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ABSTRACT

Field equations of a Riemannian geometry which can be deduced from a Hamil-
tonian principle have the following general property: Due to the conservation law of
Einstein's curvature tensor R;& there appears in the integration of the field equations
a free vectorial function @;, determined, however, by the conservation law. This has
been shown by applying a mathematical formulation of Mach's principle to the
extremely weak deformation of a given arbitrary metric. Specifying the Hamiltonian
function by the evident condition of gauge invariance this free vectorial function @;
has all the fundamental properties of the electro-magnetic vector potential: the law
of continuity is strictly fulfilled everywhere, the potential equation is to be deduced in

first approximation and also the Lorentz' ponderomotive force of a particle. In this
theory the material particle is to be considered as a proper solution of the field equa-
tions.

EVERAL attempts have been made since Einstein's discovery of the
theory of general relativity to find a solution of the problem "electricity"

in a way analogous to that employed in the successful solution of the problem
gravitation. These attempts are mostly characterized by the idea of enlarging
the geometrical basis of Riemannian geometry with the tendency to find in
this way a geometrical formation corresponding to the vector potential or
to the antisymmetrical tensor of electromagnetic field-strength. The follow-
ing development is characterized by the fact that Riemannian geometry is
retained without any modification, discovering in this geometry itself an
analytical element, which seems to correspond with a surprising harmony to
the electromagnetic vector potential.

1. THE FIELD EQUATIQNs R;A, = 0 As CHARAcTERIzATIoN
OF EUCLIDIAN GEOMETRY.

The tendency of Einstein has been to generalize the equations g;A, =const
by setting up a system of differential equations of second order, usually writ-
ten in the form:

E;g=0.
The gravitational field of the sun, the moving of planets around the sun may
be perfectly described by these equations. ' However, we have to remark that
such a solution of the field equations, is not without singularities. From the

' Even the assumption, the path of a planet may be a geodesic is not a new hypothesis, the
dynamics of a mass-point being a consequence of the field equations. Cf. Einstein, Herl. Akad,
Ber. 1927, p. 2; Lanczos, Zeits. f. Physik 59, 514 (1930).
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point of view of these equations matter appears as a singularity. Although
from a purely mathematical standpoint the use of singularities is not to be
rejected, several features suggest the uselessness of singularities in the de-
scription of nature. The singularity is always to be considered as the failing
of a law. For example, to illustrate the situation by a simple familiar ex-
ample: it makes no difference whether we say that we have the potential
equation

permitting singularities or that we have Poisson's equation

(1 3)

without singularities. The latter form of the equation shows that in some re-
gions the law DQ = 0 is not fulfilled, since the function p in some regions differs
from 0. In the same way Einstein s law (1.1) gives a Riemannian space but
only if we admit singularities, in other words exceptions form the postulated
law, since the singularity is equivalent to the fact that in some regions the
tensor R;f, differs from 0. If we exclude singularities and demand the fulfilling
of the law R,J, =0, in the whole sPace, adding some natural boundary condi-
tions practically equivalent with the fact that even in infinity the law (1.1)
may be fulfilled, we obtain Euclidian geometry. And so Einstein's curvature
tensor R;i is to be considered as a fundanientul fornzatiom of Riemannian
geometry, being the simplest invariant characterization of a geometry. We are
accustomed to consider the Riemannian curvature tensor R p~g as a perfect
characterization of geometry, the vanishing of this tensor being a proof for
Euclidian geometry, w/ile the vanishing of R;& is possible also in a curved
world. But the consideration of the Riemannian tensor is only necessary con-
sidering certain limited regions of space. In this case the vanishing of R;& may
not be sufficient to introduce Euclidian geometry. But this insufficiency dis-
appears considering the +hole space without any interruption. The charac-
terization of a geometry by the Riemannian tensor is indeed not of a natural
kind, because it shows a high degree of over-determination. It is not satisfying
to characterize the metric tensor g, & which is a symmetric tensor of second
degree by a tensor of fourth degree. Einstein's curvature tensor R;&, however,
has just the right degree of determination being also a symmetric tensor of
second degree exactly corresponding to the fundamental metric tensor.

2. GENERAL FORM OF FIELD EQUATIONS FOR R;fs WHICH

HAVE A HAMILTONIAN PRINCIPLE

We shall consider Einstein's curvature tensor R;I, as a fundamental con-
cept of Riemannian geometry, able to characterize such a geometry. The
simplest statement R;I, =0 gives only the Euclidian geometry, for this reason
we expect field equations for the R;g, corresponding to the general character
of Riemannian geometry which is a differential geometry. We will suppose
that these field equations are to be deduced from a Hamiltonian principle.
The tensorial problem is then reduced to the consideration of a single in-



CORNBLI US LANCZOS

variant, the Hamiltonian function. This Hamiltonian function will be a func-
tion of the R;g„but being an invariant it must contain also the g;~. Any non-
covariant components may then be deduced to the pure covariants using the

g;~ writing for example

thus we can write our Hamiltonian function in the following form:

Our action integral is:

dv being the volume element and the condition of minimum is the familiar:

corresponding to an arbitrary variation of g;I,. To find our field equations in

a useful form we shall consider in the process of variation at first the R;I,
and the g;g, as independent variables. Doing that we can write the variation
of our integral generally in the following form:

where ~ is an infinitesimal parameter, the variation of R;A, is denoted by p;~,
the variation of g;A, with p;A, . We do not specify at first the Hamiltonian func-
tion and use therefore the general expressions I;z and v;I„which are easy to
find if the Hamiltonian function is given.

