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ABSTRACT

The electro-optical shutter is being employed at the University of California
in the study of the electrical breakdown of gases and liquids. In these studies it is desir-
able to know the time it takes the shutter to close. A calculation of this time can be
made from the electrical constants of the circuit and a knowledge of the rate at
which the voltage drops across the spark gap. For some of the experimental conditions
it is sufficiently accurate to base these calculations on an electrical circuit which re-
places the actual distributed constants by lumped constants. In other cases however
the error involved by this assumption is too great. It is the purpose of this paper to
present an accurate solution of the electrical circuit taking into consideration that
the constants are distributed, and by means of this solution to bring out the following
important facts: (1) For relatively large distributed electrical capacities of the Kerr-
cell leads the rate of closing of the shutter is greater than indicated by the lumped
constant solution. (2) The rate of closing is materially increased by using leads sepa-
rated only by a sheet of mica instead of spacing them farther apart in air. For com-
pleteness the results of a few experimental observations are also given and compared
with results obtained by calculation.

INTRODUCTION

HIS paper is concerned with an accurate mathematical solution of the

Abraham and Lemoine! type of electro-optical shutter. Until this solu-
tion was made we were using an approximate solution in which it was as-
sumed that the electrical constants were lumped instead of distributed. The
accurate solution which takes into consideration that the constants are dis-
tributed was originally made in order to determine the type and magnitude of
errors involved in the approximate solution. However, it accomplished more
than this. Calculations demonstrate the important fact that it is possible ma-
terially to speed up the rate of closing of the shutter by increasing the distrib-
uted capacity of the leads to the Kerr-cell. Moreover one is enabled to trace
out the travelling waves of current and voltage and thereby obtain a true
picture of the operation of the shutter.

ARRANGEMENT OF APPARATUS

A diagram of the arrangement of the apparatus is shown in Fig. 1. It
will be noted that there is an optical system and an electrical circuit. In the
optical system the two Nicol prisms are crossed and the direction of the elec-
trical field in the Kerr-cell is placed at 45 degrees to the plane of polarization
of the light passing through the first Nicol prism. This means that light can

1 Abraham and Lemoine, C. R. 129, 206 (1899).
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ELECTRO-OPTICAL SHUTTER 689

pass from the spark gap through the prisms to the eye only when a voltage
is on the Kerr-cell. The light from the spark which will be observed therefore
is that light which passes through the Kerr-cell before the cell has discharged
to an extent which effectively closes the shutter.

In the electrical system C; and R, are of such a size as to make the time it
takes the voltage to reach its final value on the gap of the order of one second.
The distributed resistance between C, and the spark gap is large enough to
make the discharge of C; through the gap aperiodic. The distributed resistance
between the spark gap and Kerr-cell is made large enough so that the second
and all succeeding oscillations of voltage across the Kerr-cell are so small that
the light transmitted is too feeble to be observed.

OPERATION OF THE KERR-CELL CIRCUIT

The solution of the electrical circuit shown in Fig. 1 is extremely compli-
cated but fortunately the arrangement of the experimental set-up allows an
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Fig. 1. Diagram of electrical and optical circuits.

assumption to be made which greatly simplifies the circuit. In order to avoid
induced disturbances in the Kerr-cell circuit the coupling between this part
of the circuit and the remainder was made as small as possible. It will there-
fore be assumed that this coupling is zero. This means that the circuit reduces
to that shown in Fig 2. The solution given here will be for the voltage drop-
ping instantaneously. If the solution is desired for any other variation of vol-
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Fig. 2. Kerr cell circuit with spark-gap replaced by e(#).

tage with time it can be obtained by applying the superposition theorem? to
the solution for instantaneous voltage drop.
In solving this problem the following artifice is used.

e, (t) = Eo — e,'(1) (1)

where e¢,,(¢) is the voltage on the Kerr-cell, as a function of time, resulting
from closing switch in the circuit shown in Fig. 3; E, is the initial voltage on

2 See Operational Circuit Analysis by V. Bush, Page 125.
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the Kerr-cell (Fig. 3); and e.,’(¢) is the voltage on the Kerr-cell as a function
of time resulting from closing switch in the circuit shown in Fig. 4. It is only
necessary therefore to obtain a solution for a voltage applied to the circuit as
shown in Fig. 4.

In the solution which follows, the operational method will be used.? The
plan is briefly: (1) Set up steady state alternating current solution. (2) Re-
place jw in this expression by the operator p. For continuous functions

pf() = %f(t); %f(t) = fotf(t)dt, etc.

