two cases
arise, according as the two states have the same or opposite symmetry as regards re-
flection of the orbital motions in a plane containing the nuclei, a different set of
branches appearing in either case, A comparison is made with measurements of in-
tensities in the atmospheric absorption bands of oxygen; the agreement is satisfactory
on the assumption that these bands are due to dipole transitions from the 'Z ground
state to a 'Z state. Formulae are also found for the transitions 'Z —'II, IZ —'6 when
the triplet state comes under either of Hund's cases (a) or (b).

'HEORETICAL investigations of intensities in electronic bands have
hitherto dealt with transitions between states of the same multiplicity.

Certain bands are however known from their structure to be due to "inter-
system" combinations between terms of different multiplicities. In this paper
only singlet-triplet combinations are considered, since all inter-system bands
so far described are of this kind.

The proof of the selection rule for molecular spectra that only terms of
like multiplicity combine depends on the possibility of separating the wave
function of any state of the stationary molecule into the product of two fac-
tors, one depending on the orbital motions, and the other on the electron
spins. This separation can be made only when the orbit-spin interaction is
negligibly small; the effect of the interaction will be to modify the wave func-
tions in such a way as to permit inter-system transitions of small intensity.
In the analogous case of intercombinations between singlet and triplet terms
in an atom with two electrons' it is necessary to solve this perturbation prob-
lem completely before the intensities can be calculated. The molecular prob-
lem is simpler in that for our purpose the perturbation problem need not be
completely solved, nor indeed would this be possible without definite know-
ledge of the complete molecular wave functions. We are here concerned with
the way in which the intensities depend on the rotation quantum number J
for a given electronic transition, and not, as in the atomic case, with the
intensities of diferent electronic transitions.

STATIoNARY MQLEcULE

Electronic orbital wave functions The pos.ition of an electron with respect
to the molecule with nuclei held fixed is specified by Cartesian coordinates

' W. V, Houston, Phys. Rev. 33, 29/ (1929).
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(prli') where f is along the axis of figure, or by cylindrical coordinates (ppi),
the azimuth p about the I-axis being measured from the plane rl=0. In
analogy with the usual theory of the helium atom, the wave functions for a
molecule with two electrons are, to a first approximation, of the form

p(] )s+|elq(2) sa 241 + p(2) /+142/(] ) s'~|4'i

where p, g, are real functions, supposed normalized, which do not involve
@i and P2, and ) I, )2, are the components along the axis of figure of the orbital
angular momenta 1i, 12 of the individual electrons. The sum )i+)2 ——A is
equal to 1, 2, for II, 6, states, and the upper sign is appropriate for
singlet states, the lower for triplets. If in virtue of the interaction between
li and 12 the individual ) 's are no longer good quantum numbers, the wave
function is a linear combination of terms like the above all having the same
value of Xi+)2 ——A.. In these wave functions, which are complex, there is a
degeneracy associated with the two possible directions of orbital motion,
corresponding to + ~A ~. If A. =0 (Z states), this degeneracy no longer exists.
Since the coefficients of the wave equation are all real, the wave functions for
Z states are essentially real, and of the form F cos X(P& —P2) or G sin X(P~ —Q2)

where Ii, G, are real functions of the coordinates of the electrons other than
Qi, P2. These two wave functions are respectively even and odd with respect
to reflection of the orbital motion in the plane ran =0 (replacement of P by
—P), and represent Z+ and Z states.

Spin functions For a sing. let the spin function is, in the usual notation,
(C', Cp, —Cp, C,)/2'" and for a triplet, C,C' „(4&,C'p, +C'p, C',)/2'~' or
4p, C p, according as the projection 2 of the total spin 5 on the axis of figure
is equal to 1, 0, or —1.The sum A+X is denoted by 0, and is attached as a
suffix to the term symbol.

Orbit-spin interaction. The unperturbed system to which these wave
functions refer is specified by quantum numbers A, 5 and S. The energy IIO,
including the energy of the electrons in the field of the nuclei, their electro-
static interaction, the coupling of orbits and spins separately to the axis of the
molecule, and the "exchange" coupling energy of the two spins, is a diagonal
matrix. We then take as the small perturbation the orbit-spin interaction
H~ ——a, (1, s,)+a, (I~ s,), where a~, a2, are real constants, I~ the vector with
components (1&)g = (h/2vri) (ri~B . /Bt ~ i ~B /Bq~) etc. and similarly for
1&, and s&, s& are the Pauli spin operators defined as usual. It is readily verified
by the properties of the operators 1 and s that the matrix Hi involves terms
for which AA. =O, +1, and is diagonal in the quantum number Q. The di-
agonality in 0 is otherwise obvious since the component of the total angular
momentum along the axis of figure is a constant of the perturbed as well as
the unperturbed motion.

