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ABSTRACT

An improvement is made on a previous attempt to treat two particles by means
of Dirac’s equation. The approximate equation (1) below is considered in successive
steps. The first step, following Oppenheimer, includes the electrostatic energy exactly,
rather than to the first in power in 2. This makes it possible to use it as a good starting
point in the calculation of spectral terms. The second step brings in the energy due to
the interaction of the electric currents. It is given by (9) below. Maxwell's equations
and the conservation of energy (see (8.5)) demand the validity of the diagonal matrix
elements of this expression as a first order perturbation energy, independently of
theories of light quanta. The interactions of the particles with themselves give additive
constants in the energy within the limits of the approximation used. Within the same
limits the results are in agreement with experiment.

(I). STATEMENT OF PROBLEM

N A previous paper! an attempt has been made to treat the spin-spin in-
teractions of two electrons by means of Dirac’s relativistic equation.? The
conclusion reached at the time was that the equation

{?o + alp! + apT + (agf + adY)me
+ (e2/2¢) [alalr~1 + (alz)(allr)r—2]}y = 0 (1)

is not in agreement with experiment.?

Here
E 0
po= ——— — + (e/)(4d" + 44™) — (e*/cr)
271 cot
pt = (p1, pst, psD), P = (p', po, ps')
h
I — 1 b I —
. + (e/0)4x", p m7 Fe + (/9 4x™, (k= 1,2,3)

(4o, A1, 42, 4;) =electromagnetic four vector

7=+ [(0r T — 21112 (a7 — 2o T1) 2 (3051 — a3 7T)? |2 = distance between electrons
I and II a®'=(ai%,00l,a3l), a'l= (onL,aytt,c3tT)

Matrices (cal,aq!,ast,04l), (rt,aet a3 ,a411), identical in form with Dirac’s

! Breit, Phys. Rev. 34, 553 (1929).

2 An attempt along the same lines has been also made by Gaunt (Phil. Trans. Roy. Soc.
A228, 151 (1929). A discussion of this will be found in references I, 3.

3 Breit, Phys. Rev. 36, 385 (1930).
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SPIN-SPIN INTERACTIONS 617

s, are operators on two independent indices belonging respectively to I and
11, each index taking four values 1, 2, 3, 4.

With a slight modification it has been shown however to fit the observed
facts as well as could be expected. The modification required consists in the
removal of terms in e* in the result of eliminating the “small” components of
the wave-function. These terms do not involve % so that their physical signif-
icance is doubtful even for this reason alone.

Eq. (1) is not exact. It is wrong when the distance between the particles
or their velocities are too great. It also was not intended to give account of
radiation from the atom. It will now be shown that a modification of the first
interpretation of (1) can be given in such a way that the difficulty with the
e* terms disappears. From the present point of view the e terms derived in
reference 1 have no direct physical significance. Their appearance in the pre-
vious work was due to trying to attach more exactness to the last term in (1)
than it possesses.

In reference 1 the derivation of the equation has been given from the
point of view of the Heisenberg-Pauli theory of electrodynamics. It was sup-
posed in this calculation that the interaction energy between the particles is
small. The first order effect in the interaction energy was calculated and it
was found that the values of the interaction integrals to be used in the cal-
calculation of the mutual energy are given by the formula (63) (using umbral
notation)

A= [ () Lo )’

— (s aputts?) {1/rpps } (.5t a1,%) AV AV’ (2)
{1/1’1)13’} = (1/1’Pp') COs (27T?’Ppr/}\st).

Here s, ¢ are unperturbed electron levels. The wave-length of the transition
s—t is denoted by A, Recently, C. Mgller* and L. Rosenfeld® have given
simpler derivations of the same result also to the first order in e? without us-
ing the formalism of the quantum electrodynamics.® There is hardly any
doubt that the mutual energy of two electrons is given correctly to the first
order in ¢? by the interaction integrals A, ., as long as one is justified in
speaking of a constant energy.

