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ABSTRACT

On the basis of the conventional model of heteropolar crystals it is shown that an
irregular crystalline behaviour is to be expected in the region of small values of the
exponent, p, of the repulsive energy. In the course of this demonstration Madelung's
method of obtaining the Coulomb potential for the crystals of the cubical system is
justi6ed, and a new, very simple method of calculating the Madelung constant is de-
scribed. This method is applied to the three crystals of the cubical system and other
applications are suggested. The irregular behavior of crystals in the region of small
values of the repulsive exponent is-shown to be manifested as an instability against
various variations by which the geometry of the lattice is altered. In particular, the
instability is demonstrated in the case of the "calcite family" of crystals which is
evolved by a continuous process from a single parameter @. The NaC1- and CsC1-

types of crystals are members of this family, and a continuous mode of transition
from one to the other is thus available. These two types of crystals, in general, are
unstable against a variation in which the parameter p is changed, (@-variation}, and
for small values of the exponent, p, all members of the "calcite family" are shown to
have a tendency to fall apart into one-dimensional crystals of the Madelung type.
Another result of these considerations is that a skew structure, such as that of calcite
may be accounted for on the basis of purely central forces. Finally the regions in

which respectively one-dimensional and two-dimensional crystals, and the crystals
of the cubical system are most stable are calculated. The bearing of these results on
the theory of the secondary structure is brie6y discussed.

I. INTRoDUcTIoN
'

N THE following we shall assume that the potential energy of a Inolecule
- - may be represented thus:

The first term is the Coulomb energy of two point charges, +(ee),
situated a distance r apart; U„ is the energy of polarization which arises as
a result of the deformability of the ions, and A/r& is the potential energy of
the repulsive forces between the ions.

This expression for the potential energy is at best a first approximation.
In the first place, the term purporting to represent the Coulomb energy, in

general, is merely the first member in a power @eries expansion to which
should be added also terms of the nature of homopolar bindings. As w'e shall
see in the course of this discussion, these higher order terms cannot, in general,
be neglected. In the second place, the representation of the energy of repul-
sion is not functionally correct. ' As redeeming features we have the two
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' See, for instance, J. C. Slater, Phys. Rev. 23, 488 (1924) or G. A. Tomlinson, Phil. Mag.

11, 1009 (1931).



arbitrary parameters A and p which may be adjusted empirically in such a
way as to make our approximate functional representation of the energy
closely approach the true representation over the small interval of the inde-
pendent variable, r, in which we are primarily interested.

The simple hypothesis (1), in the hands of Born, ' Madelung, ' and others,
has led to fruitful results insofar as the socalled structure insensitive proper-
ties of heteropolar crystals have been satisfactorily accounted for, There are
reasons for believing4 that the complete failure of the theory to explain the
structure sensitive properties of such crystals is not primarily due to the ap-
proximate nature of the fundamental assumption (1), but is due to the pres-
ence of a regular secondary structure within the crystal, predicted by
Zwickyg and later verified experimentally. ' The existence of a secondary
structure appears to be intimately connected with the existence of the crystal
itself, and therefore appears to be, within wide limits, independent of the
particular nature of the function by which we choose to represent the po-
tential energy. In particular, it has been shown that secondary structures
of various typese are not inconsistent with energy functions of the type (1).
From this we are led to believe that small inaccuracies in the representation
(1) should lead to correspondingly small inaccuracies in any calculated prop-
erty of the crystal, (as exemplified by the comparatively slight spread be-
tween calculated and observed structure insensitive properties); that is to
say, if proper account is taken of the secondary structure. This is our justifica-
tion for considering the simple energy function (1) adequate for our present
needs.