The perturbed wave functions are therefore linear combinations of the
unperturbed wave functions, all the functions in any combination having
the same value of 0, and multiplicities 1 or 3. To begin with we shall consider

' See, for example, J. H. Van Vleck, Phys. Rev. 33, 467 {1929).
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the most interesting case 'Z —'Z of inter-system combinations; the same
method applies to other cases as well. In terms of the old wave functions
P we have the following new wave functions f' for the Z states:

4''('&o) = a4'('&o) + P4'('IIo') + 84'('&o) + r4('llo)

4'('&o) = 4(o~o) + t4('&o)

0'('~i) = @('~i) + Nf('Iii)

where a, b, c, d, are constants of order unity, and p, g, r, s, t, u are constants
much less than unity if, as we shall suppose, the orbit-spin interaction is
small. In the wave functions for the triplet states terms in $(oII) have been
omitted, as they cannot contribute to the inter-system intensities 'Z —'Z.
The states denoted 'II ~ and 'IIO' have A = —1.

ROTATING MOLECULE

To obtain the complete wave functions of the rotating molecule, each of
the original P's must be multiplied by a function giving the vibrational
motion of the nuclei along the line joining them, and by the appropriate
symmetrical top function involving the quantum numbers J, 0, 3E, in the
usual way. As we are concerned with a definite vibrational level of each of the
two states in question, the vibrational part of the wave function merely in-
troduces a factor independent of J into the intensities, and may therefore
be omitted in what follows. The symmetrical top function mill be denoted by
ttJQjg(8, pp). Th'e Eulerian angles 8, pp, specify the orientation of the axes
(frti) with respect to axes fixed in space, 8 being the angle between the f-axis
and a preferential direction in space, taken as the s-axis, and ~ giving the
azimuth of the P-axis about the s-axis, to which it is supposed to remain per-
pendicular. Ke do not require the explicit expression of this function; the
following property may be verified from the definition given by Van Vleck'

ppsspr(pr —8, po + pr) = (—I)~ops ssr(8, pp).

Electric moment. We must now form the matrix elements of the compo-
nents of the electric Inoment of the molecule, referred to axes fixed in space,
and shall work with the s-component, for which AM =0. Denoting the am-
plitude for a transition from a rotational level J of a state I to a level J' of
state Y by (X—Y)(JJ'), we have

('Zp —'Z i)(JJ') = as('Zp —'lI i)(JJ') + br(olio —oZ i)(JJ')

('&o —'&o)(JJ') = at('Zo —'&o)(JJ') + cq('&o —'&o)(JJ')

( Zo —PZi)(JJ') = aot( Zp —II,)(JJ') + dP( Ilo' —Zi)(JJ').

If we remember that s = g sin 0+( cos 0, we may write the following explicit
expressions for the first terms on the right of these equations
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as Jt|l*('Zo)pre('ll ~)dr tgsoorms QM sin 8d8d&o

a5 Jj p"( Zo)g'(Zo)dT J~gsoMNs oor sin 8 cos 8d8dra

ag
~t

f*('Zo)stl'('Ili)dr Jl Nzoorgz d'or sin' 8d8doo

where the integration dr is over the positional coordinates of the two electrons
in the stationary molecule, and includes summation over the spin coordinates.
The integral over 0 and co is in each case the well-known amplitude factor for
the symmetrical top. We denote the quotient of each of the above expres-
sions by the modulus of the corresponding amplitude factor by A, B, C, re-
spectively, so that A, 8, C, are constants whose values depend on the in-
ternal dynamics of the molecule, and do not concern us, but whose relative
phases for a given value of 6J are of importance in what follows.

