
IiZBRUARF' l5, lP3Z PIIFSICAL REVIBW'

A NEW KIND OF e.m. f; AND OTHER EFFECTS
THERMODYNAMICALLY CONNECTED WITH

THE FOUR TRANSVERSE EFFECTS

BY P. K. BRIDGMAN

RESEARCH LABORATORY OF.PHYSICS, HARVARD UNIVERSITY

(Received January 11, 1932)

ABSTRACT

The Hall e.m. f. attending a current in a magnetic field is subjected to a thermo-
dynamic analysis like that for an ordinary battery, from which it appears that if the
Hall e.m.f. has a temperature coefficient, there must be a reversible heating e6'ect
when a transverse current flows across a conductor carrying a longitudinal current in

a magnetic field. But other arguments show that this heating eSect vanishes, and
furthermore, it could not be found experimentally. The consequent vanishing of the
temperature coefficient of the Hall e.m.f. involves the existence of a new sort of e.m.f.,
that is, an e.m.f. in a conductor carrying a current in which the temperature is uni-

formly changing. Corresponding analysis may be made for the other transverse effects.
A thermo-motive force connected with the Righi-Leduc coefficient exists in a conductor
carrying a thermal conduction current when its temperature changes uniformly. Other
relationsare deduced connecting the Nernst coefficient and the Ettingshausen coefficien
with the new e.m.f. and thermo-motive force. It appears that the temperature depen-
dence of all these quantities is simply connected, and in particular, that the tempera-
ture coefficient of the Hall coefficient vanishes at O'K. The new relations show that cer-
tain relations suggested in a previous paper from general considerations of a non-
thermo-dynamic character cannot be rigorously exact. A new account is given of the
origin of the major part of the Ettingshausen temperature gradient, which is approxi-
mately checked by experiment. Finally, the order of magnitude of various small eKects
is discussed. It isa thermodynamic consequence of the existence of a temperature e.m, f.

. that there is a temperature change when the current in a conductor changes in magni-
tude, but it is far below experimental reach. It must be recognized that the specific heat
of a conductor is altered by the presence of an electric current. The specific heat is also
altered by the presence of an ordinary thermal conduction current. Numerical con-
siderations suggest that the proper velocity to be associated with the thermal current,
whether ordinary conduction current, or thermal current convected by an electrical
current, is the velocity of sound.

HERE has been so much speculation about the detailed functioning of
the mechanisms which may be responsible for the four transverse effects,

namely the Hall, Ettingshausen, Nernst, and Righi-Leduc effects, and the
whole subject is still in such an unsettled state, that it is well to obtain by
arguments of a thermodynamic or other general character all the information
which we can which must be independent of any special mechanism. It is not
inconceivable that a better understanding of the thermodynamic connections
between these effects may lead to a better understanding of the effects them-
selves. It is surprising how little this method of attack has been used in the
past and there are still simple relations of a thermodynamic character which
apparently have not been noticed. Practically the only pIt:viquy applications
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of thermodynamics to this subject have been made by Lorentz and myself, '
but there are still other relations not hitherto touched.

Relations of a purely thermodynamic character may be obtained by con-
structing electromagnetic or thermodynamic engines utilizing the various
effects to furnish energy. Consider first the Hall effect. An electric current
flows in a toroid of mean radius a, breadth b, and depth d, breadth and depth
being small compared with u. There is a uniform magnetic field of strength H
prependicular to the plane of the toroid. The magnetic field may be supposed
produced by a permanent magnet with zero temperature coefficient. The cir-
cuit is supposed resistanceless, and in the following, irreversible effects arising
from the Joulean heating are neglected. This is allowable, because by increas-
ing the linear dimensions of the circuit indefinitely, keeping the total current
I constant, the electromagnetic energy of the circuit, -,'LI2, may be made in-
definitely large compared with the Joulean dissipation of energy in unit time,
EI, since L increases in direct proportion to the linear dimensions, and R
decreases in the same ratio.