II. THE POTENTIAL ENERGY OF AN IDEAL CRYSTAL

In the ideal models with which here we shall be concerned the lattice
points are symmetry centers at which the electric vector vanishes. Hence
the energy of polarization is zero, and the potential energy per molecule may
be represented as,

V = —M(me)'/p + RA/p&

where M, which we shall call Madelung's constant, is a summation over the
lattice points and depends only on the geometry of the crystal; E. similarly
represents a summation over the lattice points and depends also on the ex-
ponent of the energy of repulsion, p. Eq. (2) involves the assumption that
the three different combinations of ions which occur in a crystal are identical
in regard to the mutual repulsive forces. This naturally will derogate the

~ M. Born, Atomtheorie d. Festen Zustandes, Teubner, 1923; Enz. d. Math. Naturwiss.
V3, 4.
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4 F. Zwicky, Helv. Physica Acta 3, 269 (1930); and 4, 49 (1931).
5 F. Zwicky, Proc. Nat. Acad. Sci. 15, 816 (1929).
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(1930);M. Straumanis, Zeits. f. physik. Chem. (B) 13, 316 (1931);H. Johnson, Journ. Franklin
Inst. Oct. (1931).F. Bitter, Phys. Rev. 38, 1903 (1931).

~ F. Zwicky, Proc. Nat. Acad. Sci. Sept. (1931).
See references 4 and 5, and also, H. M. Evjen, Phys. Rev. 34, 1385 (1929).
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generality of our results, without, however, seriously impairing their qualita-
tive value. By the usual method we. stabilize our model against uniform com-
pression by letting,

BU =0
Bp

It is easily seen that for p greater than unity O'U/Bp' is always greater
than zero, so that the extreme obtained by Eq. (3) is always a minimum.

If we substitute the value p =d obtained from Eq. (3) into Eq. (2) we ob-
tain,

which is always negative, so the crystal is always stable against all variations
by which it would fall completely apart. Eq. (4) also may be written,

where f= (p/p —I) kne)'&/pA]'~& ' is independent of the geometry of the
crystal and depends only on the physical properties of the ions involved.
The ratio 3II/Rv & then is a measure of the stability of the crystal. ' The larger
this ratio the more stable the crystal. This ratio we shall call the stability
factor of the crystal. ~ The inaccuracies of the hypothesis (I), to which we have
called attention, of course detract from the reliability of the stability factor.
In particular, Pauling" has shown that it is not absolutely reliable in compar-
ing the stability of crystals of different geometrical complexions. In view of
Hund's results, however, it may at least be considered as a qualitative guide-
to the stability of crystals.

The static model obtained by this procedure, as we have seen, is always
stable against uniform compression or expansion. The question remains
whether it is stable against variations of a different type. In particular, is it
stable against variations by which the geometry of the lattice is altered & This
has been generally taken for granted. Recently it has been shown, however,
that this is not, in general, true. Zwicky" has shown that for p less than 6,
(5.95 to be more exact) the NaCI-type of crystal is unstable against a
"residual-ray variation. " The writer" similarly has found several variations
against which the same type of crystal is unstable; for instance, Poisson's
ratio becomes negative for p less than 6.2 and the crystal there becomes un-
stable against elongation and contraction. Thus there is a considerable
variety of variations against which the ideal crystal is unstable in the region
of small exponents, p. In the following we shall point out a fact which may be
the fundamental cause of this instability.

' F. Hund, Zeits. f. Physik 34, 833 (1925).
"L.Pauling, Zeits. f. Krist. 09, 35 (1928).
"F.Zwicky, Phys. Rev. 38, 1772 (1931).
'~ To be published shortly.
* Not to be confused with the dynamic stability factor given by the normal modes of

vibration of the system.
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III. THE CoULoMB ENERGY QF AN IDEAL CRYsTAL

In accordance with Eq. (1) the Coulomb energy of an ideal crystal may be
written as follows:

where

(7)

Several ingenious methods" have been devised for evaluating the sum of
the series (7). Madelung's method depends for its success and simplicity on
the peculiar order in which the potentials of the individual ions are summed.
In fact, the ions are collected into groups, each group forming a linear element
within the crystal. The potential of one such linear element is calculated, and
the potential of the crystal as a whole is then said to be the sum of the po-
tentials due to these linear elements. Such a procedure, in general, is not
strictly correct. It is only permissible when the series in question is such that
its sum is independent of the order of summation. Although it is not at all
obvious, Madelung's method, as we shall see, is justified in the case of the
crystals of the cubical system. If, however, his method is applied indiscrim-
inately to a calculation such as that of the change in energy by a "residual-
ray variation" the result, in general, will be incorrect, since the order of sum-
mation here is not immaterial, and the result of the calculation will depend
on the external shape of the region affected by the variation. These difficulties
are avoided, and incidentally a new and very simple method of calculating
Madelung's constant is obtained, if we remember that the building stones of
the crystal are not the individual ions but rather the elementary cells of the
crystal. In other words, we propose to sum the potentials of the individual
cells rather than those of the individual ions; that is,

