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ABSTRACT

It is shown that in the limit h —+0 the quantity local momentum becomes equal
to the classical momentum and the equations involving local momentum become
equations of classical mechanics. Operators are found for this quantity corresponding
to the operator (h/2m. 2') (d/dx).

1.
HE most usual statement concerning the relation of quantum to clas-
sical mechanics is that in the limit h —+0 quantum mechanical relations

connecting the observables of this theory pass over into classical equations.
One of the most important of such relations is the commutator of matrix
mechanics

h
px —xp = 1

2' i
connecting the dynamical variables p and x. In the limit h = 0 we obtain the
following results for~ and x: (1) they become commuting quantities of the
classical theory (2) they are simultaneously observable to any degree of
accuracy. The above results along with the behavior of the quantum me-
chanical equations of motion are sufhcient to show that, if we represent the
motion of a system by a wave packet, in the limit h —h0 (1) the initial size of
the packet may be made as small as we please, (2) the wave packet does not
spread, and (3) it moves in accordance with the laws of classical mechanics.
The above is not intended as a proof that

limh s (quantum mechanics) =classical mechanics

but is simply an outline of the steps which might be taken in such a proof.
In a recent issue of the Physical Review the author published a paper

("A Note on Local Momentum in Wave Mechanics" )' in which it was shown
that the wave functions for one-dimentional problems could be written in the
forms

it+ —p(X)
—I/sessf/hf Pds

P(X)—h/2S 2+//hf Pdz—
or for discrete states'

27'
p = p(x) '" cos — pdx

h
(2)

* National Research Fellow.
' Young, Phys. Rev. 38, 1612 (1931).
' For discrete states we require (2s//h) fPdx = n7r the range of integration being taken over

the entire range of the coordinate. Note that twice the integral makes the analogy with the
Bohr-Sommerfeld quantum condition gpdx=nk complete.
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where P(x) (called local momentum) satisfies the differential equation

h' d'
P~+- 2~(U —Z) =

4x' dx' (3)

The Bohr-Sommerfeld quantum condition was there revived in terms of the
local momentum and it was stated that in the limit, P(x) becomes equal to
p(x), the classical momentum Th. is may be demonstrated easily from Eq. (3)
for if we go to the limit h = 0 we obtain

but classically we have
P'(x) + 2m(U —E) = 0

P'(x) + 2si(U —P) = 0

(4)

Therefore in the limit k~0, P(x)—&p(x). If in Eq. (3) we introduce 5i, =fPdx
we obtain as k—+0

(
d5p '

+ 2m(U —E) = 0.

This is the one-dimensional Hamilton-Iacobi equation, So is the classical
action function and S~ its wave mechanical analogue.

It is clear that P(x) is not a dynamical variable but it is interesting to try
to find an operator P corresponding to the operators = (Ii/2xi) (d/dx). To do
this let us consider a wave function of the form P+. Let us answer the question
as to what function Q(x) satisfies the relation

h d
P+ = P(x)P+

2~i dQ(x)
We find

dQ h d
I' ' —log/+

ds 27rz dg

introduction for P+ its value in terms of P(x) and integrating yields

1 h
Q()= +

4 i P(x)

Note that for finite Ii the last term in this equation is just 1/4' times a ' de
Broglie wave-length" and that in the limit Q(x)~x the dynamical variable
conjugate to P. Q(x) also satisfies

h d p- = —P(x)ff-
27r 2

Moreover we may write

and the real wave function

p+ —&2+ fikf PdQ

&
—2 xi i kJPdQ' (Io)

P = cos (2x/h) Jt PdQ.
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So far the author has discovered no real practical advantage in writing the
wave functions in this form but their simplicity has a definite elegrance and
aesthetic value. If we define an operator P by the relation

h d

2xi dQ
we can easily show that

1 d hP= 1+—— (i2)

It is clear from our definition of the operator P that
h

PQ —QP =
27f-i

but a more significant relation may be derived, namely

PQ —QP —= px —xp. (»)
These results are interesting and suggestive and may be extended easily. We
consider that a close and fundamental relationship has been established be-
tween the local momentum P(x) and the classical momentum.

2.
The differential equation satisfied by P(x), Eq. (3), is not in a form which

allows easy analytic calculation, but, by making use of the relationship exist-
ing between P(x) and the fundamental solutions of the Schrodinger equation
for the same potential, analytic expressions may be obtained for most of the
well-known equations of wave mechanics whose solutions are known exactly.
By taking P ' as the dependent variable Eq. (3) may be put into a form

admirably suited to numerical methods. As might be expected results of prob-
lems depending essentially on wave interference may be expressed simply in

terms of the phase integral fPdx For example. , consider the elastic scattering
of electrons by atoms represented by a central field of potential V(r) (Ram-
sauer effect). We obtain the well-known result for the cross section in units

equal to the square of the Bohr radius for hydrogen

4~
Q = —g(2l + i) sin' 8 (i4)

i=o
where

r

6 ~
—— lim P, , ~(r) dr — P ~(r0) dr

y-+ oo 0 0

where the P~, ~ and P0, ~ are the local momenta corresponding to the wave

equations
f(f + i)

Rg', ( + k' + 2V(r) — — RI, $r'
and

l(l y i)-
R0, g + k' —— — R0, g

= 0 (i7)

In these equations k' represents the energy of the electron beam in hydrogenic
units.