The inner and outer circumferences of the toroid are at a difference of
potential in virtue of the Hall effect. If we short circuit across from the inner
to the outer circumference, a uniform radial current will flow; this current
may be used to drive an external electromagnetic engine, and so energy may
be taken out of the system. The external electromagnetic engine may be as-
sumed perfectly efficient, so that the energy output is the product of the Hall
potential difference and the amount of electricity flowing transversely. The
source of the energy output is primarily the energy of self induction, 2LI2,
associated with the primary current, and the mechanism by which this energy
is tapped is the Hall e.m. f. associated with the transverse flow acting circum-
ferentially in the toroid and opposing the primary current. This arrangement
is for thermodynamic purposes indistinguishable from a battery, and the ordi-
nary analysis for a battery applies. In particular, if the Hall e.m.f. depends
on temperature, then, in analogy with the known behavior of ordinary cells,
we may expect reversible heating effects when the transverse current flows.
The analysis is so simple that it will pay to reproduce it from the beginning.

Call I the total current, and i the current density, where I= bdi. Then the
definition of the Hall coefficient at once gives:

Transverse e.m. f. = bHiR,

where R is the Hall coefficient, using the conventional notation. If a trans-
verse quantity of electricity dg, flows, the work done is the product of quan-
tity and e.m. f., or

d8' = bHiRdq, .

The only variables in this system capable of external manipulation are
temperature and transverse flow, which are therefore to be taken as the inde-
pendent variables. The conservation of energy now gives at once:

' H. A. Lorentz, Report of the Fourth Solvay Congress, Conductibilite Rlectrique des
Metaux, 1924, pp. 354—360; P. W. Bridgman, Phys. Rev. 24, 644—651 {1924).
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dQ=( ) d +( )dg. +bB Rdg'
&e

where Z is internal energy and Q heat absorbed. Now form dS=dQ/r, and
write down the condition that d5 be a perfect differential, by equating the
cross derivatives of the coefficients of dv. and dg, . This gives at once, neglect-
ing the thermal expansion of the material of the toroid,

= 7bH iE .

This indicates that when a transverse current flows in a conductor ar-
ranged to show the Hall effect there is a reversible generation of heat re-
quired to maintain the system isothermal.

In Eq. (1), Q and g, are the tots'1 amounts of heat and flow of electricity
respectively. If Q' is the development of heat per unit volume, we have ap-
proximately Q = 27rabdQ', and if dg, ' is the density of transverse flow, we have
dg, = 27rdadg, '. This gives:

=7H iR „, (2)

an equation exhibiting the thermal effect in terms of intrinsic properties of
the materials, independent of the dimensions of the circuit.

We now have to consider the term 8/dr(iR) „on the right hand side of
the equations. Expanded, this isi (BR/Br) g, +R(di/Br), , Numerically the pro-
portional change of R for one degree for bismuth, for example, is 0.004. The
term (Bi/Br), one would probably say on first impulse to be zero, since this
denotes the change of current produced by a change of temperature acting
so quickly that the Joulean effects may be neglected, and with no transverse
flow, that is, with no extraction of work from the system. If the term were
not zero, this would demand that there be an e.m. f. in a circuit in which the
temperature is changing, and this is an effect not usua11y considered. I be-
lieve, however, that this e.m.f. must exist. My reason is that there are at
least two arguments which demand that the absorption of heat accompanying
transverse flow be zero, and the only way in which this is reconcilable with
the thermodynamic expressions above is that

The first argument is derived from the vector character of the current.
The transverse and longitudinal currents combine according to the ordinary
rules for vectors into a single current, and such a current flowing in a mag-
netic field is without heating effect, according to original assumption, as far
as known experimentally, and also in accordance with the demands of sym-
metry. The relations here are somewhat simplified by imagining the conduc-
tor in the form of a cross, the longitudinal and transverse currents combining
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at the center of the cross as indicated to a sufficient degree of approximation
in Fig. 1. The only way of saving the situation seems to be to assume that
the heating effect is localized in the periphery of the central square, where
the direction of current How changes, as indicated by the dotted lines. But
this is inconsistent with the dimensions of the effect as shown by Eq. (2)
which exhibits the effect as a heating per unit volume, whereas if the effect
were concerned with the change of direction, it would be an effect per unit
area.

The second argument is derived from the symmetry of the longitudinal
and transverse currents. It is evident in the first place that the heating effect

Fig. i.

of Eq. (2) can be exhibited as a heating effect per unit time per unit transverse
current. But if the arrangement is geometrically symmetrical in longitudinal
and transverse current, as may be accomplished by making the conductor
in the form of a cross as in Fig. 1, then the same result should be obtained
independently of which current is called transverse and which longitudinal.
An inspection of the figure shows that the symmetry relations make this im-
possible, for calling the transverse current longitudinal and conversely de-
mands that the effect reverses sign. The only quantity equal to its own nega-
tive is zero, showing again that the heating effect must vanish.