The variation of E.;~ and the variation of g;~ are related in a covariant
way. The relation is given in a former investigation of the author, exploring
the extremely weak fields in Einstein's theory. ' We use the resulting formulae
of this work without proof, the details of calculation may be found in the
quoted paper.

We use the following notations. The operation 8/Bx; shall mean always a
cosariant differentiation, not the common differentiation We int. roduce the
invariant Laplace operator:

g2
gaP

8$~8xp

and

+(7~7c) = +Vik + +i~7ka + +0 Via 2+iakii7

~ Lanczos, Zeits. f. Physik 31, 112 (1925).
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where the vector xi has the significance

Bpi 1 Bp
xi =

t9Xa 2 BXi

We need also the "adjoint" expression of D(y;i):

with
=a"

0 ~

8$a

The relation between pi~ and pi~ is expressed by'

Corresponding to the general properties of the "adjoint" diff'erential expres-
sions we can write

[u'"D(y;i) —y'iF(u;i)]ds = surface int.i~ ~ i
~

iI ~ i ~~ I ~

~

According to this equation we can transform the term with pil, in our expres-
sion (2.5) and set equal 0 the resulting coefficient of y, i, . We obtain in this way
the field equations in the following form:

F (u;g) = 2v;i (2. 14)

3.A GENERAL METHOD OF INTEGRATION. APPEARANCE OF A FREE VECTORIAL

FUNCTION Qi IN THE INTEGRATED FORM OF FIELD EQUATIONS

We can use also another method to find our field equations. If there is a
unique connection between piI, and yi& we can also choose the pi& as the pri-
mary variables reducing the yi& to the pi&. For the vanishing of 8I this change
cannot make any difference this vanishing being required for any variation.
The physical meaning of this process corresponds to the idea that Einstein
called the "principle of Mach". ' This principle attempts to determine the
metric of a manifold from a given distribution of matter characterized by the
material tensor. This principle has a precise significance only in the case of a
weak deformation of a given metric field and the variation corresponds to just
such a supposition. Mathematically we have to solve the differential equation
(2.12) determining the y;i from the p;i, by integration.

This process is indeed possible with a certain natural restriction. An ar-
bitrary deformation y;I, can be of two kinds: a real and an apparent deforma-
tion. The latter results from pure transformations of coordinates and has no
importance. Its form is

' Reference 2, Eq. (16).
4 Einstein, Ann. d. Physik 55, 241 (1918).
' Reference 2, Eq. {30).
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BC; BCp
pic = +

8Ãk Bxi
(3.1)

where C i is an arbitrary vector. It is evident that we should exclude such
apparent deformations, which neither produce matter nor inhuence our in-
variant integral ~

We do that by normalizing our coordinate system. We can always add
to a given y-field an apparent field of the character (3.1) by making a suitable
transformation of coordinates. We can now determine the vector C; so that
the vector y;, defined by (2.9) becomes 0 for the resulting field.

(3 2)

that gives a vectorial differential equation for the C i which is to be solved.
The only condition is that the homogeneous equation does not have "proper
solutions", i.e., any regular solution besides 0. This homogeneous equation is:

1 8p =0
2 Bxi

with the assumption (3.1) for y, q That. gives'

AC; —8;4 = 0.

(3.3)

(3 4)

In order to apply Mach's principle we require that this equation does not
have any solution besides C i =0.

After normalising our coordinates we have between p;~ and y;y the simple
connection

&(v;~) = 2p, ~ (3.3)

which differential equation is now self adj oint W-e can in. tegrate this equa-
tion uniquely, and thus find a unique correspondence between haik and p;&, if
the homogeneous equation

z(~,,) = o (3.6)

has no proper solutions besides 0. However, a special proper solution cannot
be avoided:

Pir = &g'I (3 7)

where ~ is a constant —disturbing the general claim of our method. But the
significance of this exception is very easy to discover. The interpretation of
(3.7) is a change in the gauge. That is not a real deformation and therefore
does not produce any matter. On the other hand, it does not belong to the
pure transformations of coordinates, because the value of ds' is changed, ow-

ing to the fact that the measure of a length is dimensioned, and so depends
upon the gauge used. Since this exceptional deformation is trivial and disap-
pears if we normalize our gauge, its existence is not to be considered as an

6 Reference 2, Eq. (32).
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objection against Mach's principle. We see that our program to use Mach's
principle becomes possible by normalizing the coordinates and normalizing
the gauge. While the first normalization can be produced in a natural way by
annuling the vector x;, the latter normalization remains artificial. But the
change in the gauge is certainly without any influence on the result if we
have a Hamiltonian integral which is "gauge-invariant", that means it does
not depend on the gauge. We will use later just this principle to determine
our Hamiltonian function. And it is therefore sufficient for our purpose to
use any arbitrary normalization.

