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ABSTRACT

The quantum theory of radiation, formulated in wave-mechanical language but
in terms of running waves, is shown to lead under suitable conditions to the classical
theory of emission by a particle as a first approximation. Non-relativistic mechanics is
used, and the limitations of the method are brought out in terms of classical theory.
The characteristic quantum phenomenon of the Compton effect requires that the
Compton recoil shall exceed the spread in momentum of the particle, and so that the
wave-packet shall greatly exceed in diameter the wave-length of the incident radia-
tion; this condition is realizable on any scale of magnitude. For quasi-classical motion
just the reverse is required; furthermore, if the motion is to last for a number of wave-
periods, the wave-length must greatly exceed k/mc (m=mass of the particle). The
classical packet-motion arises from combinations between quantum-states of the
particle-field system; this fact suggests that the photon is not a fundamental con-
stituent of the field but only one possible aspect of its action. The infinite "zero-
energy" associated apparently even with the lowest energy-state of the field implies no
electromagnetic field intensities at any point. Whereas for problems on energy or
momentum it is customary to represent an incident wave-train by a single typical
quantum state, to obtain motional phenomena of classical type a more complete ex-
pression such as that given in the paper must be used. The physically empty field like-
wise corresponds to a mixture of quantum states but without correlation among their
amplitudes.

'HE quantum-mechanical theory of radiation initiated by Dirac, which
yields a correct formula for the quantum phenomenon of the Compton

effect, must likewise lead to the classical theory of radiation as an approxima-
tion valid under certain conditions. A certain theoretical interest seems to at-
tach to the manner in which it does this. In particular, one would like to see
how we can bring under the same theoretical roof the continuous oscillation,
chiefly along the electric vector, of a free electron in a Hertzian wave-train, on
the one hand, and the billiard-ball Compton recoil of an electron on the other,
both occurring in radiation fields that appear to differ only in respect of
wave-length. ' Such a discussion forms the object of the present paper. A
wave-mechanical form of the theory, new in some details, is employed, partly
because wave-mechanics seems less repellently abstract to many than the
more usual symbolic matrix formulation; and the treatment is non-relativ-
istic throughout. The mathematical machinery remains, nevertheless, in
spite of every simplification rather voluminous, and is given only in skeleton;
it is hoped that those who are interested chiefly in the ideas involved will find
no difhculty in following the discussion while those who wish to follow the

i Cf. A. H. Compton, Phys. Rev. 31, 59 (1928).
' Cf. W. Heisenberg, Ann. d. Physik 9, 338 (1931).
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mathematics in detail will have no trouble in following directions and filling
in the gaps.

The classical theory of the field in Hamiltonian form is first developed as
a prototype in greater detail than has been done elsewhere; then wave-
mechanical formulas are deduced for the motion of the packet centroid in a
radiation field, and from these the classical emission-formula for a point
charge is obtained as an approximation. Letting this charge recede to infinity
we have a typical quantum-mechanical expression for a physical plane wave-
train. The paper closes with a brief discussion of the relation between the
Compton eRect and the classical law of force.

CLAssIcAL THEQRY IN HAMILToNIAN FQRM

A pure radiation field, characterized as such by the absence of electric
charges in it, can be described completely in terms of a vector potential A;
and it can further be resolved into an infinite set of plane wave-trains running
in all directions, that is, we can write:

A = a' v, n cos 2m. v t —yn x + a" v, n sin 2xv t —yn. x des,

in which v =frequency, c= 1/y =speed of light, x is the vector distance of the
held-point from the origin, n is a unit vector in the direction of the element of
solid angle des and a' and a" are vector functions of v and n perpendicular to
each other and to n; the integral extends over all positive v and all directions
of n. Associated with each pair of values of v and n there are thus two wave-
trains polarized at right angles. For the energy in the field one finds by means
of Maxwell's equations, the formulas E= yBA/B—t, H=curl A, and a
simple application of the divergence theorem:

Wo = Jf (~ + a)/g d. = (& /g~) ~f [(aA/a~) —A a A/a~ ]d,

the field being assumed to vanish fast enough at infinity so that fdiv A XHdr
=0. We now substitute here for A from (1), replace v and co as variables in
one integral by vn„vn„, vn, (so that v' = (vn, )'+ (vn„)'+ (vn, )' and v'dvdcu = ele-
ment of volume in polars=d(vn, )d(vn„)d(vn, )), and evaluate the result by
means of repeated applications of the Fourier integrals,

f

dic
p, cos2vrs p —pde = p, ,

f dS p sin 2z's p —p dp, = 0.

The final result is an expression for the energy of the field in terms of the
amplitudes a' and u" of the wave-trains, viz. ,

~ = i I&) f (" +"")&~ . ' (3)
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In order to apply quantum theory we must now substitute for Maxwell's
equations a statement of the laws of the field in Hamiltonian form, that is,
we must describe the field in terms of variables obeying the Hamiltonian
equations of motion. For simplicity we shall make these finite in number by
repin, cing our continuous set of wave-trains by a discrete set, associated in
pairs with equal intervals Av on the frequency axis and equal elements of
solid angle Ace in direction; the integrzls above are then to be replaced by
sums. Then at the end of our calculations we let Av and Aco approach zero.
There is a considerable range of choice for the Hamiltonian variables, but
all must lead to the same result. The simplest choice for wave-mechanical
purposes seems to be to take as variables describing the wave-trains associ-
ated with given v and n the two pairs:

Q' = Bs' cos 2~et Q" = Ba" sin 2~v)

I = —BG sin 2~v( I"= 80,"cps 2~p&

where B=(ckvkco/2v)"'. It will be more convenient, however, to number
these pairs of variables in a single sequence, merely remembering that two
members of the sequence belong to each v and n Eqs.. (I) and (3) then be-
come, in terms of these coordinates:

A = P(&r) b, (Q, cos yp, z, —I', sin yp, z,),
W, = P(.)x..(Q. + Z. ),

(3)

(6)

where p, =27rv. , n, is the unit ray-vector for wave-train number 0, x, =n;, x,
5, = (2v,kvkco/c)'"I„ I, being a unit vector in the direction of the electric
vector (i.e. , of the original a' or a").Obviously with Wo as Hamiltonian the
new variables obey the Hamiltonian equations: Q. =8Wp/BP„P = —8Wo/-
BQ..

For the treatment of physical problems it is necessary to introduce elec-
tricity into the field, contrary to our assumption that there is none there. It
was tacitly assumed by Dirac4 that this inconsistency would not invalidate
the results so far as concerns pure radiation effects; we shall see presently to
what extent this assumption is justified. Accordingly we add the usual (non-
relativistic) expression for one or more independent particles having charges
e; and masses m; and obtain as the classical Hamiltonian function for a num-
ber of particles interacting only by way of the radiation field:

W = g(~)x..(Q.2+ Z. ) + g(q)(I/2m, )(~, —~e,~,), (7)

where A; stands for A with the coordinates of particle no. j inserted for x,g; is
the vector generalized momentum for the jth particle, and Z (j) extends over
all particles.

It is well known that the second term in W as given by (7) yields correct
values for the motion of the particles themselves in a given field with vector

3 Similar variables are employed by Born and Jordan in their book, Quantenmechanik,
but they employ standing waves inside a box in place of running waves.