There is apparently, therefore, an e.m. f. in a conductor in which the tem-
perature is changing such that

Bi 1 BR

i Bv. R 87.

The partial derivative in i may be taken to have the general significance that
no work is to be extracted from the system during the change of temperature;
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the partial derivative in R may for practical purposes be taken to be the
ordinarily determined temperature derivative.

The experimentally determined values of (1/R) (BR/Br) are so large, 0.004
for bismuth, that the related e.m. f. cannot be treated as a negligibly small
quantity. An approximate expression for this e.m.f. may be readily found.
To get it, we neglect any interaction between the thermal and the electro-
dynamic energy of the system, setting the total internal energy equal to the sum
of the ordinary internal thermal energy in the absence of the current plus the
electrodynamic energy, -', L,P. This amounts to assuming that the specific heat
of a conductor carrying a current is the same as that of the same conductor
without the current. Later in this paper an estimate will be made of the order
of magnitude of this small effect. Utilizing this approximation, the e.m. f.
arising from a change of temperature changes only the electrodynamic energy
of the system, and we have:

whence at once:

—[-'IP] = I X e.m. f. ,
dt

dI Bl dr
e.m. f. = L —= L ——.

dt 87 dt

But (1/I) (BI/Br) = (1/i) (Bi/dr), so that BI/Br = I(1/R) (BR—/Br), and

1 8Jl Bv
e.m. f. = — LI— e

E. Bv dt

That is, the temperature e.m. f. in a circuit in which the temperature is chang-
ing at unit rate is I.I(1/R)(B—R/Br)

One can see in a general way why there should be an effect of this kind.
In the first place, it arises from the magnetic field of the current on itself,
the external magnetic field having dropped out of the picture. That the ex-
ternal field ought to have no net effect is suggested by the theorem of ele-
mentary electrodynamic theory that there is no mutual energy between an
electrical current and a system of permanent magnets. Some of the electrons
which constitute the current will move perpendicular to the magnetic field
of the current itself, and will thus experience an action in virtue of the Hall
effect which will have a component along the original current. The intensity
of this action involves the self magnetic field, which explains how L gets into
the picture. Furthermore, the number and. distribution of the transversely
moving electrons is a function of the temperature, so that there will be an
interaction, manifesting itself as an e.m. f. , when temperature changes. To
give a detailed account of this effect from the statistical point of view would
probably be prohibitively complicated. , and would involve integration over
the entire conductor of many terms, a number of which would drop out from
the final result.

An experimental attempt was made to detect the existence of the trans-
serve heating effect, when I first noticed the analogy with an ordinary bat-
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tery, and had not yet realized that the relations between other quantities
were such as to make this zero. Two crosses of bismuth like Fig. 1 were cast,
the arms being about 1.2 by 0.6 cm in section. In casting, they were chilled
rapidly from the molten condition so as to make the crystal structure as fine
grained as possible. These crosses were mounted face to face, separated by a
layer of cellophane for insulation, and the two junctions of a copper-constan-
tan thermocouple were attached to the two centers of the crosses, indicated
by 0 in the figure. The couple indicated, therefore, the differential effect at
the centers of the two crosses. The electrical connections were such that the
currents in the various branches could be varied independently, both as to
magnitude and direction. The magnetic field was about 5000 gauss, and the
maximum current density about 10 amperes per square cm. The difficulty
with the experiment is in eliminating the effect of the finite size of the crystal
grains. Because of the unequal resistance of the grains in different directions,
the current experiences many internal changes of direction. Each of these is
accompanied by a local heating effect, in virtue of the internal Peltier heat.
This is changed by the application of a magnetic field, because of the effect
of the field on the resistance. Effects of this kind exist with only a longitudinal
current, However, by using all possible combinations of currents, and noting
that some of the effects change sign when current direction changes and some
do not, it was possible to show that if any heating effect of the kind corre-
sponding to Eq. (2) exists it must be less than IO percent of that part of the
non-isotropic effects which is due to the action of the magnetic field. Numeri-
cally, this meant that any final shift of equilibrium of temperature due to the
effect sought was less than 0.006 . This was much less than a preliminary
calculation had indicated was to be expected on the assumption that Bf/Br =0.
This is probably as good a proof of the non-existence of the effect as can be
given without very much more elaborate precautions. It was a great surprise
to find that the magnetic inHuence on the internal non-isotropic effects was
so large. It raises the question whether such effects have been sufficiently
considered in previous measurements; measurements of the Ettingshausen
temperature difference would be particularly susceptible to error from this
source.