(8)

where %(l, m, n) is the potential at the lattice point (0, 0, 0) of the cell
(I, I, n). We now collect the terms of the series (8) in order of increasing dis-
tance of the corresponding cells from the origin. It is then easy to show that
the remainder after summing Xof these terms approaches the integral,

g = (Ne) ~ )fjfjfp(x y s)dxdyds

where 0 is the number of elementary cells per unit volume, and the integration
is to be extended over the volume outside the sphere of radius R(X) to which
the direct summation has been carried. In the case of the crystals of the
cubical system we may choose for the elementary cell the elementary cube,
assigning the weights 1, 1/2, 1/4, or 1/8 to the charges according as they are

~' See reference 2 for summary.
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situated in the interior, on the face, on the edge, or on the corner of the cube.
The total charge of the volume cell then, of course, is zero. The potential of
the volume cell, referred for instance to its body center, now may be found by
an expansion in terms of Legendre polynomials. " If r be the radius vector
from the origin to the center of the volume cell, and I; the radius vector from
the center of the volume cell to the i-th ion, e;, of this cell, we have, in fact:

ge;I;"P„(cos8;)

and

= (a+ b+ c)/I;
(I2)

where (x, y, s) are the coordinates of the center of the volume cell, and

($;, rl;, i;) the coordinates of the ~-th ion with respect to the translated Carte-
sian coordinate system having its origin at the center of the volume cell.
Consequently,

f33 . (2e —&) g e; (a + b + c)"

e(e —I) I'(a + b + c)" ' + etc.
2(2e —I)

'

(I3)

A therefore will depend linearly on terms of the type (x/r) (y/r)~ (s/r)',
where a+P+y =e 2s. It—follows that, if we form the integral over the sur-
face of a sphere:

8~ ~q =0. It is therefore suKcient to consider the terms where e, n, P, and y
are even. By a slight transformation of Eq. (13) we obtain:

(l4)

where IP" denotes the t-th coeScient in the Legendre polynomial of degree
2n.

"See, for instance, M. Mason and W. Weaver, The Electromagnetic Field, p. 15.
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where I'denotes a summation over all the sets of integers p+g+s = n —t, and
M(p, g, s, t) is a 2n-th order electric moment of the elementary cell, given by:

M(P, q, s, e) = QeglP'$P"qP'I g" (16)

For the three types of crystals of the cubical system we have:
A. NaCl type -(Fig. 1)
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Fig. i. Elementary cell of the NaCl-type.

M(p, q, s, I) = k~e(d/2)'"

where k~ ———3'+2'(0&+0'+0*—(0'&+0&'+0'"), and the convention has
been adopted:

Oifns@ 0
0 et

1ifm=0.
Here it is easily seen that A2,+1=0, and Ap=Ag=A4=0, so that the first
term in the expansion of the potential of the element of an NaC1 crystal goes
as the inverse seventh power of the distance. This is a significant result since
it shows that for a heteropolar crystal of this type the forces of cohesion act
almost exclusively between neighboring atoms. In fact, the elementary cube
of which an ion is a central member contributes approximately 84 percent to
the Coulomb energy of that ion. This may be seen by direct summation with
reference to Fig. 1. The contribution of the first elementary cube to the
energy of the central ion is:

~ = I- (6»)(-:) + (12/2")(-') —(3/3"')(&) Ie/(d/2)
= —2.92e'/d

as against the total energy as calculated by Madelung:

U, = —3.496e'/d (Mz ——3.496) .

This immediately suggests a simple method of calculating the Madelung
constant: Sum directly the potentials of the ions over a cube of side nd
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around the origin. The potentials of the ions inside the cube are summed in
the ordinary manner, each being given unit weight; the potentials of the ions
forming the surface of the cube, however, are given the weights 1/2, 1/4, or
1/S according as they are situated on a face, an edge, or a corner of the cube.
This procedure, of course, is equivalent to summing by cells rather than by
ions. If n be increased by unit steps, that is, by adding cubical shells, an ex-
tremely rapidly converging series is obtained, which moreover alternates.
Narrow limits are therefore obtained between which the Madelung constant
must lie. In this way the Madelung constant for the NaC1-type of crystal is
obtained to three decimal places by summing over a cube of side not more
than three or four times the lattice constant. This must be considered as more
than sufficiently close in view of the inaccuracies of the fundamental assump-
tion (1).
B. CsCl type (Fi-g. 2)

I

c.