The phases. Consider 6rst the relation between the coefficients s, t, n,
defined in equations (1). Since the oif-diagonal terms of the energy matrix
are much smaller than the diagonal terms, the phases of the elements
a, b, t, N, of the transformation matrix arising in diagonalising Hp+HI
are the same as those of the corresponding elements of Hp+HI. Thus a, b, c, d,
are all real. Remembering that with our choice of wave functions P('II~)
=p*('II ~) and that p(oZ, ) and lf(oZ ~) are real, we readily find that the
matrix elements of Hj between (oZ~, 'II~) and ('Z ~, 'II ~) are complex con-
jugates, so that s =1*;also that if the triplet state is 'Z+, s is real, while if
it is 'Z —,s is imaginary; t is always imaginary, and vanishes if both states
have the same symmetry as regards reRection of the orbits alone in a plane
containing the nuclei, i.e., the orbit-spin interaction will combine 'Zp+ with

but not with 'Z+.
If we denote the three integrals over the internal coordinates r by /, m, n,

respectively, we have l =n*, and / is real or imaginary according as the singlet
state is 'Z or 'Z+; nz is always rea1.

In virtue of the integration over the coordinates 0, or, and the property
(2) of the symmetrical top function, A and C will differ by a factor ( —1) +

the sign of 8 remains undetermined. Summing up we now have

A:II:C = sl:+ lm'. ( )+~s—N=tosl':+ l (—m)o~s*l*.

We therefore distinguish two cases:

(i)

(ii)

'Z+ —'Z or 'Z —'Z+:A = (—)os, B 4 0

'Z+ —'Z+ or 'Z —'Z —:A= (—)o~+'C, 8 = 0

where A, 8, C, are all real. A similar argument applied to the second terms
on the right of equations (3) leads to the same result. Since the two transi-
tions in any line of (3) have the same values of DQ, 6J, AM, they depend on
J in the same way, so that the form of the result (4) still holds when both
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transitions are taken into account. In this section on phases we have made
use of a model of the molecule which is somewhat specialised in that it has
only two valence electrons. It is however reasonable to suppose that the phase
relations are much more general than the model which was used to determine
them.

7 ke amplitndes. Ke now have the following scheme for the amplitudes of
the three transitions 'Zo —'Z I, 'Zo —'Zo, 'Zo —'Z~ for AM =0. The factors
depending on J and M are taken from a paper by Kronig, ' and are written
so that J refers to the 'Z state.

aJ= —1
0
1

A [JQ(J+1)]'~'
A m/[J(J+1)]1~2
A[(J+1)Q(J)]'"

B[(J+1)Q(J+1)]&

0
B[JQ(J)]'i'

C[JQ(J+1)]"'
CM/[ J(J+1)]'I' (5)
C[(J+1)Q(J)]'»

where Q(J) = (J'—M')(J(2J —1)(2J+1). In this table, which really repre-
sents two distinct cases (i) and (ii), the constants A, 8, C, satisfy the rela-
tions (4).

ROTATIONAL UNCOUPLING OF THE SPIN

In the rotating molecule, the 'Z state comes under Hund's case (b), in
which the coupling between the spin and the axis of figure is negligible com-
pared with that between the spin and the rotation of the molecule. The
amplitudes given in the preceding table are not the actual amplitudes, but
amplitudes for transitions between the '2 state and a hypothetical 'Z state
belonging to case (a), in which the spin is imagined as being firmly coupled
to the axis of figure, so that the suf6xes —1, 0, 1, in the 'Z state have a mean-
ing as quantum numbers. To pass from these amplitudes to the actual am-
plitudes in which the 'Z state comes under case (b) we must consider the
inHuence of the rotation in uncoupling the spin from the axis of figure.

The method of doing this has been given in a convenient form by Van
Vleck, 2 who showed that the effect depends on a Hamiltonian function H,
where

H(Z; Z + 1) = 2P [J(J + 1) —Q(fl + 1)]""s„(Z g + 1)

H(Z; Z) = f(Z) + P [J'(J + 1) + S(S + 1) —O' —Z'].

In these expressions p is the usual constant Ii'/Sir'I, and s„ is the il component
of the Pauli operator for the total electron spin. The term f(Z) is the coupling
energy between the total spin S and the axis of figure of the molecule, and is
ordinarily proportional to A. Z. Here however we are interested in the case
A=O, S=i; for this case Kramers4 has shown that the interaction of the
spins of the two electrons is equivalent to a coupling energy proportional to
(3 cos'y —1) between the spin and the axis of figure, X being the angle be-
tween them. The matrix elements of this coupling energy are thus of the

' R, de L. Kronig, Zeits. f. Physik 4S, 458 (1927).
' H. A. Kramers, Zeits. f. Physik 53, 422 (1929).
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form n(2sr2 s—P s—„') where n is a constant which may be either positive or
negative.