Returning now to the relation (8/Br) (fR) =0, we can derive a suggestion
as to the behavior of R at O' K. It seems highly probable that the e.m. f.
arising from change of temperature vanishes at O'K. We would expect this
from general considerations suggested by experience with the third law, and
the mechanistic explanation of this e.m. f. just given would suggest the same
thing. For the transverse components of motion of the electrons which con-
stitute the current would be expected to lose all their haphazard quality at
low temperatures, and therefore their capacity for taking part in thermal
effects. If Bi/Br vanishes at O'K, this demands:

1 BR
lim — = 0.
~=o R 87.

This relation appears to be consistent with the experimental results found
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at Leiden, ' although the experimental accuracy is not always great enough
to give perfectly definite indications.

The other transverse effects may now be subjected to an analysis similar
to that above for the Hall effect. In doing this it will be convenient to intro-
duce new coefficients in place of the conventional Nernst and Righi-Leduc
coefficients, since the conventional definitions of these involve a lack of sym-
metry as compared with the Hall and Ettingshausen coefficients. The con-
ventional Nernst coefficient, Q~ is to be replaced by Q~' where Q&' = Q~/k, k

being the thermal conductivity, and the conventional Righi-Leduc coefficient
Ss is to be replaced by S&', where Ss' ——Ss/k. These coefficients are written
with subscripts N and R to avoid confusion with the thermodynamic symbols
Q for quantity of heat and S for entropy. These altered definitions now give
the following consistent scheme for the four transverse effects:

(1) Hall transverse potential gradient with longitudinal electric current,
i, =RHi.

(2) Ettingshausen transverse temperature gradient with longitudinal elec-
tric current, i, =I'Hi.

(3) Nernst transverse potential gradient with longitudinal heat current,
W, = Q~ HtU.

(4) Righi-Leduc transverse temperature gradient with longitudinal heat
current, m, =Sg'Hm.

i and m are here density of electrical and thermal current.

Imagine now the toroid of the preceding analysis with a circumferential
heat current replacing the electrical current. The ring will have to be split
along some radius and the two sides of the slit maintained at a difference of
temperature. This temperature difference is to be maintained irrespective of
how the mean temperature of the whole system may change. The irreversible
effects connected with thermal conduction in such a system may be neglected
by making all changes in the system rapidly, so that the dissipation due to
the thermal conduction is vanishingly small compared with other effects.

The exact parallel of the preceeding analysis for the Hall effect may now
be made. Allow a quantity of heat dg to flow transversely, and utilize this
to drive a thermodynamic engine working between the temperature limits of
the Righi-Leduc temperature difference. This difference is S~'bHm, and the
work received from the engine is:

1
dR' = —Sz'bHmdq„.

The source of this work is the work done by the longitudinal heat current in
flowing through the longitudinal Righi-Leduc temperature difference accom-
panying the flow of the transverse heat current. A result exactly similar to
that before follows at once on writing down the condition that the entropy
change be a perfect differential, namely:

~ Bengt Beckman, Leiden Communications, Supplement, No. 40, 1915.
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= 7bH—

or this may be written as heat per unit volume in terms of densities:

= 7a—

Exactly the same arguments as applied before, namely one from combin-
ing longitudinal and transverse heat currents vectorially, and one from the
effect of interchanging longitudinal and transverse currents, may be applied
to this case, showing that this heating effect must vanish, giving the relation
8/Br(wSs'/r) =0, or:

It is to be presumed that Ss'/r varies with temperature, and that there-
fore the term (1/w)(Bw/Br) exists. This is the formal analogue of the expres-
sion (1/i)(8i/Br), and denotes a change in a thermal current when the mean
temperature is changed, no external work being taken from the heat current
and the change being made so rapidly that the dissipation of the thermal
stream against thermal resistance is negligible. Such phenomena connected
with thermal currents certainly have not been detected, and the mechanism
must be quite different from that in the electrical case. An electrical current
is capable of coasting for a certain time after the e.m. f. has ceased, driven
by the stored energy of self induction. The strict analogue of self induction
does not exist for a thermal current. If, however, the thermal current is at
all like ordinary currents in having a property analogous to velocity, it must
also have a space density, so that the energy content and therefore the specific
heat of a body carrying a thermal current is different from that of an equiva-
lent assembly of infinitesimal elements with no thermal current. This space
density of energy may perform the same function as the energy of self induc-
tion of an electrical current, and give meaning to the derivative Bw/Br An.
estimate will be made later of the order of magnitude of such effects. They
are too small to be detected by direct experiment, but we may nevertheless
recognize their existence and use them in theoretical discussion.