(3) Carry out the indicated operations according to the rules of operational
calculus.
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Fig. 3. Schematic Kerr cell circuit Fig. 4. Schematic Kerr cell circuit
representing an instantaneous representing an instantaneous
voltage-drop across spark-gap. voltage rise across spark-gap.

Now proceeding in accordance with this plan: the relation between the
voltage E,’ and E,,’ for steady state alternating current is given by

Z 1/2
E{ = E,/ cosh (ZV)V2 + I,/ <?> sinh (ZV)1/2. (2)

Where E,’ =applied a.c. voltage
Iy and E,’ =alternating current and voltage at C,.

R =resistance per unit length of line

L =inductance per unit length of line

C =capacitance per unit length of line

w/2mw={requency of E,’

The current through the condenser may be expressed in terms of the con-
denser voltage and its impedance:

Ical = ]'ngEco,. (3)
Substituting this in Eq. (1) and solving for E,,
E ’
Eco-, = d ' (4)

Z 1/2
cosh (ZY)V2 + juC, <?> sinh (Z¥)'/2

3 See Operational Circuit Analysis by V. Bush, and Heaviside’s Operational Calculus by
E. J. Berg.
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Replacing jw in this expression by the operator p and expressing E,’ as a sud-
denly applied voltage:

E
ee] = - 1 (5)

R + Lp\'2
cosh ((R + Lp)pCI2)1/2 + pC0< kg ) sinh (R + Lp) pCi?)1/2

where 1 represents a function which is zero for all negative values of time and
which is unity for all positive values of time.
Rearranging the expressions under the radicals and placing R/2L =¢ the
following expression results.
e = (8"
E,l

C
cosh ((p+0)2— o CLE) 1+~ (LC)4((p+ )2 o9 isin ([(p- o)t CLI)
This may be simplified by “shifting” by means of the operational expression

1 b 1

1= e 1 6
2D = =0 2 =) ©
or ?

€’ ¢

' p—o

€y =

- :
cosh (CLI(p? — o%)) 112 + CL(Lc)u?(p2 — )12 sinh (CLI(p? — o?)) 12

Eol

Now the numerator and denominator of this expression will be treated sep-
arately and then combined by means of the superposition theorem.?
The result of the numerator operating on the unit function is known.

P_P_al=e"‘. \ (7)

The result of the denominator operating on the unit function may be ob-
tained with the aid of the expansion theorem:

1 1 ' ept
ZORR O N7 ®
ap

where Z(0) = Z(p) with p placed equal to zero.
b1, P2 etc, are the roots of the equation Z(p) =0.

Z(p) = cosh (CLI*(p? — o2))1/2 +%°(Lc)1/2(p2 — o) %inh (CLI2(p? — ¢2))12 (9)

c
Z(0) = cos (CLIzs?) 12 — —C?(Laﬁ)m sin (CLI20?)1/2, (10)



692 HAROLD W. WASHBURN

In order to make the roots of Z(p) =0 easier to calculate place p=jgq.

Z(p) = Z(jq) = cos (CLI2(g? + o%))1/2

C
- EO(LC)IN(qz + o912 sin (CLIX(g? + o9)) V2 = 0 (11)

or

Cl
(CLI(gt + o9) tan (CLA(G: + o)1t =~ (12

0

The values of ¢ which are the roots of this equation are to be substituted in
the final expression for the voltage e.,. It will be noted that there are an in-
finite number of roots and that they are in pairs of plus and minus an imagi-
nary quantity. This means that Eq. (8) may be written as

1 1 2 cos gt
—_— 1= — 4 Z - .
z2@) 20 g dZ(P)

dp

(8)

The expression d Z(p)/dp will now be obtained

dz(p) _ CLE sinh (CLE(p?* — o))1/2
dp  (CLE(pr — o))

C
EO(LC)”?(ZJZ — o)V*(CLI*p)

(CLZ"’(;N _ 02))1/2 cosh (CLI2(p? — o?2)) (13)
C
EO(LC)WP

+ g — sinh (CLP2(p? — %))/

2 _ 02) 1/2

This may be simplified by placing p =jq and then substituting Eq. (11) in Eq.
(13). The result is

Cl
¢ (C— + 1 4 CoLi(g* + %)
0

az(p)
p 7+ o cos (CLI(g* + o9) V2. (14)