I

@1/8

(e &/8

Fig. 2. Elementary cell of the CsCl-type.

For this type of crystal, we have,

M(p, g, s, t) = 3'e(d/2)'". (-1s)

From Eqs. (14) and (15) we therefore obtain A, =22 ——0, and B4=
Jo4 A4dQ=O, so that again the first term in the expansion of the potential
of a spherical shell of elementary cells goes as the inverse fifth power of the
radius of the shell. If one attempts to evaluate Madelung's constant for this
type of crystal by the method outlined above, some diFficulty is encountered
due to the fact that two diFferent limits seem to be approached according as
one stops with a surface containing only positive ions or one containing only
negative ions. The two limits, in fact, differ by an amount equal to the po-
tential of a double-layer. This is to be expected, and is due to the fact that
we sum over a cube rather than over a sphere. The result for a sphere, in the
limit, obviously will be the average between the two limits for a cube. By
taking this average after summing 12 distinct terms one obtains:

M2 = 2.034
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C. ZNS ty-Pe (Fig. 3)
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Fig. 3. Elementary ce11 of the ZnS-type.

The 2n-th order electrical moment of the elementary cell here is given by:

M(P, q, s, t) = k,e(d(2) '" (19)
where

k, = 2'(0 + 0'+ 0) —4 3'(-,')'"
Eqs. (14) and (15) therefore again yield do=A, =84 ——0, and proceeding as
before, one obtains:

iV3 = 3.78.

As a result of these considerations we can say that the series (8) is ab-
solutely convergent and that its sum is independent of the order of summa-
tion for all the three types of crystals here involved. Madelung's method of
summing therefore is justified, since his grouping of ions into linear elements
may be obtained by a suitable grouping of the elementary cells. In general,
the requirement for absolute convergence is Ao =A ~

——A2 ——0. The first coe%-
cient, A 0, is always zero for electrically neutral matter. The second coefficient,
A&, always can be made to vanish by choosing the point of reference at the
center of gravity of the charges of the elementary cell. Thus the most power-
ful restriction is the requirement that A~ shall vanish. If A2 is not zero we
may get a conditional convergence if 82 =0. In general this would mean that
the energy of the crystal would depend on its external macroscopic shape,
which again might give rise to a type of secondary structure.

The simple method of calculating Madelung's constant which we have
pointed out above, needless to say, is no longer of direct practical importance,
since this constant has already been calculated for a great number of crystals
with great accuracy. "The method, however, may be employed in the evalua-
tion of various derivatives of the Coulomb potential; for instance, it may be
applied to advantage in the calculation of the elastic constants, and is par-
ticularly useful when various irregular variations are imposed on the crystal. "

' O. Emersleben, Phys. Zeits. 24, 73, 97 (1923).
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Otherwise the most interesting result of the preceding considerations is

the fact, to which we have already called attention, that the first term in the
expansion of the Coulomb potential of an element of a cubical crystal goes
effectually as the inverse seventh power of the distance. This fact has some
important consequences. In the first place, when the exponent, p, of' the po-
tential of the repulsive forces is less than seven, the sphere of action of the
repulsive forces is greater than that of the Coulomb forces. Consequently we
should expect irregularities in the behavior of the crystal at these low values
of the exponent p, such as the instability against various variations to which
we have already called attention in paragraph 2.

The exceedingly small sphere of action of the Coulomb forces as well as
of the forces of repulsion moreover makes it difficult to understand the high
degree of regularity over extended regions found by x-ray analysis. This fact

0

e p op

~ 0 y 0

U/3

Fig. 4. Elementary cell of
the "calcite family"

Fig. 5. Projective representation
of the "calcite family"

seems to lend weight to Zwicky's contention' that really a different type of
forces is responsible for the existence of crystals. Our consideration of the
rapidity of convergence of the series involved may furnish clues as to how
such forces can be brought into play, and how the necessary action over great
distances can be effected. In the residual-ray variation ' it is brought about
by making the series involved conditionally convergent, but whether or not
this is the only possible solution to the problem is a question to which we
hope to return later.