4 P. A. M. Dirac, Roy. Soc. Proc. 114,243 (1927).



po'tential A;, the velocity of the jth particle being v;= (p; —ye;A, )/m, . We
shall treat here the converse case, the reaction of the particle upon the field
according to classical theory, doing this partly because the calculations will
serve as a valuable guide in the quantum work and partly to reveal the na-
ture of the limitations upon Dirac's hypothesis. For simplicity we shall as-
sume but one particle present; the extension to many is easy. We have then:

Let us suppose that the field vanishes until t =0, when the charge begins to
move. The appropriate solution of (8) is,

t

Q. + iP. = pe fi, v[sintk. (t —t'+ yx„) + i costi, (t —t'+ yx„)]dt', (Sa)
0

where v = (p —eA/c)/nz, and by (5) the resulting potential is:

A = 2ep' Q(o) v,hvticil, 1. v sin tk, (t —t' + px„—yx,)dt',
0

in which v and x„stand for values at the partigle and at time t' while xkr re-
fers to the field-point at which A is given by the equation. Now if B is any
vector and if we denote the two perpendicular 1's that belong to given v, and
n, by 1.&, I,&, we have

I g Bl g + 1.2 Bl 2
——Bz.

where Bl, denotes the vector component of B perpendicular to n, . Hence

Oo t

A = 2ey' v,dv, dkc vz. sin tk.(t —t'+ yx. , —yx,)dt'.
0 0

The integration over dke is easily carried out first We not.e that fvz. sin tk, y
(x„—x,)dke vanishes by symmetry, vz. being the same and x„—x, reversed
in sign for trains moving oppositely. Hence

A = 2ey' v,dv, dt' vg, sin y t —t' cos p y x„—x, dm.
0 0

Now let r denote distance from the particle to the field-point and take this
line as the axis of polars. Then cos tk,y(x„—x,) = cos (tt,yr cos 0), 9 referring
to the direction of nvi. =v —v n.n, =v —(v,c cos tl —vi sin 8 cos Q)n„v„
and v& being vector components respectively parallel and perpendicular to
z, Cko =sin Odod@; and after several partial integrations over 0, and then one
in the 1/r' terms with respect to v. , one finds that several terms cancel and
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00 2'
A = 2ey' dv, sin p, (t —t')

0 0

2Vr —VJ+ — —(t —t') cos p, (t ,
—t') sin ti,prdt'

7l Pg "tr t'

in which v„, vi and r are all functions of t'. We next replace the product of
sines or cosines by functions of t —t + yr, change the variable of integration
by means of the formula, d(t'+ yr) = (1+ye„)dt', and then apply the for-
mulas:

f
00 sin ti(r —k)

dp, , f(r) costi, (r —k)dr = lim f(r) — —dr = prf(k) or 0
0 0 P—&oo v —k

according as 0 &k & T or not, k and T being constants; and

dPtr 7r jr—sin 3fv, = —if 3f ) 0 and =- ——if M & 0.
0 &a 2 2

We thus find that for t) yr

8 Vz 2v„—vz
A = ———— + ec t —(t —t')dt',

c r(1 —pe), ,„
while for 0 & t &yr

2v, —vz
A = ec

"
(t —t')dt'.

0

A. as given by (11) should represent at least the radiative component of
the field around a point-charge moving with variable velocity v. It is immedi-
ately obvious, that the result cannot be entirely correct, for the second
term is not properly retarded. Even the first term has an unfamiliar look;
but this is merely a consequence of the fact that our wave-trains must
necessarily yield a solenoidal potential whereas in the usual theory div A
does not always vanish; upon differentiating the first term one nevertheless
obtains correct values for the electric and magnetic fields in so far as they
are of order 1/r. The true magnitude of the error is best appreciated by pass-
ing to the case of simple harmonic motion. If we put v =v0 sin 2~v0t, where
vp is small, the integral in (11) is easily evaluated (r being treated as sensi-
bly constant). Omitting details we shall merely state here that the result
represents the correct Hertzian electric and magnetic fields around a vibrat-
ing doublet of instantaneous moment —ev p cos 2prvpt/2prv p, starting from rest
at t=0, except that there is superposed upon this field for t) 0 the static
electric Field of a doublet of instantaneously equal and opposite moment,
and also out to r =ct the same for a doublet of moment —evp/27lvp Tile, .
error is thus of order (r/Xp)', Xp ——c/vp. (The complete classical field would
likewise contain, of course, the simple electrostatic field of the particle. )

In general, then, in classical theory the application of the Hamiltonian
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equations to the running-wave formulation gives correctly the radiation
field around a moving point-charge at distances rather large relative to all
the principal wave-lengths involved in the Fourier representation of the mo-
tion of the charge. This restriction excludes the simple case of a charge in
uniform relative motion, and it also prevents, unfortunately, any application
to the problem of radiation reaction.