This derivation is not sufficient to make practical applications to the fine
structure of He possible. The Shroedinger non-relativistic wave equation
gives, according to Kellner and Hylleraas as well as others, term value ener-
gies for the two electron problem which are in good agreement with experi-
ment. In these calculations the electrostatic energy €?/r is used much more
accurately than to the first order. It is desirable to have such a theory that
Schroedinger’s non-relativistic wave equation with the ¢%/7 term for the mu-

4 C. Mgller, Zeits. f. Physik 70, 786 (1931).

5 L. Rosenfeld, Zeits. f. Physik 73, 253 (1931).

6 The fact that the easiest interpretation of A, is in terms of the retarded potentials has
been stated in the writer’s paper. (p. 572).
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tual energy could be taken as a starting point for the calculations. In order to
have such a theory it is necessary to explain the validity of the €?/7 term in an
exact sense. We must strive therefore for a theory in which the Schroedinger
non-relativistic value of the energy is modified by the presence of small
terms.

II. ELECTROSTATIC ENERGY

The proper point of view for such a treatment is given by Oppenheimer?
making use of the second form of the Heisenberg-Pauli theory. It is shown in
Oppenheimer’s paper that the variables describing the longitudinal compo-
nents of the electromagnetic field can be eliminated from the wave equations.
(Formula (8) of J. R. Oppenheimer.”) The process of elimination brings in in-
finite terms into the energy expression. The infinite terms represent the in-
finite electrostatic energy of point charges. It is stated in Oppenheimer’s pa-
per that these terms may be considered as constants and do not interfere with
the application of the theory. This point is of special interest to us and will
therefore be discussed somewhat more in detail.

The mathematical apparatus of Heisenberg-Pauli II can be applied to
classical electrodynamics. Its direct application also leads to infinities as
would be expected of any theory with point charges. Nevertheless, in classi-
cal theory, there is a way of escaping the difficulty. In all of the expressions
for the interaction energy we can replace A(zr)# by [A(r)D(zr—2')1d V' where
A is the vector potential, r the velocity, r is the position of the particle and
r’ is a variable point in space. The function D is a concentrated function
satisfying

f D(r — r)dv’' =1

resembling a § function before the latter passes to the limit of infinite concen-
tration. Such a scheme can be carried through only non-relativistically in a
classical particle theory. Nevertheless the result is of interest because of its
simplicity. The longitudinal components of the field can be eliminated by
using the equation div € =4wp. The elimination introduces additional terms
into the Hamiltonian. Their sum is simply the energy of the electrostatic
field (defined by div €=4mp, curl €=0) of the charge distributions de-
scribed by D(r —1r’) for each particle. It may be decomposed into a sum of the
electrostatic energy of the field which would exist if the particles were in-
finitely far from each other and the mutual energy of the particles (Z; je.e;/
7:;). The self energy is constant and may be removed. Similarly in quantum
theory we can replace all integrals

[ 40w adir vy [ [ a@06 = )t ant)eavar.

We then obtain large additive constants identical with those of the classical
theory. The additive constants can be removed from the wave equation with-

7 J. R. Oppenheimer, Phys. Rev. 35, 461 (1930).
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out affecting the physically interesting conclusions about numbers of light
quanta, distribution of particles, etc. The fact that a hydrogenic atom may be
treated by means of Dirac’s equation shows that this removal of the additive
constants is a safe procedure. From our present point of view there is no es-
sential difference between the mutual electrostatic energy of a proton and an
electron and the mutual electrostatic energy of a collection of several protons
and several electrons.

There is an apparent objection. As long as the D function is not the &
function the equations are not relativistically invariant. The results however
should approach relativistically invariant results as D approaches 6.