The small radius of action of the Coulomb forces proper also elevates the
importance of higher order terms in the expansion giving the Coulomb po-
tential of an ion and also terms of the nature of homopolar bindings. Thus we
are not in general justified in leaving out higher order terms in Eq. (1).

We shall now consider some more general evidence of their regular behavior
of crystals for small values of the exponent p. This we shall first do in the case
of a class of crystals which is evolved by a continuous process from a single
parameter P.
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With reference to Fig. 5 we can immediately write down the Coulomb
energy for this family of crystals, by making use of Madelung's method. It is,

IV. STABILITY FACTOR OF THE CALCITE FAMILY OF CRYSTALS

The family of crystals obtained by assigning arbitrary values to the angle
P, (See Fig. 4), we shall for convenience call the calcite family of crystals.
When the angle P assumes a value approximately 45 degrees we obtain a
model which, geometrically speaking, is a replica of calcite. For sin Q = 1/3'"
each ion io our model has eight next neighbors, and the model corresponds to
the CsCI-type of crystal. On the other hand, for sin & = 1/3 each ion has six
next niehgbors, and the model becomes synonymous with the NaC1-type of
crystal. In addition we obtain a crystal of the hexagonal type for tan
Q = 1/32'" with each ion having 12 next neighbors, a crystal, however, which
does not appear to be of any interest for our present purposes.

A convenient representation of this family of crystals is given in Fig. 5.
The points represent linear, mixed point successions of the Madelung type
perpendicular to the plane of the paper. The letters and numerals indicate
phase-difference. For instance, o U/3 indicates that the nearest positive ion
is displaced up one-third of the distance, 5, between successive ions, which
is given by:

U, = U(0, 0) + g g'[U, (ss, e) + U,(~, I)]
m=0 st=a

where U(0, 0) = —8 log 2 (ne)'/3 d' cos Q
and U, (m, n) = —16 (ne)'/3 d' cos Q.

2' (2~+ 1)—tang(2/+ 1)(3m'+ (2n, —m)')'~' cos 7r

t=o 3

and Us(rn, n) =16 (ne)'/3 d' cos Q

2(3) &is (23+ 1)
s tan p(2t + 1)(m' + 3(2e —m) ') "' 1 + cos

t=o 3

(2 1)

(22)I = I) + Q2

where

I, = 2"A/(d' cos 4)~

[3ts + (2m —
&)

s + (3n + 1) ' cot' 4/4]

and
Ns ——(4/3)" [AIs/( cdos 4) "](Si—Ss)

where

Sg = Q Q Q [9+ 3(2m —t)'+ Ns cot'4] ""

The energy of the repulsive forces may be most conveniently determined
by direct summation. It is,
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and

S2 = Q Q Q [t'+ 3(2m —t)'+ (3l + 1)' cot' g/12j

A sufficient accuracy here is attained by summing about ten distinct
terms directly, after which the summation may be replaced by an integration.
The modified Hankel functions Xo(x) appearing in Eq. (21) will be found tab-
ulated in the literature. " In conjunction with Eq. (2) the Eqs. (21) and (22)
enable us to calculate the stability factor for this family of crystals. Points
of contact with previously calculated results are obtained for the angles
sin ' (1/3'I') and sin ' (1/3').

In Fig. 6 we have plotted the stability factor for this family of crystals
for three different values of the exponent P, namely, 5, 9, and infinity. The
stability factor for an infinite exponent, of course, must be found by a limiting
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Fig. 6. Stability factor for the "calcite family. "

process. For this exponent the repulsive effect of all but the next neighbors
disappears, which is responsible for the discontinuity in the first derivative at
arcsin (1/3) where the number of next neighbors changes from six to two.