Now all the expressions to substitute in Eq. (8’) have been found and it
remains to apply the superposition theorem to Eqs. (7) and (8”). The form
of superposition theorem most convenient in this case is

e(t) = %fotA,(z — NA(N)dr (15)
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where
1
A4.() = 1
' Z:(p)
1
Ay(t) = ——1
Zy(p)
1 1
@) = —— 1
Z(#) Z:(p)
d r! 1 2cosgA
) =e)=F ~vt—f 7 (=0 - dn. 16
A =« “ad, 7(0) by dz(p) (19
P_____
dp
Performing the integration and differentiation this becomes:
g
B 5 R 2q cos (gt — tan™! ——)
, 0 4 _ q
o = = — Eg 3 — E - (17
“ S0 P ay e T ap 7
s (o + g)p = 2
dp dp

From physical considerations it is known that for ¢=, ¢,/ =E, The con-
stant term in Eq. (17) is therefore Eq and Eq. (17) becomes:

[
2q cos <qt — tan™! —>
q

dz(p)
dp

(19

830, = FEy¢ 1 — ¢t Z

(7 + )

Now substituting Eq. (14) in Eq. (18) and substituting the result in Eq. (1)
the expression desired is obtained.

[
2(e? + ¢?) V2 cos (qt — tan™! —)
t =Y d (19)

cl
g(g + 1 4 CoLl(g? + 02)> cos (CLI*(g? + o%))1/2
0

where ¢ is determined from Eq. (12).

It is rather difficult to determine by inspection from this expression just
what is the effect of varying the different factors and so a few examples will
be given. Before this is done, however, it will be instructive to note the simi-
larity between this expression and the expression derived when the constants
are considered as lumped. The solution of the circuit shown in Fig. 5 is

E 1 1/2 o
by = ———————¢€7 cos| | — — o? t — tan~! —— . (20)
(1 = e2LCy)Y2 LCy ( 1 2>1/2
ICo
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As the ratio of the total distributed capacity of the leads to the capacity of the
Kerr cell approaches zero the first term of Eq. (19) approaches Eq. (20) and
all other terms approach zero. This means that when the ratio C1/C, is small
enough so that 4 tan 4 =Cl/C, (see Eq. (12)) may be closely enough approxi-
mated by A2=Cl/C, the lumped constant solution is a good approximation.
The errors involved in this lumped constant solution are; (1) An error in
phase, frequency, and magnitude; of the same order of magnitude as the error
involved in assuming 4 tan 4 =A42; and (2) An error, due to neglecting higher
harmonics, of an amplitude roughly Cl/5C, times the amplitude of the funda-
mental.

R L

Fig. 5. Schematic Kerr cell circuit with the distributed constants replaced by lumped constants.

To bring out more clearly the characteristics of this circuit and the errors
involved in the approximate solution three examples have been selected:

(1) Leads from spark gap to Kerr cell 90 cm long, spaced 15 cm in air,
having a total resistance of 150 ohms (both leads).

(2) Leads 90 cm long, spaced 1.3 mm, insulated from each other with
mica, a resistance of 150 ohms.

(3) Leads 37 cm long (this length is such that the first wave of voltage
arrives at the Kerr cell at the same time that it would if the leads were 90
cm long and had air between them instead of mica), spaced 1.3 mm, insulated
from each other with mica, a resistance of 61 ohms (same resistance per cm of
leads as in cases (1) and (2).

Calculations were made of the voltage on the cell (as a percent, of the
break-down voltage of the gap) and the percent transmission? of the cell as
a function of time for two rates of voltage drop on the spark gap (1). Instan-
taneous drop of voltage to zero and (2) voltage dropping to zero linearly with
time in 10~8 seconds.? This latter case corresponds roughly to that which we
have observed in air with gaps of from 3 to 6 mm. The results of these calcu-
lations are given by the curves in Figs. 6 to 10.

¢ The percent, transmission was calculated by the relations I =sin? §/2, 8 =2rblE?, (where
100 percent transmission was taken as the transmission obtained when 8 == radians, I =trans-
mission, b and / are constants of the Kerr cell, and E =voltage gradient in the cell) and making
the assumption that the Kerr cell employed has its maximum opening at the breakdown volt-
age. If this later condition is not obtained the curves would be somewhat changed but would
have in general the same appearance.