On elimination we end up therefore with Oppenheimer’s (11) slightly
modified by the removal of the large additive constants and by the replace-
ment of every ee;/7;; by the mutual electrostatic energy of two charge dis-
tributions e, D;(r;—r') e;Di(r;—1’), 7.,= |ri——tj|. This is then identical in
content with Dirac’s theory of light quanta.?

ITI. INTERACTOIN WITH TRANSVERSE WAVES

In Dirac’s theory of light quanta part of the electromagnetic field is de-
scribed by means of a vector potential A, satisfying div A=0. In order to de-
scribe the whole field we need in addition an electrostatic field. We call it €’
and the total electric field we call €. The defining equations are then

0A
8=———a7+ €, 3¢ = rot A; div €& = 4mp; rot €& =0 (3)
¢

divA = 0.

Here p is the charge density supposed to satisfy the continuity equation
dp :
— 4 divy =0 4
Py 4

where j is the current density. It follows from Maxwell’s equations that

<A—a~2>A=—EW—j—i§- ©)

66') _ (dinl jp/)

By (3) and (4)

o). =V A (6)

P Ypp’

where 7pp’ is the distance between points P and P’. Hence substituting (6)
into (5) using the retarded expression for 4 we have

1 A 1 1 1
Ap, = —*f { z } dVp: + *“f {VP f ijVP<—‘>dVP'}dVP <7>
¢ Tprpr 4wc J rprp rppr

8 The obvious changes of using progressive waves in the Heisenberg-Pauli theory and of us-
ing Dirac’s relativistic equation in Dirac’s presentation of the theory of light quanta must
be made in order to obtain also identity in form.
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where {} denotes retarded values. Neglecting retardation in (7) we obtain
after some easy transformations

1 3 ot -
ij//AP//dVP" = 2— f(JPJP + (JP )(:;]P >>dVP’dVP” (8)
C .

r T

where 7 is the distance between points P’, P’’. The above deduction of (8)
applies in the classical as well as in the quantum theory as long as the current
operators commute with the coordinates. The operator which represents the
charge density at a point ¢’ is —2e,D;(r;— ') while the current density opera-
tor is given by Ze,ca'D(r;—1r') = —Ze;r;D(r;—1r').

We now consider the wave equation which results on eliminating the
electrostatic field: '

(?o + Z a"(pf + % f A(2)Di(r; — r’)dV’>
+ Xilaimw N [(%)24— ZCZ}dV >¢ =0 (58).

8¢ cot
( ha i 1o > (he123)
Po= T et T oo oo

The wave function contains the coordinates of the particles as well as those
describing the radiation (e.g., numbers of light quanta). We shall not use ex-
plicitly the way in which ¢ depends on the radiation variables. The term due
to (04 /cdt)? will be neglected since it has to do with the acceleration. It can-
not be taken into account consistently without considering the emission of
radiation. We may now use expressions (8), (7) in the above wave equation.
The energy operator is then expressed in terms of the particle variables with-
out the aid of the radiation variables. The resultant contribution to the en-
ergy operator is

E=— 2eadl f A(z)Dir; — r)dV’ + (1/8x) f sexdV .

We have

( drj A 9€
f 5e2dV = f:}c rot AdV = f(rot 30)AdV = f<~— -t —)AdV
c 2082 ot

We neglect 924/c%3#2 and 9 €'/t being a gradient contributes nothing by
Green's theorem, div A being zero. Thus

1 1 . N
AE = — — | jagv = — Mf((JPJP ) +(JP r)iJP r)>de/dVP~. <9)

2c? 4¢? r 7

This is equivalent to Oppenheimer’s (28).7 In the derivation of (9) we have
made a number of approximations. These have been suggested to us by the
belief that acceleration and radiation have little to do with the energy of sta-
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tionary states. It is not possible to justify this belief by present mathema-
tical theories. There is thus an element of speculation in the formula (9). We
believe that it is correct to start with the wave equation omitting 4, to use
the energy eigenwerte of this equation and to add to them the diagonal ma-
trix elements of (9). This should give the first order perturbation in the ener-
gy due to the interaction of the particles with the transverse electromagnetic
waves. Again it is not possible to give a mathematical justification because
there exists no proper quantum theory of electrodynamics. However, simple
considerations indicate that the diagonal matrix elements of (9) are good ap-
proximations to the desired correction for the interaction with the field.