We have now attained the desired unique correspondence between p;I, and
y;z and will only state that the possibility of accomplishing our program is
given through the conditions that the equation (3.4) does not have any solu-
tion besides 0 and the equation (3.6) does not have any solution besides (3.7)
with a constant ~. We will add the remark that a proper solution imposes al-
ways a condition for the right side of a differential equation: the condition of
orthogonality. The homogeneous equation (3.6) having the proper solution
(3.7) we get the following scalar condition which must be fulfilled by the ma-
terial tensor p;~.

The solution of the differential equation (3.5) by integration will be sym-
bolized thus:

where T is a certain integral operator, the inverse operator of B.
Using this equation we are ready to consider the p;& as the primary quan-

tities, considering y;~ as a function of the p, ~. However, we must notice an
important fact. The y, I, have been treated as completely arbitrary quantities.
We made later a restriction excluding the apparent deformations, but this
restriction does not influence the result. Regarding the p;~, however, the situ-
ation is quite different. We cannot consider the material tensor as completely
arbitrary, it must always obey the general vectorial conservation law of
momentum and energy. This law is a mathematical identity in Einstein's
theory of relativity and expresses a fundamental property of Riemannian
geometry. As it is necessarily fullfilled also for the deformed geometry, we
must observe it even during the variation. The condition which must be ful-
filled in every point of the manifold is given by the fo!lowing equation:~

Bp; 1 Bp —p p,p p

AX~ 2 t3Xs

putting
1 BE; BR;p BR pPp;= — +
2 8$p BX~ BXs

Reference 2, Eq. (25). It is supposed that we use the normalized system of coordinates

Xs =o.
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We have to consider this equation as an auxiliary condition of our variation
problem, corresponding to the ingenious general method of Lagrange: the
method of undetermined multipliers. Since in our case the condition is vec-
torial, the multiplier will be a vector, we denote it with 2P;. According to La-
grange's method we add to our variation integral the expression

f' Bp, 1 Bp
Qi P,pePQi8$2 8$'

In the same way we must treat the condition (3.8) which also imposes a re-
striction on the p;k. This latter condition introduces a constant) as Lagran-
gian factor and we have to add the expression

p. gikdv

to our variation. We are now authorized to treat our problem completely
like a free variation problem without any restrictions, and we can equate ac-
cording to the usual method, the coefficients of p, k to 0. But, since the deriva-
tives of p; j, appear in the first term of (3.12) we will make a partial integration
in the familiar way, finding,

Thus we find our field equations in the following form

if we put
8$; Bgk BP

Uik Nik + ~gik + g jk
8xk (3$s Ox'

(3.15)

Finally we can transform the obtained Eq. (3.15) in a pure differential equa-
tion. We invert the integral operator T in the corresponding differential
operator Z, observing the two Eqs. (3.5) and (3.9) which are equivalent. We
obtain then our field equations in the following form:

Usk = 2~sk

E(u';i) = v;g

The Eqs. (3.15) and (3.18) are equivalent. Compared with the original
form (2.14) they represent a new formulation of the field equations. We have
in fact but a new form, not a new statement, using in both cases the same
Hamiltonian principle, only changing the variables, which process cannot in-
fluence the result. The difference is that the new formulation is an integrated
form of our original field equations (2.14). This integration would certainly

' We employ in the deduction the property of T to be a symmetric operator: T= T.
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be possible also by a direct investigation of the field equations in its original
form. But the derivation in an indirect manner, using the variation principle
itself by means of Mach s principle, is much shorter, giving the result im-
mediately.

The striking and important result is, that the integrated form of the field-
equations shows the appearance of a free vectorial function Q;. The necessity
to introduce it lies in the conservation law which demands that we regard it
as an auxiliary condition for the variation. We have to expect, therefore, that
the same condition must give us a determination for the undetermined La-
grangian factor P;. That is indeed the fact. We have to consider our field-
equations first of all as determining equations for the fundamental curvature
tensor R;&. To find a metric belonging to this tensor is only possible if the
conservation law is fulfilled. It is not to be expected that an arbitrary solu-
tion of our field equations will possess this quality but the possibility of at-'

taining this must exist. And that can occur by the use of the free function P;
which has to be determined in such a manner that the conservation law be-
comes fulfilled. This gives just the right determination for Q;, namely a vec-
torial differential equation in every point of our manifold. Anticipating the
later physical interpretation we will call the vectorial function Q; appearing
as a free function in the integration of field equations and determined by the
conservation law: the "vector potential".

It suggests itself to raise the question: What may be the reason that the
original field equations of gravitation R;~=0 do not show the appearing of
any vector potential although according to the general theorem the vector
potential appears always upon integrating our equations. The only condition
for this theorem, viz. , the existence of Hamiltonian principle, is fulfilled in the
case of the equations R;& ——0.

The reason of this fact is very peculiar. The general method leads in this
case to the following connection between curvature tensor and vector po-
tential '

~4' ~la
fc +

8Sf' 8$
(3.19)

This connection corresponds perfectly to the connection (3.1) between an ap-
parent deformation y;& produced by a pure transformation of coordinates,
and the arbitrary vector P;. The conservation law, the divergence equation
of the tensor R;&——,'Rg;& corresponds completely to the homogeneous Eq.
(3.3) upon substituting the expression (3.2). One of the conditions for carry-
ing out Mach's principle was that this equation may not have any solution
besides 0. As a consequence this follows

Lanczos, Zeits. f. Physik 32, 163 (1925);Eq. (33).This apparent enlargement of Einstein's
equations baffled the author the first time when he discovered the above explained method in

the just mentioned paper. He thought that using Mach's principle we are able to comP/etc the
field equations by the vector potential. This erroneous idea was the hindrance to discover the
general importance and real meaning of this method, namely to be a general method ofintegru-
tion without any change in the field equations.
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y; = 0. (3.2O)

And so just in the case of the gravitational equations the vector potential
remains latent, disappearing owing to the conditional equation which it has
to fulfill.