® The curves for the voltage dropping in 1078 seconds were obtained by applying the super-
position theorem to the curves for instantaneous voltage drop. As accuracy was not desired
much labor was saved by employing a step by step method which assumed the voltage to fall in
five equal instantaneous drops spaced 0.2 X 1078 seconds apart.
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In Figs. 6 and 7 curves la and 1b are for the conditions (1) as stated
above and instantaneous voltage drop. Curve la was computed by the
lumped constant equation and 16 by the distributed constant equation. For
these conditions the difference between these two solutions is sufficiently
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Figs. 6 and 7. Calculated electro-optical shutter performance curves. For 90 cm lead-
spaced 15 cm apart in air. 1A, for instantaneous voltage drop across gap—lumped constant solu-
tion. 1B, for instantanious voltage drop across gap—distributed constant solution. 1C, for
voltage across gap dropping in 10~8 seconds—lumped constant solution. 1D, for voltage across
gap dropping in 1078 seconds—distributed constant solution.

small to be neglected for our purposes. The breaks in the distributed constant
curve at 0.3X10-8 and 0.9 X108 seconds are due to the arrival of the first
and second waves of current at the Kerr cell.
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Curve 1C is for conditions (1) and the voltage dropping in 10—8 seconds.
The lumped constant and distributed solutions differ so little in this case that
they cannot be distinguished on the graph. This is due to the smoothing out
of the small irregularities resulting from the less steep wave front associated
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Figs. 8 and 9. Calculated electro-optical shutter performance curves. For 90 cm leads
spaced 1.3 mm apart on mica. 2A, for instantaneous voltage drop across gap—lumped con-
stant solution. 2B, for instantaneous voltage drop across gap—distributed constant solution.
2C, for voltage across gap dropping in 1078 seconds—lumped constant solution. 2D, for volt-
age across gap dropping in 1078 seconds—distributed constant solutions.

(<]

with the slower rate of voltage drop across the gap. It may be concluded that
for leads in air up to one meter in length the lumped constant solution gives
a very close approximation of the operation of the circuit.
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When the current in the wave front is sufficiently large to make the breaks
in the voltage-time curves more pronounced the lumped constant solution no
longer gives a good approximation. This is brought out in Figs. 8 and 9 which
are for conditions (2). The larger current in the wave front here is due to the
closer spacing and to the use of mica both of which increase the distributed
capacity. The error which would be involved if the time of operation of the
shutter were calculated from the lumped constant equation is shown in Fig.
9 where the percent transmission is plotted vs. time. For instantaneous voltage
drop these curves give for time of operation (90 to 10 percent transmission)
5.5X 1079 seconds for the lumped and 1.6 X10~? seconds for the distributed
calulations. For the voltage dropping in 108 seconds these values are 6.7 X
10~? seconds for the lumped and 4.6 X 10~? seconds for the distributed calcu-
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Fig. 10. Calculated electo-optical shutter performance curves. 3B, for 37 cm leads spaced
1.3 mm apart on mica-instantaneous voltage across gap—distributed constants. 3D, for 37 cm
leads spaces 1.3 mm apart on mica—voltage across gap dropping in 1078 seconds—distrib-
uted constants. 1B, 1D, 2B, and 2D are the same as in Figs. 6, 7, 8, and 9.

lations. It will be seen that the error involved is less for the slower change in
voltage but still too large to be neglected. It is interesting to note the ex-
tremely short time of operation which is possible even when the voltage drop
takes as much as 108 seconds. That is, if the voltage drops to zero in 108
seconds the shutter closes in less than half this time. This is due to the fact
that the transmission of the cell drops to two percent, when the voltage has
dropped to thirty percent, of its initial value.

In order better to compare the operation with the leads in air and the
leads on mica, curves were calculated for leads on mica of such a length that
the shutter starts to close at the same instant as for leads in air 90 cm long
(conditions given under 3 above). This length is given by 90/kY2 where % is
the dielectric constant of mica. The results of this calculation are given by
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Fig. 10. For instantaneous voltage drop on the gap the time of closing of the
shutter (90 to 10 percent transmission) for leads in air is 5 X 10~? seconds and
for leads on mica is 1 X107? seconds. If the gap voltage takes 10~2 seconds to
drop this value is 5.9 X10~? for leads in air and 3.8 X 10~? seconds for the leads
on mica. It is seen that the placing of leads on mica materially shortens the time
of closing of the shutter especially if the time of voliage drop across the gap is very
small.