The other two effects, the Ettingshausen and Nernst effects may be simi-
larly analyzed. By allowing a transverse heat current to flow in the presence
of a longitudinal electrical current, energy may be taken out of the system
in virtue of the Ettingshausen transverse temperature difference, and by
allowing electricity to flow transversely in the presence of a longitudinal
heat current energy may be taken out in virtue of the Nernst transverse po-
tential difference. The same analysis as before demands accompanying heat
effects, which, written for unit volume, are respectively:
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(6)

(7)

We expect as before that these two effects are zero in virtue of other rela-
tions. The argument has to be somewhat modified, however. The first argu-
ment disappears entirely, because a heat current and an electric current do
not combine vectorially. The second argument may, however, be appro-
priately modified. It is to be noticed in the first place that there is a reciprocal
relation between the sources of the energy of the phenomena involved in
Eqs. (6) and (7). The energy extracted by the transverse thermal flow of
Eq. (6) is provided by the longitudinal electric current flowing against the
Nernst e.m. f. acting longitudinally associated with the transverse heat cur-
rent. Similarly, the energy extracted by the transverse electric flow of Eq. (7)
has its source in the longitudinal heat current Rowing against the Ettings-
hausen temperature difference acting longitudinally associated with the
transverse electric flow. Eq. (6) now demands that dQ' be positive when the
transverse heat current extracts energy from the longitudinal electric cur-
rent, and (7) demands a positive dQ' when the transverse electric current
extracts energy from the longitudinal heat current. But the situation of Eq.
(6) may also be described as a longitudinal heat current in the presence of a
transverse electric current, and the energy relations demand that the trans-
verse electric current give energy to the longitudinal heat current. We thus
again have the dilemma of a quantity equal to its own negative, and the only
way out is the quantity itself to vanish. Hence

and

The Bi/Br which occurs in (8) is the same as that which occurred in connec-
tion with the Hall coefFicient, and the &ni/&r of (9) is the same as in the ex-
pression for the Righi-Leduc coefficient. Eliminating these derivatives gives:

1 8 P 1 BR
P

P 87 T E. BT

and
i 8 Ss' i 8Q~'

Sz' Br 7 Qii' Br

Integration gives at once:
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and

I'—.= const' R,
7

Sg'
= consts Q~'.

The constants are independent of temperature, but may of course vary from
substance to substance.

Furthermore, Qsi' ——P/r, as was shown in the preceding paper to be de-
manded by the energy relations. We therefore have the relations:

p Sg'
R = consts ———consts Q~' ——const4

T T

That is, R, Z/r, Qs ', and Sii'/r all depend on temperature in the same way,
and therefore, in particular, all vanish in the same way at O'K.

In addition to the relation I'/r = Qs
' deduced in the previous paper from

the first law of thermodynamics, two other relations were also deduced from
much more doubtful premises, such, for example, as the assumption that the
rotation of the equipotential lines is the fundamental feature of the Hall
effect, and is the same whether the potential drop is an iR drop as in an ordi-
nary conductor, or whether it somes from a Thomson effect in an unequally
heated bar. These two other relations were: Qsi

' =0/kpR, and I' = o re�',where
r is the Thomson coefficient and p specific electrical resistance. Consistency
of these relations with those above would demand that 0/kp=const, and
0 =const/r. But I/kp is the Wiedemann-Franz ratio, and varies approxi-
mately inversely as v. , so that the first relation demands that 0 vary directly
as 7., while the second demands that it be inversely proportional to r. One
or both of the previous relations must be given up. It is probable that neither
is exactly correct, because the experimental evidence would not seem to indi-
cate that 0. varies either directly or inversely as 7. in general. Of the two rela-
tions, the first, Q~'= (o/kp)R, rests on the more questionable argument and
seems definitely not to agree with experiment in the case of metallic Co. At
the time of writing that paper the relation was apparently satisfied for Co,
using the value of Moreau' for the Nernst coefFicient, Qs'. Professor E. H.
Hall, however, was of the opinion that the sign of Moreau's Qsi' was incorrect
and checked this opinion by a redetermination of Q~ experimentally. The
only way of saving the relation was therefore by assuming that the usual sign
of cr for Co is incorrect. I made a redetermination of 0 on two pieces of Co
cut longitudinally and transversely from the same specimen as used by Pro-
fessor Hall, and verified that 0. has the accepted sign. These measurements
have not been previously reported. According to the best experimental evi-
dence, therefore, the relation definitely fails for Co, and of c'ourse cannot be
regarded as a general relation. It is still noteworthy, however, that the rela-