4. GAUGE-INVARIANCE OF THE HAMILTONIAN INTERGRAL

The fact that the Riemannian ds' is a dimensioned quantity and therefore
furnished with an arbitrary factor cannot be avoided. It is, however, a nat-
ural assumption that our action integral should not be affected by this arbi-
trariness. We have to seek a minimum for a certain function viz. , the action
integral. If there is an arbitrary gauge-factor influencing the value of this
function, the minimum problem loses its meaning because it is possible to ob-
tain any value by a proper choice of gauge. It is natural to require that the
action-integral should not depend on the gauge, i.e. it has to be a non-dimen-
sioned quantity, a pure number. In this case the arbitrariness of gauge is
overcome; ("gauge-invariance"). In 4 dimensions the unit of volume ele-
ment dv is [L].'On the other hand the unit of R;~ is [L] '; (irrespective of the
number of dimensions of the space). We see that the dependency of the
Hamiltonian function on R;I, in 4 dimensions has to be of a quadratic kind.

We find only tao invariants of the required quality built up upon the R;I, .'"
Hj ——R~pR &

II2 ——(R,pg &)' = R'.
(4. I)

(4.2)

Therefore we should choose a linear combination of these two invariants.

H = HI +CH2

as our Hamiltonian function. C is a numerical constant whose value is not to
be decided at present. It seems that the quality of the two possible functions
is connected with the duality of electricity and gravitation in nature. The
first by itself leading, as we will show, to the familiar phenomena of electric-
ity, the second by itself leading to the pure gravitational equations. The
combination of both seems to be necessary to build up a material particle
as a "proper solution" of the field equations.

We are now able to replace in the field equations the previously undeter-
mined n;& and v;& by the specified values which we obtain from the specified
Hamiltonian function. Ke only need to carry out the variation with respect
to R;& and g;&, considering these two kinds of quantities as independent of
each other. We find without any difhculty the following expressions. Using
the first invariant:

I;y = 2R;y,

s;p ——2(R; Rp —,'R.pR &g;A.)—(4.4)

(4.5)

The invariant R p&gR~&&~ is likewise gauge-invariant but does not correspond to our
point of view, because the Riemannian curvature tensor R~p&g cannot be reduced to Einstein's
curvature tensor R@..
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Using the second invariant:

Nt, y = 2Rgt, y

v;p ——2R(R;g —~Rg;c) .

(4.6)

(4 7)

The construction of v;A, produced by the first invariant shows a great analogy
to Maxwell's stress-tensor being built up in the same way upon the symmet-
ric tensor R;& as Maxwe11's tensor upon the antisymmetric tensor F;& the
electromagnetic field-strength. This analogy becomes even greater considering
the fact, which we shall deduce later, that to the first approximation we have

~4' ~4 a
E(, = +

~&k ~~i

while on the other hand F;& is the same combination but antisymmetrically:

8P; Bgy
F'k

~&k

We observe the remarkable quality that the scalar v =v vanishes in the first
as well as in the second case.

5. FIRST INTEGRAL OF OUR FIELD-EQUATIONS

The last mentioned quality of the v;& permits us to find a scalar integral
of our field equations. We consider the field equations in their original form
(2.14). We build the scalar equation

"F(u ) = 2g"v.

The right side vanishes in consequence of (4.8). The left side is reduced to a
single term if we utilize the fundamental conservation law:

BE; 1 BE—————0
~~a 2 ~~i

and it yields
AE =0.

This equation has undoubtedly the solution

E = const.

But that is also the only solution. Make the assumption given in (3.7) for the
homogeneous Eq. (3.6). That leads to the condition

Aa = 0.

Any solution of this equation besides ~=const. would produce a possible
solution of (3.6) which we have excluded beforehand. The solution (5.4) of
(5.3) is therefore not only possible but also necessary. In this way we have
found a first integral of our field equations of a scalar kind: the scalar Eie-
rnannian curvature must be constant in every point of our manifold
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6. A FURTHER FIRST INTEGRAL: THE EQUATION OF CONTINUITY

FOR THE VECTOR POTENTIAL

We now use the integrated form of our field equations, the equations
(3.18), building in the same way the corresponding scalar equation on multi-

plying by g'~. The second equation gives

= const.

Introducing that in the first equation we find

(~ 1)

2R(l + 4C) + 4X + 2 = const.
Bx~

We are surprised that we do not come back to our former result R=const.
But the difference is that in the earlier deduction we used not only the field
equations but also the divergence condition of R, f, which is not utilized for the
deduction of (6.2). But we can introduce now our former result (5.4) and at-
tain in this way

= const.

This constant cannot differ from 0, otherwise the solution P; = 0 would not be
possible and the magnitude of the vector potential would increase more and
more. The only possibility is therefore

(6 4)

That is the well-known divergence condition of the vector potential corres-
ponding to the conservation law of electricity. -in the electromagnetic field
theory.