WAVE MECHANICS OF THE RADIATION FIELD

To apply wave mechanics we now introduce a wave-scalar f, which is a
function of the Q's, the coordinates of the particles and the time, and form a
Schrodinger equation for it in the usual way, assuming that H/" as given by
(7) is the correct Hamiltonian so long as the particles interact only indirectly
by way of the radiation field. The equation reads:

Gift 82 1 e;—e —= g(~)~v ~' + g' yy g(j) ~V; ——'A; tt, (12)
8$ gg 2pbg' C

where s = fi/2iri, the subscript j on p and A specifies that the space coordinates
occurring therein are those of the jth particle, and A is the operator vector-
potential:

8
A = g(o)b.E„E,= Q, cos 7p,x, —e sin yp, x, .

8

We shall presently deduce formulas for the motion of packets directly
from this equation, but it seems impossible to make use of them without re-
sorting to the usual cumbrous resolution into characteristic functions. The
latter may be summarized as follows.

The Hamiltonian for the field alone, Wo ——Z(0)harv, (g,'+P,'), is that for
a collection of independent harmonic oscillators, expressed in what might be
called "canonical form"; accordingly we have, as usual, as characteristic func-
tions for the field alone

where P„denotes a particular choice of the X,'s and it(Q„X.) stands for a
normalized characteristic solution of the harmonic-oscillator equation:

..(g. —h /~ a /ag. )&(g., ttt.) = (ter. + -,') hv.&(g., X.) .

Inserting then M particles with vector coordinates x; and momentary;, we
can write:

where $ = 1/e = 2iri/fi, W, = Z (&r) (N„+1/2) fiv„W,v
= W, + 5 (j)p; /2m;, Z~ x

stands for &(j)~; x;, and the integration extends over all components of mo-
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mentum of all particles; n(sp) =a(sp) exp ( fZ—(j)PPt/2rri;), both n and a being
functions of s and the momenta of all particles and normalized so that

Z() Jf "(u) (u)&& = Z() I '(*J) (a)&t = &

To find the time-variation of the coefficient a due to the interaction terms
in (12) we substitute for P from (14) in (12) and select a particular coefficient
in the usual way, by multiplying by a particular U, e "~'" and integrating
over all Q's and x's; the orthogonality relations for the x's are expressed by
the Fourier formulas (2). For the operator R we note that according to well-

known recurrence relations

Qq(N) = (fi/4~) ' '[N' 'q(N —1) + (N + 1)"'q(N + 1) ],
dg(N)/dQ = (7r/h)"'[ N"'ri(N —1) —(N + 1)"'q(N + 1)]

with ii( —1) =0, whence

Z. f7, = (h/4~)'&'[N. '&'f7(s. )~"~"y (N. + 1)»'f7(~').-'"»*. (16)

where U(s.+) stands for U', with il(Q„N. +1) substituted in it for il(Q. , N, );
the extension of this formula to R,R, U, is easy. The exponentials in x, in-
troduce a "Compton shift, " expressed by (18) below, in the p occurring in

b, p, but this has no eAect because b, n, =0. Ke thus find eventually for
the rate of change of n

(esp) = —g(j)f p /2m;

+ Z(i)f'~/~~ (h/4 )"'Z(.)& uKN-+ 1)'" (' u;.)s-'"'
+ N«'"n(s. p+;,)e'&'j — g(j)~eP/4c'vari; g(0, r)L b,