For an infinite exponent the most stable members of this family crystals
are seen to be the CsC1-type and the NaCl-type, in the order mentioned. As
the exponent decreases the maximum in the neighborhood of the NaC1-type
becomes more prominent than that in the neighborhood of the CsCl-type,
and finally the NaC1-type becomes more stable than the CsC1-type. This is
not the only effect of decreasing the exponent, however; a more startling
effect is afforded by the shifting of the angles of maximum stability. The
equilibrium position in the neighborhood of the NaC1-type of crystal is
shifted only slightly, that in the neighborhood of the CsCl-type, on the other
hand, quite appreciably, until finally the maximum occurs at an angle of 90

"E. Jahnke and F. Emde, Funktionentafeln, p. 135 (1928).



degrees which corresponds to a linear crystal. For still smaller exponents the
linear crystal becomes even more stable than the NaCl-type.

In general, therefore, our models of the NaC1-type and the CsC1-type of
crystals are unstable against the P-variation. The instability of the NaC1-
type would lead to a somewhat skewed structure, which, however, would be
so slight as to make definite pronouncements hazardous in view of the in-
accuracies of the fundamental assumption (1). The instability of the CsCl-
type, on the other hand, is unmistakable, the maximum being shifted more
and more toward the structure which we have called "pseudo-calcite". It is
of interest to note that such a structure could be accounted for on the basis
of purely central forces. Of interest is also the mechanism of transition, which
here we have found, between the NaC1-type of crystal and the CsCl-type.
The energy maximum separating the two types will be seen, in all cases, to
be small compared to the total energy.

Finally attention is again called to the evidence of the irregular behaviour
in the region of small values of the exponent p exhibited by Fig. 6. It will be
noticed that all members of the calcite family of crystals are less stable than
the linear crystal in this region. To further illuminate this point we have in
the following extended Hund's theory' to include linear and planar crystals.

V. ExTENsIQN QF HUND s THEQRY

In the paper by Hund, ' to which we have repeatedly referred, he calcu-
lates the stability factor for a number of different types of crystals. In view

l.4
HeC1 type ~

Zns type-~~—
pTone

line

.7
6 7 0 9 lO ll l2 p

HnCl- tqge, COCCI

36

Fig. 7. Stability factor for the one-dimensional, two-dinmnsional, ZnS, and NaC1
types of crystals.

of the tendency of our calcite family of crystals to fall apart into mixed linear
point successions of the Madelung type for small values of the exponent p,
it is of interest to extend Hund's work to include such linear crystals. Also,
for the sake of generality, we shall include two-dimensional or planar crys-
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tais, such as are obtained by isolating a 100-plane in the NaCI-type of crystal.
The calculations closely parallel those of Hund and no further explanation is
required except to say that wherever numerical series occur, the summation
either has already been carried out in the literature, or it may be carried out
to more than sufficient accuracy by direct summation of a few terms followed
by the evaluation of an approximate integrated remainder.

Fig. 7 shows the result of these calculations together with the stability
factors of the NaC1- and ZnS-types of crystals. The scale at the bottom of the
figure indicates the regions in which each model is most stable. In spite of
the idealized background of this diagram, its trend is so unmistakable that
it seems permissible to draw some physical conclusions. The apparent insta-
bility of the ZnS-type, in particular, for an exponent 6ve, ' for instance, may
not be real in view of the assumptions invoived in Eq. (1), but it does not
seem very probable that a modification of the energy function (1) could save
the situation in general. In the various types of secondary structures, on the
other hand, we have a source of energy which, in all cases, is ample to restore
the stability of such a crystal as the one mentioned. ' ".Of these types of
secondary structures the one based on a residual-ray variation" appears to
be most suitable for the purpose of lining up the scale, Fig. 7, with observa-
tions, which is, however, a question to which we hope to return later.

The diagram 7 also appears to show some evidence in favor of the earlier
type of secondary structure' which essentially consisted of a crystal within
the crystal, that is, a regular network of two-dimensional crystals within the
three-dimensional one. We are referring to the stability factor of the plane
which will be seen to be nowhere very far below those of the three-dimensional
crystals, and sometimes above. In order to establish the stability of this type
of secondary structure it is, therefore, only necessary to devise a mechanism,
such as the utilization of the energy of polarization, by which the compara-
tively small amount of energy separating the plane from the crystal may be
gained without a corresponding loss. Such a mechanism has already been
found by Zwicky, ' and the success of his theory in accounting for the various
structure sensitive properties is mell known.

"Calculated on the basis of compressibility data. See, for instance, reference 2, p. ?46,