7. THE POTENTIAL EQUATION IN FIRST APPROXIMATION

The constant of integration in (5.4) must be extremely small. Otherwise
the average curvature-radius of the universe could not be so extremely great.
For this reason the second invariant recedes to the background in signifi-
cance compared with the first because the u;f, and v;~ produced by it, contain
this very small value as a factor. To suppose that the constant C could corn-
pensate this small value and make the second invariant dominant by a choice
of a very high value for it seems to be very improbable. In this case the gravi-
tational force would have to dominate the electrical force but in reality the
reverse is true. The importance of the second invariant may be connected
with the existence of proper solutions" which are to be considered as the rep-
resentation of a material particle. But beyond the very central parts of mat-
ter with which there is possibly connected a very high curvature its inHuence
seems to be negligible, or at most to be regarded as a correction. The essen-

"That means non-trivial solutions of the field equations which are everywhere regular.
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tial part of the Hamiltonian function is H~, and we will content ourselves with
considering only this part.

The 6eld equations are to be written:"

E(;) = 2(E; 14' —',R.pR'&g; -+P; 4')
(»)

We observe that w;& is a quantity of second order if we consider R;I, to be of
the first order. We can therefore write as a first approximation:

this connection between curvature tensor and vector potential corresponds
to the connection (3.19), deduced for the case of Einstein's gravitational
equations as mentioned above. However, in our case this connection is only
a erst approximation not a strict law. The correctious terms of second degree
which have to be added become high in the central 6eld and remove the neces-
sity that the vector potential has to vanish.

On constructing the divergence equation we find in 6rst approximation
the following determining equation for P;:

hP; = 0

which is the familiar potential equation. The notation "vector potential" is
therefore indeed justi6ed.

8. THE PONDEROMOTIVE LORENTZ FORCE IN FIRST APPROXIMATION

A formation like the antisymmetric tensor of the electromagnetic held-
intensity

(8 i)

nowhere appears in our treatment. The question arises then how can we give
an explanation for this quantity. If we 6nd a possibility of deducing a dynam-
ical law of motion for a material particle like the phenomenological Lorentz
law, we will be indeed justi6ed to identify the vectorial function, P; appearing
in the integration of our field equations, with the electromagnetic vector po-
tential. Because all the fundamental facts of the electromagnetic field are
embraced by the potential equation and the law of continuity for the vector
potential, and also the Lorentzian force expressing the action of the field up-
on the material particle. The first two are already deduced. Finally, we con-
sider the last problem, ~ iz. the action of the field on a particle.

"We neglect also the "cosmological term" Xg;& which is only important for large regions
of the universe. It is interesting to remark that the field equations themselves do not allow
any artificial assumption to introduce the cosmological constant, it appears as constant of inte-

I ration.
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A special dynamical law independent on the field equations does not exist
in a theory built up on the idea of proper solutions excluding any singulari-
ties. The field equations are able to determine every event and we do not
have the arbitrariness connected with the behavior of singularities. The in-
fluence of an external field on the motion of a particle has to be considered as
a consequence of the field equations.

We cannot, however, proceed directly in this way to find a dynamical
Iaw. We do not at present have sufficient mathematical tools for the treat-
ment of such a complicated system of equations especially those concerning
the problem of proper solutions. On the other hand: we do not need a de-
tailed knowledge about the influence of an external field on the field of a pro-
per solution. Our desire is only to obtain the resulting influence on the par-
ticle as u +hole. For this purpose it seems much more convenient to avoid the
direct use of the field equations and to attain the goal by a treatment which
has also proved to be the best way to integrate the field equations without
directly using them. This treatment is the direct application of Hamilton's
principle. We know that this principle is valid for every variation. We are
thus justified in applying it to the special variation which sufficies to obtain
the dynamical law of a material particle. We do not need for this purpose the
detailed knowledge of the construction of a proper solution which represents
the material particle. Some general features are sufficient to find an approxi-
mate solution of our problem. That is the great advantage of this process.

The second invariant II2 is without importance for our purpose. In con-
sequence of the intermediary integral A=const. it becomes a constant. We
can then observe this condition also during the variation so that the variation
of this part of the action-integral disappears and we have to consider only
the first integral.

We consider our field as a superposition of the proper field of the particle
and a weak external field. The proper field produces an integral which can ap-
proximately be calculated on supposing that the perturbance of the external
field is only weak and the reaction of the particle on itself is negligible ("quasi-
static" condition). We know that the central high part of the field is chieAy
important in its contribution to the integral and this central. field is to be con-
sidered as moving with the particIe unchanged and not essentially modified

by the weak external field. Supposing that the average distribution of the
field may have a spherical symmetry we can write the resulting integral in the
following form:

with the constant m on which turns out later to be the "electro-magnetic
mass"; ds is the line-element of the world-line of the particle.

We have to calculate now the interaction between the internal and the ex-
ternal field. We cannot survey the situation in the high central field. But it
seems probable to consider this part of interaction as to be weak as compared
with the interaction in the "ether", meaning with this word the very large
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exterior part of space in which the field becomes weak, and where the linear
approximation is permitted and the principle of superposition is valid. The
predominance of this part of space with respect to the interaction is a con-
sequence of its huge extension compared with the "matter", this word mean-
ing the high central field of small extension in which no superposition is pos-
sible. The duality "field-matter" is in this sense retained although obviously
without precise distinction.