[(N., + 1)'i'(N„+ 1+ Y)'i'n(s. ,p. )e '&'+~ &'-.
(17)+ (N + 1)"'(N y 8')'i'n(s g7 )i: *&"~ »"

y N '"(N + 1 —8")"i'u(s gl )e'"' 4"
+ N (N —~') ~(s p").'"+" ]

in which such symbols as s.&, s+-+-, refer to states the same as s except that
X, and N, have been increased or decreased by unity as directed by the signs
(or increased or decreased by 2 when o =r), n being put equal to 0 when it
thus comes to contain a negative X, 8, '= 0 except that 8. = i, and

P7'0 = P7' + PhPrrE?g) P jog = P j + PhPoS?g + PhVgIlg ~

It is to be understood that in a and n the p's of any particle not specifically
indicated in the notation are the same throughout any given equation. In
sums such as Z(0, 7) in (17) the terms 0 rare a n=uisance but they can for-
tunately usually be omitted in comparison with the other terms (i.e. , their
contribution comes out finally to be proportional to AvAco and so vanishes in
the limit) 8

' A serious question as to the convergence of the sum in (17) arises if one really allows the
range for v to extend to infinity, but all mathematical questions of this sort will be passed over
in silence in this paper. Cf. L. Rosenfeld, Zeits. f. Physik VO, 454 (1931).
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MOTION OF PACKET CENTROIDS

A fundamental condition for the approximate validity of classical laws
seems to be that we must be able to represent the particles by wave-packets
which remain of negligible size over a considerable interval of time. The
packets then move about practically like particles. Strictly speaking, only a
single packet exists for the whole system, and it lies in a space whose coordi-
nates include those of all particles and also all of the Q's; but we can fix our
attention upon its location in the space of any single particle and regard it,
seen from this angle, as a packet for that particle, and under classical condi-
tions we can even imagine the virtual packets so obtained for the various
particles all to move about in the same space. When the packets are small it
su6hces to consider the location and motion of their centroids; the laws of
nature then take on their classical simplicity.

The vector coordinate of the jth particle being x;, the coordinate of its
centroid is defined by

x; =
jt x,/*/de,

in which dg covers the Q's as well as the coordinates of all particles. The time
derivatives of x; are most easily obtained by the symbolic method, which is
easily extended to cover the present case by first deducing from the wave
equation, Eq. (12), the "Hamiltonian equation of motion":

Here Z (i) extends over the coordinates of all particles and W is the Hamil-
tonian given by (7); a compound" derivative such as (Bf/Bx; 8/Bp, ) W is to
be calculated as in matrix theory by replacing in I/t/" each unit factor p in
turn by Bf/Bp; and adding the results, and, in both f and W, p; and P. are to
be treated as algebraic quantities except for the familiar interchange rules,

p axi —xip~ =e8~', I',Q, —Q,P.= ~8,', and are finally to be replaced by sB/Bx;,
eB/BQ, respectively just before carrying out the indicated integrations.

To And the centroid velocity for the jth particle we put each of its coordi-
nates x;q in turn for f in (20) and find, in vector notation,

R., denoting R, with x; or n. x, substituted for x,. For the next differentia-
tion we put for f, first, p;~„ then R„=R.;(x;,Q,I'), and obtain easily:

' Cf. E. H. Kennard, Nat. Acad. Sci. Proc. 1V, 58, (1931).
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dl«f 4 4444 = 444' Jl 4'dd 444 = ('dd )

J" '4(I dd
—

V Z()«.&.;] Z()«, (4;dd. ;i (22)

the dots denoting as usual the scalar vector product, and, after replacing
Q, sin y)d„x.+P. cos yp, x„when met, by —(f)R./fix. )/p)d. ,

ddd! fd Il 444 =.;—f 4 (ddd. ;/4-. ;)444

+ (4/4 ) f 4 I (« 'd' 2(')&.dd. 1 (4 dd )