The curves for the 90 cm leads on mica are also drawn in Fig. 10 to bring
out the important fact that the time that the shutter remains open may be in-
creased without appreciadly lengthening the teme required for the shutter to close.
That is, for the voltage on the gap dropping in 1078 seconds the 37 cm leads
give an open time (90 percent transmission or above) of 4.7 X10~? seconds
and a closing time (90 percent transmission to 10 percent transmission) of
3.8 X107 seconds. The 90 cm leads give an open time of 10.1 X10~? seconds
and a closing time of 4.3 X 1079 seconds. The open time is more than doubled
while the closing time is increased only 13 percent. This characteristic of the

~shutter makes possible the observation of various stages of the breakdown
with approximately the same sharpness of cut-off.

EXPERIMENTAL WORK

It is a simple matter experimentally to measure differences of the open
time of the shutter.® Referring to Fig. 1., it is seen that two images of the
spark will be observed. One image is formed by the light which passes directly
from the spark through the Nicol prisms and Kerr cell to the observer. The
other is formed by light which first travels to the mirror and is then reflected
back through the prisms and Kerr cell to the observer. Different stages of the
progression of the spark may be observed in the reflected image by merely
moving the mirror nearer to or farther from the spark gap. The difference in
time that it takes the spark to progress to these different observed stages is
then merely twice the difference of the distance of the mirror from the spark
gap divided by the velocity of light. If now it is desired to determine the dif-
ference of open time of the shutter for different electrical constants of the
Kerr cell spark gap circuit, it is merely necessary to adjust the mirror for each
condition of the electrical circuit so that the same state of progression of the
spark is observed. The difference of position of the mirror will then give the
difference in open time of the shutter for the different conditions of the elec-
trical circuit. This of course assumes that the change in electrical constants
does not alter the rate of progression of the spark. The extent to which this is
true must be determined experimentally as will presently be shown.

It was desired to determine experimentally the effect of the Kerr cell ca-
pacity on the speed of operation of the shutter. To do this a Kerr cell was
made which had a constant Kerr effect with a variable capacity. That is, it

¢ The open time of the shutter can also be experimentally determined by a method which
makes use of the effect on the brightness of the spark upon receiving the reflected wave from
the supply condenser. For an explanation of this method see a paper by Mr. Frank Dunnington
in the Phys. Rev. 38, 1506 (1931).
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had two fixed plates between which the light passed. In the same cell and
connected in parallel (the connecting leads being very short 1 cm) were a
fixed and a movable plate by means of which the capacity of the cell was
varied.

In order to determine to a fair degree of accuracy the state of progression
of the spark the electrodes were chosen so that the spark formed with a nar-
row bright pencil of light starting from the cathode and moving nearly all
the way across the gap before meeting the anode pencil. The state of progres-
sion could then be determined by merely measuring with the aid of cross-
hairs the fraction of the gap which this pencil had travelled. The arrangement
of electrodes which gives this condition is a sphere cathode and a plane
anode. The cathode used was a sphere 0.5 cm in diameter, the anode a disk 2
cm in diameter, and the spacing was 0.4 cm.
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Fig. 11. Experimental curves of progression of spark vs. time.

Three sets of leads were used between the Kerr cell and gap:

(a) 39 cm long 37 ohms resistance (each wire) spaced 15 cm in air.
(b) 39 cm long 84 ohms resistance (each wire) spaced 15 cm in air.
(c) 74 cm long 64 ohms resistance (each wire) spaced 15 cm in air.

Curves of percent, of the gap traversed by the cathode pencil vs. length of
light path from gap to Kerr cell (which was varied by means of the mirror)
were taken for the minimum and for the maximum capacity of the Kerr cell.
The curves thus obtained for the leads b are shown in Fig. 11. The abscissa
for these curves is plotted from right to left in seconds instead of c¢m, i.e., the
length of light path divided by the velocity of light. Since the longer light
paths correspond to earlier times in the formation of the spark the curves from
left to right give the progression of the cathode pencil vs. time. If the changein
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capacity in the Kerr cell affected the rate of progression of the cathode pencil
across the gap the slope of these two curves for a given ordinate would be dif-
ferent. But it is found that if the curves are shifted horizontally they coincide
throughout, that is, within the limits of accuracy of the measurements. The
change in cell capacity therefore did not measureably affect the rate of for-
mation of the spark in the range for which these curves were taken. Theoret-
ical considerations show us that if the spark were to be effected by the cell
‘capacity it would be effected in the range here shown. These considerations
are as follows: The position of the cathode pencil at the instant the shutter
closes is given by zero light path or by the zero of the abscissa in Fig. 9. Cal-
culations show that at about 10~2 seconds previous to this the voltage across
the Kerr cell is 95 percent, of its initial value. Now the only way in which the
Kerr cell can affect the spark is by the height of the reflected waves which is
in turn determined by the voltage on the cell. Since for times earlier than are
shown on the curves this voltage is between 95 and 100 percent, for both mini-
mum and maximum capacity adjustments the spark could not be apprecia-
bly affected by a change of cell capacity at these earlier times. This is still
more certain when it is realized that the energy fed into the spark by the
leads from the supply condenser in these earlier times is about three times as
great as that fed in by the Kerr cell circuit.