In this "ether" we are able to accomplish our calculation. We have here
corresponding to (7.2)

the metric being in first approximation Euclidian. The interaction is given by

(&) gyp(&) gy (~)

+ dv.
Bx Bx~ Bsp

The index 1 means the internal, the index 2 the external field. With aid of the
potential equation and the continuity law for Q;&') we can transform this vol-
ume integral into a surface integral to be taken over the boundary surface
of the considered region:

gy (1) gy (&)

Ig2 = )t y &'~vp ——+ — dt
8$p 8$~

dF is the surface-element, (the "surface" is here, of course, a 3-dimensional
region) v; the normal of the surface at the considered point. The boundary
surface is a small tube around the material particle separating the ether from
the matter. The positive direction of v; shows towards the inside of the tube.

We can accomplish our integral in two steps, integrating at first around
the small cross-section of the tube, and secondly, over the world-line of the
particle. During the first step we can consider P;(') in this small region of the
space as a constant putting it in front of the integral sign. We have only to
consider the first integral, the second vanishing, owing to the law of continu-
ity which is fulfilled also on the inside of the tube. This first integral can be
written in the following form

where 0.; is a vector, depending only on the particle itself. If we suppose that
the field of the particle has a spherical symmetry, the direction of 0., can only
be the direction of the world-line. And going in a "rest-system" we see that
the length of a; is nothing else but the electric charge of the material particle:
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/@4(&)
o'4=

J
v~d = e.

The dash should mark that we are in a rest system. df is the surface-element
of a common surface (of our 3-dimensional space) enclosing the electron.

We therefore have to put

a; = ei;.

(The point over a letter means: diHerentiation with respect to ds) and our
whole action integral becomes

(s.9)

Using the familiar variation-equations of Euler-Lagrange we obtain imme-
diately

which is nothing else but the ponderomotr've law of Lorents Here, for. the first
time, appears the antisymmetric combination (8.1) which never appeared
earlier and has no fundamental significance.

It seems that the vector P;, originally a free vector of integration, arising
and also determined by the fact that a fundamental quantity of Riemannian
geometry, viz. , the curvature tensor of Einstein obey the law of conservation,
corresponds completely to the fundamental quantity of the electromagnetic
field viz. , the vector potential. We get the impression that it is not only a mis-
take to believe that the Riemannian geometry contains nothing like electric-
ity, but on the contrary the existence of electricity, seems to be a direct test
for a fundamental property of Riemannian geometry the conservation law of
Einstein's curvature tensor R;~.

It should be necessary to investigate whether there are proper solutions
of the field-equations with the charges —e and +e but different masses, rep-
resenting the fundamental material particles electron and proton.

9. SOME ADDITIONAL REMARKS CONCERNING THE MATHEMATICAL '

FOUNDATION OF THE THEORY

If we consider the homogeneous equation

F(tt;i) = 0 (9 1)

"This chapter, written in the beginning of December, contains some further improve-
ments of the author in the subject presented above. The formulation of this chapter is influenced

by some critical remarks of Professor H. P. Robertson, who examined the contents of the pre-
vious chapters with great care. He deduced also independently of the author the fundamental
Eq. (9,41) for the vector potential, recognizing at the same time an error in the sign of a formula
in a previous paper of the author. (Seethe next footnote). The last chapter 10, which establishes
the connection with Maxwell's equations, was added January 1932.
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of the field Eqs. (2.14) and we suppose a Euclidian metric we find a solution of
the form

BQI, 8$

~&i ~&a
(9.2)

with an arbitrary vector P;. For this reason we should expect that the quite
similar appearance of the free vector P; in the integrated form (3.18) of the
field equations (2.14) should be connected with the fact that the homogene-
ous equation has a solution with an arbitrary vector P;. That was originally
my conjecture. As a consequence of that it would be necessary that there exist
a vectorial identity for F(u;&) and corresponding to that a vectorial condi-
tion for the right side of the equation. However, we cannot prove the exist-
ence of such an identity, and also, substituting our solution (3.18) for the
special case v;& =0 in our field equations we do not find that the homogeneous
Eq. (9.1) is necessarily satisfied. The real situation is the following.

We introduced in our procedure the idea that a pure transformation of
the coordinates cannot influence our variation principle which is an invariant.
We used this fact to restrict the variation of g;i by the condition of (3.2)
which cannot change anything in our results. However, while this treatment
is justified if our integral of variation is deduced by a scalar Hamiltonian
function H(R;i, g;i), we do not have the same statement in the "non-holo-
nomic" case, i.e. if I;I, and v;~ are considered as general quantities. In this case
the exclusion of the pure transformation of coordinates is a real restriction
and treating this restriction as an auxiliary condition in the variation of g;&

we obtain our field equations instead of (2.14) in the more general form

Dies BC'js BC'
F(N'i) 2&ii = + gfa

BXP BSs l9$~
(9 3)

with the free vector C; as a Lagrangian factor. It therefore follows that al-
ready in the original form of the field equations there appears a free function
C;, if we operate with the general quantities u;A, and v;&. Assuming the exist-
ence of a Hamiltonian function, the vector C; disappears automatically. We
know namely in this case that the left side of (9.3) satisfies an identity, viz. ,