Ke now set up the secular determinant, noting that with our choice of
P's the elements of s„are imaginary. Strictly speaking we should calculate
the matrix elements with respect to the wave functions P' of the stationary
molecule, which take into account the orbit-spin interaction; but since the
latter is small, we may without great error use the unperturbed functions P.
The secular determinant is

J(J + 1) + t —w —i[2J(J + 1)]'" 0

i[2J(J + 1'l] " J(J+ 1) + 2 —2), —w —i[2J(J + 1)]
0 i[2J(J + 1)]'" J(J+ 1) + t. —~

where t. =u/p, and is therefore large or small according as the state is nearly
case (a) or case (b); and w = IF/P. The secular equation may be solved ac-
curately, the roots being

u = J(J+ 1) + X J(J+ 1) + 1 —X/2 + [(ZJ'+ 1)'+ 9X'/4 —3X]'" (6)

If we neglect X altogether, the roots are J(J—1), J(J+1), (J+1)(J+2).
These give the rotational levels of the triplet belonging to a given value of J
in case (b). Since in case (b) the energy is given mainly by m=X(K+I)
where E is the total angular momentum of the molecule exclusive of spin,
we see that the three levels are distinguished by having X=J—1, J, 7+1,
respectively (T&, T„T,terms: in Mulliken's notation). If X is so small that its
square is negligible, we obtain for the levels the formulae which were ob-
tained by Kramers. His unperturbed system consisted of a free rotator and a
free spin vector, with the coupling between them as the perturbation; only
those elements of the coupling energy were taken into account which are
diagonal in E. This is a good approximation so long as the splitting of the
levels caused by this perturbation is small compared with the rotational
intervals, which is not always the case in practice. The exact formula (6) is
not subject to this restriction; the terms in X', X' ~ may be looked on as
giving the effect of the oR-diagonal terms of the coupling which were neg-
lected by Kramers.

In the neighborhood of case (a) X))1, and the roots of the secular equa-
tion are approximately ), ), —2); the root —2) refers to the state 'Zo. Since
the roots of the secular equation do not cross when the parameter X changes
from large negative to large positive values, we see that the (a) state 'Z,
passes into the (b) state K=J—1 or E =J+1 according as the coupling
constant n is positive or negative. The correlation of the states 'Z~, 'Z ~,

which have identical energies, with the two remaining (b) states cannot be
determined by this argument. But since case (a) states are purely hypothet-
ical when A =0, the final intensity formulae must be independent of the cor-
relation adopted between them and the actual (b) states. It is found that in .

oxygen the constant n is positive; we shall adopt the correlation 'Z
&

'Z~+~, where we use the notation 'ZJ ~, 'Zg, 'ZJ+~ for the
(b) states of 'Z usually denoted T&, T~, Tq.
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For complete uncoupling of the spin (X=O) the transformation matrix
arising from the secular problem is

(
1/21/2 0 I/21/R

S =
(

—[(J+1)/2(2J+1)]"" f[J/(2J+ 1)]'" [(J+1)/2(2J+1)]'"
(

[J/2(2J y I)]//~ j[(Jy 1)/(2J y 1)]//~ —[J/2(2J y I)]//~ ).
The columns refer to the (a) states 'Z &, 'Zo, 'Z& respectively, and the rows
to the three (b) states 'Z~, 'Zq ~, 'Zq+~, in that order, with which we have
correlated them. Each row may be multiplied by an arbitrary complex con-
stant, which however does not affect the intensities. Here J refers to the 'Z
state.

To pass from the amplitudes in the hypothetical transitions 'Z(a) —sZ(a)
to the actual amplitudes 'Z(a) —'Z(b) it is necessary, as shown by Hill and
Van Vleckg to post-multiply the (a) amplitudes of (5) by S~, so that for ex-
ample the s-amplitude in the transition 'Z —Zz is given by the inner product
of the appropriate row of the scheme (5) into the first row of g*. This shows
that the result is independent of the correlation; the quantum number of the
hypothetical (a) state merely plays the part of an index of summation.