' G. Moreau, discussed on page 227 of the book by L. L. Campbell, Galvanomagnetic and
Thermomagnetic Effects, Longmans, 1923. The numerical values and notation of this paper
are taken from Campbell's book.
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tion is satisfied by most other metals within experimental error, which must
be admitted to be large.

At present I can see no argument of a plausible character suggesting an-
other relation to replace Q"'=(o/kp)R. The second relation, however,
E =07.S&, may be replaced by another very similar to it with much plausi-
bility. In a paper on conclusions to be drawn from the existence of various
thermo-electric phenomena in crystals4 I showed that the electric current I,
must be recognized to convect with it a thermal current of magnitude
Irf;odr/r In .particular, the longitudinal electric current of the Hall effect
convects with it this amount of thermal energy. This heat How will give rise
to a transverse temperature gradient by the Righi-Leduc effect. If we make
the simple assumption that this is the entire transverse temperature gradient
when the longitudinal electric current Rows, we have at once a connection
between the Ettingshausen and the Righi-Leduc coefficients, namely:

f' Od7
P = rSg'

p 7

which differs from the relation previously proposed only in that o. is r'eplaced

by f;odr/r. One would expect these two quantities to be of approximately
the same magnitude; examination of the experimental evidence will show
that the experimental accuracy is not great enough to give much significance
to apparent differences, and that the new relation may be considered to be
verified by experiment with the same degree of accuracy as the old relation.
Consistency of the new relation with Eq. (10) demands that rf;odr/7 be con-
stant, which gives on integration, o =const/r. This cannot be a rigorously
correct relation, because, among other things, it would give an infinite value
to the integral at the lower limit, and therefore an infinite thermal energy
convected by the electric current. The Ettingshausen temperature gradient
cannot, therefore, all originate in the simple way suggested, but a large part
of it must be of this origin, as shown by the approximate experimental check
of the relation between I and S~'.

Finally, we try to form an idea of the magnitude of the small effects neg-
lected in the argument above. There is in the first place a heating effect asso-
ciated with a change in the current. Imagine a closed electric circuit carrying
a current i, in which the current is maintained by the self induction I, and
in which the Joulean dissipation may be neglected. This system is determined
thermodynamically by its temperature r and the current i, and these may be
taken as the independent variables fixing the state of the system. Tempera-
ture may be varied by any conventional means; i may be varied by inserting
into the circuit an e.m. f. e through which the system delivers or receives work
from the outside, with accompanying change of i. The rate at which work is
exchanged with the surroundings is, under these conditions:

dm

4 P. WV. Bridgman, Phys. Rev. 31, 221—235 (1928).
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The change of z during the action of e is governed by the ordinary equation
of balance of e.m. f.'s, which in this case gives the statement that e is bal-
anced by the e.m.f. of self induction and the temperature e,m, f. already dis-
cussed. This gives:

di 1 dR dv.
L —+ zL —. — —=e.

dt R d7 dt

The first law of thermodynamics gives:

dQ = dW+ dE,

where Z is the internal energy, or,

dQ = eidt + dE.

Put dE = BE/Brdr+BE/Bidi, and substitute the value for s, obtaining,

dQ=( +'I — )d +( +'L)d'.

Form dS by dividing by ~, and formulate the condition that this be a perfect
differential as usual by equating the cross derivatives. This gives at once:

~

~BQ 1 dR= —27iL ——.
Z R dr

This gives the inflow of heat required to maintain the system isothermal
when the current is altered. By dividing by the heat capacity we can at once
obtain the approximate change of temperature when the current is altered
adiabatically. For ordinary circuits such temperature effects are very small.
Thus, in a toroid of bismuth of 10 cm radius and 1 cm thickness, the change of
temperature when current is increased from 0 to 100 amp/cm' is of the order
of 10 " degrees centigrade.