That yields for the right side

div [F(u;i) —2s;i, ] = O.

dC; —R;C =0

(9.4)

(9.3)

which is just our equation which has no solutions except zero.
Now we can integrate our Eqs. (9.3), reducing them to the self-adjoint

differential expression Z(u;i), if we write (9.3) in the following form:

where we have put

«)1$; OPS 8P"
+(iifx) = 2&ii + + —= gii

~&fc ~&i ~&a
(9.6)

(9.7)
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with
BQ;

0 '

olx
(9 g)

We can treat P, as well as C „as a free vector. Comparing the Eq. (9.6) with
the form of the solution (3.18) obtained by using Mach's principle we ob-
serve the following connection between the vector P; appearing in (3.16), and
the vector N; appearing in (9.6):

f; =AP;+R;P. (9.9)

This can be proved easily if we introduce the solution (3.16) in the equation
(9 6)14

The vanishing of C, results in the following connection between the vector
potential and the metrical quantities

In the case of our Hamiltonian we see that the right side vanishes for the
expression (4.4) as well as for (4.6) if we employ our first integral R=const.

'IA'e obtain therefore the following fundamental equation as the determin-
ing equation of P;:

(9.11)

This equation is the exact equation for tke vector potentia/ We obser. ve the
familiar potential equation as a first approximation and we can also deduce
immediately the conservation law, building

that yields
gQcs

= 0
8Xcr

(9.12)

(9.13)

and leads to the results (6.3) and (6.4).
We can consider the Eq. (9.11) also as a consequence of the conservation

"Unfortunately in the corresponding treatment of the previous paper (Zeits. f. Physik 32'
169 (1925)) the author made a mistake, which was also recognized by Professor H. P. Robert-
son. In the equation of (31) and (32) of this paper there appears a minus sign instead of the
correct formula:

(32)

Having discovered this error already a long time ago, I could never understand the real signi-
ficance of this change in the sign on comparing (32) in the rectified form with the Eq. (35) in
which the minus sign is valid. In the present theory this change of the signs has a fundamental
importance. While the equation with the minus sign is supposed to have no proper solutions
besides zero, the equation with the plus sign is the fundamental equation for the vector potential
and the existence of the material particles must be connected with the proper solutions of this
equation. In fact just this change of signs causes Maxwell's equations to appear in exact form
as shown in the next chapter.
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law of R;~, because the vanishing of the right side of (9.10), using for u, ~ the
form (4.4), is just a consequence of this law. We had originally 10+4 equa-
tions: the 10 field equations for R;I„. and the vectorial conservation law. The
latter conditions caused a Lagrangian factor @;which must be determined by
the surplus equations. Indeed, we can consider the determining equation
(9.11) as a representation for the conservation law. We have at last 10+4
equations for 10+4 quantities, the R, I, and the @;. In the first place there
exist the 10 field equations in the form (7.1), which are to be completed only
by the gravitational terms given by the second Hamiltonian II2 and by the
cosmological term. Secondly, there are the four Eqs. (9.11) for the vector po-
tential.

We expect the possibility of proper solutions of (9.11) which must repre-
sent physically the material particles electron and proton. In the perception
of this theory both electricity and gravitation are manifestation of a certain
geometrical structure of the Universe. This structure is of the Riemannian
type and governed by a Hamiltonian function which has the simplest form
if we require the gauge-invariance.

Any completion of these equations by new "material" terms like the com-
pletion of Einstein's gravitational equations by a phenomenological matter-
energy-tensor would be impossible. Such a completion means in fact the de-

nial of the field equations in certain regions and is practically equivalent to
the permission of singularities. The fundamental idea of this theory, however,
is the consideration of Einstein's curvature-tensor R;~ as the fundamental
characteristic quantity of Riemann's geometry. That is only possible if we
exclude any singularities of the metric.

To determine the vector potential P; as a proper solution of an equation
like (9.11) without further restrictions does not seem to be possible if we con-
sider for example the arbitrariness of a factor in such a solution which does
not correspond to the real physical statement. We must realize, however,
that we should not conceive these equations as equations with definitely de-
termined coefficients. There is a strict interconnection between vector poten-
tial and metric; on the on'e hand the metric is determined by the vector po-
tential, on the other hand the constitutive equation of the vector potential is
essentially influenced by the metric which produces the possibility of a pro-
per solution. Thus the fundamental differential Eq. (9.11) is in reality a kind
of complicated non-linear equation and the arbitrariness of a linear proper
solution does not appear in the solution of such an equation. To determine
the ultimate material particles and their inter-action as the proper solution
of such a system of non-linear equations seems to me very satisfactory, es-
pecially in regard to such problems as the equality of the charge of all the
electrons. The limitation attained by such a requirement without further re-
strictions seems to correspond to the real degree of limitation to be found in
nature and corresponds also to a natural mathematical point of view accord-
ing to which the solution of a variation problem is given by some differential
equations completed by corresponding natural boundary conditions which
can also become superfluous if the manifold is closed.
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1.0. CONNECTION WITH MAXWELL S EQUATIONS AND WITH THE

CQMPLETED FQRM oF MAxwELL s EQUATIoNs.