The following scheme gives the designations of the nine possible branches;
the letters P, Q, R, are the usual symbols corresponding to AJ=1, 0, —1,
and the upper left-hand a%x gives the value of AX according to the same
scheme, so that for example "~R means 5J= —1, AX = —2.

Z —ZJ.
—1

BRR
Rq
Qp

Z —ZJ
0

~R
Qq
Pp

1g 3gy
1

Pq
PPp

{7)

0

2A~(2J + 1)

0 [2A& + B~]J(J + 1)/(2J + 1).[2A'(J+ 1)' y B'J']/(2J y 1)

Case (ii): Singlet and triplet states have the same symmetry:

0 2A'J 0
2A'(J + 1) 0 2A'J

0 2A'(J + 1) 0.
~ E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928).

Instead of writing down the amplitudes, we shall content ourselves with giv-
ing the total intensities, which are obtained from the amplitudes for AM =0
by taking three times the square of the modulus, and summing for all values
of 3I from —J to J. If we use the relations (4) between A, B, C, we find that
in cases (i) and (ii) complementary sets of branches appear, whose inten-
sities, arranged according to the preceding scheme, are as follows.
Case (i): Singlet and triplet states have opposite symmetry:

[2A~+ B']J(J+ 1)/(2J + 1) [2A'J' y B'(J y 1)']/(2J + 1)

0 0
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The appearance of complementary sets of branches in the two cases (i) and
(ii) is in agreement with the selection rule that only states of opposite sym-
metry as regards reHection of nuclei and electrons in the origin can combine
with each other. If as usual we call the two types of symmetry with respect
to this reflection "positive" and "negative", the three component levels of a
'Z state belonging to a given value of X, and having J=X+1,X, X—1, all
have the same symmetry, and are alternately positive and negative for succes-
sive values of X.Two possible cases arise, according as the states 'Z, 'Z have
(i) opposite, or (ii) the same symmetry, with regard to reflection in the
origin, for a given value of X. These two case~ are exactly equivalent to the
two cases (i) and (ii) above, in which we considered symmetry as regards
reflection of the orbits in a plane through the nuclei, since a Z+ state may
alternatively be defined as one which is positive on reflection in the centre
for even J, and a Z state as one which is negative for even J.The nine pos-
sible branches fall into two sets, I', ~Q, sQ, "R, having AZ' odd, and I',
OP, OQ, OR, E, having DE. even, and it is readily seen that the rule exclud-
ing transitions between states of like symmetry will exclude the first set or
the second set in cases (i) and (ii) respectively.

COMPARISON WITH EXPERIMENT

There are no experimental data for the case in which the singlet and
triplet states have opposite symmetry. According to one interpretation,
the atmospheric absorption bands of oxygen arise in transitions between a
'Z state and the 'Z ground state of the molecule; four branches are ob-
served, which are classed as ~I', "Q, sQ, sR. Reliable measurements of
intensities are exceedingly difficult to make, but recently Childs and Mecke'
have made a determination of intensities in the A bands of the absorption
spectrum of atmospheric oxygen at room temperatures. The following table
gives a comparison between the experimental results and those calculated
above. The notation used by Childs and Mecke for the branches is different
from that which has been adopted here; in the table both notations are
given. We may observe in passing that there is no theoretical justification
for the correlation of the triplet states which we have called 'ZJ i, 'ZJ,
'Zz+& with 'Z &, 'Zo, 'Z& respectively, which is the correlation adopted by
Childs and Mecke. Ke have adhered to a more rational correlation, but the
matter is not of importance, as we have shown above that the final result
does not depend on the correlation. In the formulae of Childs and Mecke J
refers to the singlet state; for the sake of comparison the calculated inten-

R. S. Mulliken, Phys. Rev. 32, 880 (1928). Mulliken's interpretation that the bands are
—'Z ~ is the usually accepted one. There are difficulties in accounting for the existence of

the '2 „ term in the oxygen molecule, and an alternative suggestion, also due to Mulliken,
(Reviews of Modern Physics, Jan. 1931,on p. 96) is that the bands are quadrupole transitions
'Z+, —'Z ~. Inter-system quadrupole intensities would of course be very weak indeed; the fact
that we obtain good agreement between experiment and theory if we adopt Mulliken's first
interpretation is evidence in its favour. See also, Rev, Mod. Phys. 4, 1 (1932).