Since it may now be concluded that the rate of formation of the cathode
pencil is the same for both curves in Fig. 9. the difference on the abscissa of
the two curves for any given ordinate gives the difference in open time of the
shutter resulting from the change in cell capacity.

In order to ascertain whether the Kerr cell and circuit were operating in
agreement with the equations developed, the above three differences of time
were calculated. The variable Kerr cell had a minimum capacity of 47 X 1012
farads. This large minimum capacity was made necessary by the variable fea-
ture of the cell. For the three sets of leads used in the above measurements the
ratio of the total distributed capacity of the leads to the Kerr cell capacity
was so small that the lumped constant solution was sufficiently accurate. The
next question which was confronted was the time it takes the voltage across
the gap to drop. It was known from measurements by other experimenters
with the cathode-ray oscillograph that this time was about 10-% seconds.”
Curves of voltage vs. time were therefore calculated for both instantaneous
voltage drop across the gap and for a linear decrease of voltage with time in
10—8 seconds. From these curves the difference in open time of the shutter due
to the change in cell capacity was determined for: (1) assuming instantane-
ous voltage drop across the gap, (2) assuming linear voltage drop in 108
seconds. The result showed that this difference of time for the two cases was
the same, or stated better, it changed an amount less than could be distin-
guished by the experimental measurements. This constancy of the time dif-
ference was due to the large capacity of the variable Kerr cell which made the
shutter close more slowly than with the regular cell. This situation was very

7 For a determination of this time with the Kerr cell see article by Mr, Frank Dunnington
in Phys. Rev, 38, 1506 (1931).
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fortunate as it made the calculated results entirely independant of the way in
which the voltage dropped across the gap. This makes possible a mathemat-
ical check upon the operation of the Kerr cell and leads alone. Once this
agreement is established the calculations may be extended to a case where
the rate of voltage drop across the gap has considerable influence and thus
determine by trial what the rate of voltage drop is.”

The results of the experiments and calculations are given in Table I. It
is seen that the results agree within the limits of experimental accuracy. It is
unfortunate that the accuracy of the experiment could not have been better.

TaBLE I.
Leads Experimental time difference ~ Calculated time difference
a 2.9X10794+0.5X 107 secs. 2.5X 1079 secs.
b 3.2X1072+0.5X 1079 secs. 2.8 X109 secs.
c 2.9X1072+0.5X10"?secs. 3.2X1079secs.

The percentage error however is not as great as it first appears. The total
time open of the cell is about 10~8 seconds so that the errors of observation
are only about five percent of this value. The remarkable thing is that meas-
urements of such small time intervals in the operation of an optical shutter
can even be approximately measured.

At present no quantitative checks have been made on the Kerr cell circuit
where the distributed constant solution differs greatly from the lumped con-
stant solution (i.e., when there is a relatively large distributed capacity in the
leads). It has however been observed that the cut-off is much sharper when
the leads are placed close together and separated by mica. That is, when mica
is used the cathode pencil is much more sharply defined at its tip. This is in
qualitative agreement with the predictions of the distributed constant solu-
tion.

To sum up, it is seen that the accurate solution of the problem of the dis-
charge of the Kerr cell shows that the initial discharge wave causes the cell
to close more rapidly than is indicated by the approximate solution involving
lumped constants and moreover that the effect of the discharge wave can be
enhanced by increasing the distributed capacity along the leads, thereby ma-
terially increasing the rate of closing of the shutter.

In conclusion I wish to express my appreciation to Mr. Frank Dunnington
for his valuable suggestions and to Professor E. O. Lawrence under whose
direction this experimentation is being carried out.