The point is that we may multiply (8.5) by ¢* on the left and integrate
over the configuration space including that of light quanta. We then have an
equation connecting the “expectations” (Erwartungwerte) of the terms in the
operator of (8.5). This equation simply means that the “expectation” of the
energy is the sum of the kinetic energy of the material particles and of the
energy of the electromagnetic field. There is every reason to believe that this
is correct even though present theories of electrodynamics based on (8.5) and
special assumptions about the nature of light quanta lead to some physically
impossible results. The coupling of the motions of particles due to their inter-
actions with transverse waves is small compared to that due to electrostatic
forces. We may therefore compute the effect on the “expectation” of the en-
ergy by using the unperturbed proper functions of (8.5) with 4 omitted. Thus
the correctness of the diagonal elements of AE in energy calculations follows
from the principle of conservation of energy and the form of (8.5) indepen-
dently of the assumptions made about the nature of light quanta.

(IV) ConNsTANCY OF SELF-ENERGY TERMS

Replacing the current operators by Ze;ca’D;(r;—r’) we have for the addi-
tion to the energy characterised by quantum numbers 7y, 75, 73 . . . in the
wave equation

<p0 + 2api + Zaﬁmic)tp =0 (10)
the diagonal matrix element of the operator (9):

(AF)sn = — (2) ;j@ief ff [( ata’ n (airp'P")(a"rpr")>Di(n —y

Yprpre Yprpre

(11)
~D7'(l‘,' - I'”)] aVpdVp.

According to the above reasoning this formula is independent of the detailed
assumptions about the nature of light quanta which are made in Dirac’s
theory. The essential requirements for its validity are the correctness of
Maxwell’s equations, the legitimacy of neglecting retardation in (7) and of
(024/c%0t?), 1/c*(0 A/3¢)? in comparison with 4wj/c, 3C? respectively. It may
be also derived by means of Dirac’s theory of light quanta or its equivalent
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Heisenberg-Pauli theory as has been done by Oppenheimer.” Carrying
through the calculation by the method of successive approximations of wave
functions used in Heisenberg-Pauli I for the evaluation of their E? there is no
difficulty in deriving (AE)#n, n in agreement with (11). The treatment of re-
sonance denominators is then exactly similar to that in HPI for €?/r. This
adds to our confidence in (9) to the first order in 2.

The summation over ¢, j can be broken up into two parts one part con-
taining terms with 25%j and another with ¢=j.

~1T =3T3

1,7 > =7
The first part is in agreement with (1) provided the last term in (1) is used
for the calculation of the energy by the usual method of the perturbation
theory. The second part contributes a constant. In fact

(li(li + (aitplpll)<airplpll) 4.
Ypirpre Yprpte rP’P"
The contribution to (11) due to these terms is

Dyr; — rp:)Di(r; — rpr
_ 263( ff (r rp1) (r rp )dVP’dVP'/>

¥prprr

n,n

The double integral is a constant and therefore the diagonal matrix element
is simply this constant. We have thus a contribution

> 2Wo"<Wo”' = (e%/2) f f Ddee = 22)Dles - 177) derde~>

1’P/P/1

to the energy where W, is the energy of the electrostatic field due to the
particle <. It is not very satisfactory to have this energy thrust upon us. How-
ever it must be remembered that only energy differences can be observed. For
these the additive constant energy is not of interest. As long as Z;s; is small
the perturbation in the energy differences between various spectral terms due
to (11) is also small.