' W. H. J. Childs and R. Mecke, Zeits. f. Physik 08, 344 (1931).
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sities have been written in terms of this J instead of in terms of the J of the
triplet state, as was done above.

Pp
Pq
Rq
BR

Branch

P2
p3
R]
R2

Int. obs.

(J+2)/2
(J+4)/2
(J+2)/2
(J—&)/2

Int. calc.

(J+2)/2
J/2
(J+~)/2
(J—&)/2

The fact that in each branch. only alternate lines are present is of course ac-
counted for by the identity of the two nuclei and the absence of nuclear spin.

The agreement for the branches ~P and ~R is perfect; for ~Q and ~Q there
is a discrepancy. Although the experiments just quoted are the most reliable
that have so far been made, the actually observed intensities from which
Childs and Mecke deduce the law of variation with J as given in the third
column of the table show such considerable fluctuations that it is dif6cult
to be certain about their interpretation.

In either of cases (i) and (ii) it is easily shown that the sum of the in-
tensities of all lines having a given level J of the 2 state in common is pro-
portional to 2J+1; also the sum of the intensities of all the lines having a
given value of J in the 'Z states in common is proportional to 2J+1; this
value of J wi11 in general occur in all three 'Z states, and the rule just given
holds for the sum of the intensities from all levels of the triplet having the
same J.

INTENSITIES FOR Z —II
When the triplet state is a II or a 6 state, it may come under case (a) or

case (b), or it may be intermediate between (a) and (b). We consider only
the extreme cases. Consider erst the three transitions '2 —'IIO, '2 —'III,
"Z —'II2, where the triplet state is case (a). The amplitude of the first transi-
tion is a linear combination of the amplitudes 'Z —'Z and 'IIO —'IIO, the am-
plitude of the second is a linear combination of the amplitudes '5 —'III and
'Zo —'II&, while tne amplitude of the third transition vanishes. It may easily
be shown, by consideration of the wave functions, that the amplitudes
'Z —'IIo and '2 —'III differ in phase by a factor i. The total intensities are
given by the following table. D and Z denote constants.

Branch

~Z —3n,
~Z —3n,

2D' J
E'(J+1) g2(2 J+$)

2D (J+&)
32J

To pass to the intensities when the II state comes under case (b) it is neces-
sary to calculate the uncoupling matrix corresponding to the matrix S used
above, and apply it to the amplitudes from which the intensities just written
down were obtained. As before, nine branches are obtained, whose designa-
tions are given by the scheme (7), and whose intensities, arranged according
to that scheme, are
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D El'(1+1)(J 1)/(2J+1) [D(J+1) El /(1+1) [D(J+1)+EJ](1+2)/(2J+1)(J+1)
Z (J+ 1)(J —1)/J Z (2J+ 1)/J(J+ 1} E'J(J + 2)/(J + 1)

[DJ—E(J+1)]'(J—1)/J(2J j1) (DJ —E]'/J [D+ E]'J(J+ 2)/(2J+ 1).

If the triplet state is '6, case (a), the only component that can combine with
'Z is 'DI. The amplitude is then a linear combination of the amplitudes 'Z
—'Il& and 'IIO —'6&, and the total intensity is, apart from a constant factor.

Branch

I Z —361 J+1 2J+1

The intensities of the nine branches arising when the state is case (b) are

(J + 2)(J + 3)/(2J + 1) (J —2)(J + 3)/(J + 1) J(J—1)(J—2)/(J+ 1)(2J+1)
(J+ 2)(J + 3)/J (J—2)(J+3)(2J+1)/J(J+1) (J —1)(J —2)/(J + 1)

(J+1)(J+2)(J+3)/J(2J+1) (J —2)(J + 3)/J (J —1)(J —2)/(2J + 1)

In all the formulae of this section J refers to the triplet state. To obtain the
formulae in terms of J' referring to the singlet state, it is necessary to replace
J by J'+1, J', J' —1, in expressions relating to P, Q, and R branches re-
spectively. In every case it is readily shown that for a given J or J' the sum
of all the intensities is proportional to 2J+1 or 2J'+1.
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