The story is not completely told by these considerations. To characterize
completely the system it would be necessary to determine the internal energy
as a function of temperature and current. It may be shown by considerations
which need not be given in detail here that the internal energy is not merely
additive of the ordinary electrodynamic energy —,Li' and the ordinary thermal
energy when there is no current, but there must be cross terms. This means
that the specific heat depends on the current. The precise inHuence of the
current on the specific heat is not determined by the phenomena hitherto dis-
cussed, but apparently involves a new constant of the substance, which must
be determined by independent experiment. We may attempt an estimate of
the order of magnitude as follows. We have already seen that a current con-
vects with it a thermal energy rJ;odr/r; a good enough approximation for
our purpose to this somewhat complicated expression is 7r. In the metal co-
balt 0 is unusually large, being 2.2X10 ' volts/'C. This means that one
coulomb convects with it the thermal energy (273 X 2.2 X 10 ')/4. 2 = 1.4 X 10 '
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gm cal. , which means that when the current density is 1 amp. /cm', 1.4 X 10 '
gm cal. of thermal energy is convected across each square centimeter in one
second. This energy How is to be thought of as having a velocity and there-
fore a space density, and it is in virtue of the space density that the specific
heat of a conductor carrying a current is diRerent from that of the conductor
without the current. Both the velocity and the corresponding space density
are entirely unknown. Perhaps the most immediate assumption is that the
velocity is the same as that of the electrons which constitute the current.
This may be computed by assuming, as in the Sommerfeld theory; that the
number of conduction electrons is the same as the number of atoms. This
gives a velocity of 6X10 ' cm/sec for Co, which means a density of energy
of 1.4X 10 '/6 X 10 ' = 2 gm cal./cm'. So large a value appears inadmissible,
since it would demand measureable effects on the specific heat, and would
also demand that the apparent self induction of a circuit be appreciably de-
pendent on the temperature as well as on the geometrical dimensions. If,
on the other hand, the proper velocity to be associated with the convected
thermal energy is the velocity of sound propagation, as it is for an ordinary
thermal current, the eRects will be smaller by a factor of 10", and therefore
beyond experimental reach.

A corresponding analysis may be carried through for thermal flow, but the
corresponding eRects are more difficult to visualize because of the absence of a
thermal self induction. If however, the space density of energy associated
with the thermal current is taken as the analogue of the energy of self induc-
tion, corresponding results may be found. It will be found that there is a
"thermo-motive" force in a body carrying a thermal current when the tem-
perature changes. Analysis like that for the electrical case gives a simpler re-
sult because the energy associated with the thermal current is to be taken as
proportional to the thermal current, rather than proportional to the square,
as in the electrical case. This will lead to a heating eRect in a substance in
which the thermal conduction current is altered, which turns out to be pro-
portional to the absolute temperature. But all this is so far beyond the reach
of experiment that it is of little profit to pursue the matter further. Itis,
however, perhaps of interest to attempt to form an idea of the order of mag-
nitude of the space density of energy associated with a thermal current. Im-
agine a centimeter cube of copper between the opposite faces of which there
is a temperature difference of 100'. The thermal flux is approximately 100
cal./sec. The volume density of energy corresponding to this flux is such that
its product into the velocity of flux is equal to 100. For the velocity we may
take, in accordance with the Debye picture of thermal conduction, the veloc-
ity of sound, which for copper is about 3.5X10' cm/sec. The space density
of energy is therefore 100/3.5X10'=3X10 ' gm cal./crn'. The heat capacity
of 1 cm' of copper is about 0.8 gm cal. This means, therefore, that if a copper
cube in which a thermal current of 100 cal./sec is flowing is suddenly isolated
from the source and sink of heat flow, its final equilibrium temperature will
be about 4X10 5 'C higher than its average temperature during the How.
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This, of course, would be very difficult to detect. It is interesting, however,
that if a different velocity were assumed, as for example a velocity of the order
of a few cm per sec. , which is the order of the apparent velocity with which the
maxima or minima of ordinary periodic thermal disturbances sink into the
metal, a temperature effect of the order of many degrees would have been
found. This affords rather direct confirmation of the correctness of the Debye
point of view. The experiment might be worth making to find how far the
velocity limit could be pushed.