We see therefore that Eq. (1) may be interpreted consistently in the sense
that the interaction of the particles with the transverse waves brings about
a perturbation in the energy of the amount

(AE’ am = —1 Zei3j< a‘a’ + (a’tﬁ)(a’tii)> ) (12)

i>7 Tij 7if®

The unperturbed energy values are the eigenwerte of (10).

This conclusion is somewhat more restricted than the supposition that (1)
is correct. We should substitute for the last term in (1) its diagonal matrix
element referred to the proper energy values of (10). Another way of express-
ing the same result is to say that (1) may be used for energy calculations if
the last term is taken into account to the first order in the usual way by pen-
turbation theory working with 16 ¥ components.
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(V) COMPARISON WITH EXPERIMENT

It remains to compare the results with experiment. It is convenient to use
Dirac’s original form of the « matrices. As in reference (1) we let ¢ be the
negative of Pauli’s matrices. We introduce a wave function ¥ having four
components identical with the four “large” components of ¢. The ¢’s operate
on V. Thus

(UI‘I’)a,B = Zaau"l’a'a (a, B = 3or 4) .
We let
(XW) 5.0 = ¥1,(XW) 40 = Y20
(X0 5 = VYa,15 (XN a4 = Va2 (13)

(Y¥)s5 = ¥1,1; (V)50 = ¢1,0; (TV) i3 = o1 (VW) 4,0 = P22,
Then (1) may be rewritten as
(po — 2me)¥ — (8'pH) (X)) — (¢1pl)(X1W) + M(VV) = 0
— (') + po(X1¥) + M(X™F) — (¢"p™)(VE) =0
— (¢Up)¥ + M(X™) + po( X)) — (¢p) (YY) = 0
MY — (¢U1p)(X1W) — (81ph)(XTV) + (pg + 2me)(Y¥) = 0

(14)

where

2¢

= e_2<61611 + (dlr)(dnr))

r r

If we omit M in (14) we obtain the result of rewriting (10). The perturbation
due to the last term in (1) is thus the same as the perturbation due to M in
(14) i.e.,

(AE)pn=—c¢ f (V) + (XT)*- (XT) + (XUE)*(XT) + (Y¥)*¥}dr

the integration being extended over the configuration space. Omitting M we
obtain sufficiently exact expressions for (X1¥), (X11W¥), (YV¥) to substitute
into this integral

1 1
(X)) = — (dp)¥, (X7F) = — (sp)¥,
2mce 2mc ’

(Y¥) = (é'p)(MplY) /dm2c2.
Substituting we obtain
1
4mc
+ (¢'pY) (¢"p™) M [Wdr.

This agrees exactly with the first order perturbation energy of the term in
(e2/8m?2c®) of Eq. (44) of reference (1). In the approximation of that reference

(AE)n m =

f‘I’*,[(deI)M@HpH) + (depn)M(deI) + M(dlpl)(dnpn)
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the elimination of (X™W), (X1IW¥), (YV¥) from (14) with M omitted leads to
all the remaining terms of that Eq. (44) with the exception of the term —
— (e*/16mc®) X2 In the calculation of the energies of He we may use therefore
Eq. (48) provided the e* are omitted. According to the calculations previously
made? the results are in as good agreement with experiment as could be ex-
pected.

According to the view expressed above we may expect that the approxi-
mation of equation (10) corrected by (12) may have a wider range of applica-
tion than the He fine structure. Two K electrons around a bare nucleus would
be expected to obey this equation. The experimentally accessible K lines are
unfortunately complicated by the screening due to other electrons.

In comparison with the calculation of reference 2 the present treatment
has the advantage of being guided more closely by physical considerations in
the choice of approximations. These are seen clearly only in the 16 component
form of Eq. (1). The reduction to four “large” components! obliterated the
direct significance of terms as “expectations” (Erwartungnwerte). The use of
the form (14) makes it possible to carry through the applications without
losing sight of the direct physical significance of the various terms.