If we compare the left sides of (9.5) and (9.11) the change in the sign of
the second term has a striking significance with respect to Maxwell's equa-
tions. The left side of (9.5) arises if we build the divergence of the symmetric
combination

(10.1)

noticing the fact that we can leave out the additional term —(8/t/ /Bx ) g;9,
which vanishes as a consequence of the conservation law of the vector
potential. The left side of (9.11) arises if we build the divergence of the
antisynzrnetri c combination

F I =
Bxy Bxi

The antisymmetric tensor Ii;I, must be considered as the electro-magnetic
field strength. The equation

divF;q = 0

is the one system of Maxwell's equations. The other system

div Fi~* ——0

(10.3)

(10.4)

belonging to the "dual field-strength" F;~*, is an immediate consequence of
(9.15). Thus the whole system of Maxwett's equations is fulfilled witttout any
change. We may also build the symmetric Maxwellian stress-energy-tensor

Sia = ~; I'J. —~I' p~"ger

The divergence of this tensor vanishes also exactly

div5;~ = 0.

(10.5)

(10.6)

We obtain therefore, the surprising result that the classical form of
electromagnetism appears in a very strict connection with Riemann's
geometry. The difference compared with the former situation is that the
electromagnetic quantities appear merely as auxiliary quantities in building
up a metric. And the interaction between electromagnetic and metrical
quantities is quite different from that assumed in any earlier attempt to com-
bine electromagnetism with Einstein's theory of gravitation. As a consequence
of this new interaction of metrical and electromagnetic quantities we may
expect quite new insights in the problems connected with the constitution of
matter.

However, a doser examination of the proper solutions of Maxwell's
equations contradicts strongly what we expect. The equation

g (g) 1/2F91 g (g) 1/2F92 g (g) 1/2P93

+ + —=0
Bxy Bx2 BX3

(10.7)
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in which the operation 8/Bx; now means an ordinary differentiation, permits
the application of Gauss' theorem and leads generally to the vanishing of
the electric charge. " We see, therefore, that the introduction of a curved
manifold is not sufficient for producing useful proper solutions of the Max-
wellian equations.

If we review our method of building up the fundamental equations, we
observe the use of some restrictional assumptions which are in reality not
necessary for the fulfilling of the field equations. We introduced the vector
potential P, by the use of a process which we called "Mach's principle. "
I')uring this process we made the assumption that the equation Z(u;q) = 0 as
well as the equation AC =0 should not have nontrivial proper solutions. The
latter restriction led to the first integrals R =const. and div Q~ =0.

In Chapter 9 we proved the validity of the integrated form of the field
equations without the help of Mach's principle. It turned out that we have to
add only the equation (9.10) as a condition for the vector potential. Any
other condition is unnecessary. Since we have seen now that the strict
validity of Maxwell's equations leads to a contradiction, we have to abandon
the unnecessary supposition that (5.4) shall be the only solution of (5.3).
And we have therefore to abandon our first integrals (5.4) and (6.4). These
integrals are responsible for the strict appearance of Maxwell's equations. If
we do not make the above-mentioned restriction, we get by (9.10) the
following constitutive equation for the vector potential Q&.

(10.8)

and Maxwell's equations for the antisymmetric field strngth F;I„defined
again by (10.2), appear in the following form:

BFi 8$+ =0
Bx~ Bxi

where we introduced the scalar P by putting

(10.9)

(10.10)

The second set of Maxwell's equations remains unchanged in the previous
form (10.4).

If we use the familiar notations of the 3-dimensional vector-analysis, we
can write our equations in the case of a Euclidian metric in the following
form

~ The equation (10.7) being valid without exception also in the central part of the particle,
we can build a surface integral over a closed surface surrounding the particle at such a distance
that the metric is there practically Euclidian. That gives

Fg, vdS=O

The left integral, built in the rest system of the particle, has the significance of the charge.
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BF —curl F —grad 4 = 0
ic 8t

BC
divF+ — = 0.

ic8t

(10.11)

We introduced there the complex vector Il with the significance

P = H+iE (10.12)

where H is the magnetic, Z the electric field-strength. Compared with
Maxwell's equations this system is enlared with the terms containing C.
This self-adjoint system of equations has just the right degree of determina-
tion, constituting 4 equations for the 4 quantities F and P. Generally we have
to consider F and 4' as complex quantities. The system is then equivalent-
as I have proved in a former investigation" —to Dirac s equation for the
electron, if we leave out the term with the mass. The only difference in our
case is that C must be real.

The stress-energy-tensor of Maxwell must be enlarged in the following
form

5;' = ";"a.— (~.c" '+ 2'")g;a + @";a (10.13)

in order that the divergence vanish. This enlarged tensor is no longer sym-
metric, due to the last term which is antisymmetric.

The dif6culty of the vanishing of the charge is now overcome. We see,
however, that the equation (10.7) appears also now if we require a static
solution. Because the equation AC =0 has certainly no statical' proper solu-
tions. It seems that there is a general pulsation in the metrical quantities
which gives a "guiding field" for the pulsation of all matter. It seems that we
must understand the electrostatic field as a quadratic effect of these pulsating
fields, taking into consideration the quadratic character of our action-
principle. This character appears also in the expression of the pondero-
motive force as a product of charge and field-strength.

"Zeits. f. Physik 57, 447 (1929).
''f Zeits. f. Physik 57, (1929); Eq. (15').