+ (&;R.;) 4, —~s; Z(~)b.R..;I I&de

In both of these equations ()4';R„) stands for rd, (IR,/f)x„, this p not operating,
as does the one below, on the following p. Upon substituting in dv;4 dI as ob-
tained by differentiating (21), the long integrals combine according to the
vector formula for any vector 8, 8 b, (M) —8 (T,)R )b = BX[VR,Xb,J

= BX( ~ Xb,) (IR,/f), . We may also consolidate the two terms occurring
in each integral by means of the easily established interchange relations,

(IR„dIR„r)'R„(IR,4 BR„
R» = esp, 6;.

&Xi 2
BXg2' BXr2' AX~2' 8$72'

The final result thus obtained can be written:

BR.;—x; = —' ll* Q(~)b, —'Pdq
dk' m; BXg 2'

BR~2
y —'- (RI) P* —q, ——'g(~)b.R„X g(.)n, X b„' Pdq, (24)

CI2 mi BXi.
2

~ ~

where (R/) means "real part only of what follows". The added terms arising
from (23) have here been dropped because they are pure-imaginary, whereas
d'x, /dP must be real; the integrals multiplying s in these dropped terms,
like the first integral in (24), contain only real operators linear in P and Q
and so are real (cf. , e.g. ,

I = e f BP ()Q d = cP*f —e PBf* BQd

Formulas (21) and (24) enable us to calculate the motion of all the packet
centroids when P is known. They are strikingly similar in form to the form-
ulas for a particle in an electromagnetic field expressed in the ordinary ( ut
of course only approximately correct) manner; in fact the only difference is
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that here the field vectors are replaced by the three operators, A =Z(o)b, R„
E= Z(a)b, BR./Bx„H= curl A =Z(0)n, Xb. BR,) Bx„ in which the coordi-
nates of the particle under study are to be inserted. Each particle has, of
course, its own electromagnetic field in its own space. One is tempted to
form such averages as ff*Z((r)b,R„fdq(, ), dg(;) covering all coordinates ex-
cept those of one particle, and then to treat these quantities as field vectors
in the space of that particle; if we leave the particle out of consideration alto-
gether these vectors are indeed easily shown to satisfy the Maxwell equa-
tions, but with the particle present one is led to very complicated expressions.

For some purposes, on the other hand, we need an alternative form of
these expressions in terms of the harmonic constituents of the wave-func-
tion. Such forms are readily obtained by inserting f from (14) into (21) and
(24) and evaluating the integrals in the same way as in arriving at (17). One
thus finds for the jth particle:

& = (&/&.) "'Z(*)f«Z(.) & ((v + ~)'"-"(*'«) ""

+ N-"' "('p"')s-'"'] (sp), (»)

«I«=(&I;) 2() I«; "(v) («)&i —;&I (26)

&'*;1«= —(';I;)( &)"'z() JdPZ(.) («+(~l )P &( ~ &«))

[(N y 1)'('n*(s g) )e'"' —N '('n*(s p )e "']n-( ps)

+(",~&~":)Z(*) feZ( ) «~ -(,.x «.)

I [(N., + 1)(N„+ 1 + b. ) ] ') 'n "(s., p;.,) e'(v.+;)'

+ f(N-+ 1)(N-+ ~. )]'"-*('.p.')""-""
[N (N y 1 g ~)]i/2+@(s p. )s i(«r Pz)&

—[N.,(N„—S:)]' 'n*(s., p+;.+„)e-' '+, '] n(sp), (27)

the notation being as in (17). The evaluation of sums such as occur here is
apt to be a tedious process, but the work can often be halved by noting that
the contributions of any given pair of field-states to Z(s) fdp in these formulas
are merely complex conjugates of each other.

It is noteworthy that with respect to all of these formulas the quantum-
states of the particle-held system, represented by the various pairs of values
of s and ~, fall into an infinite number of non-combining groups, each char-
acterized by a certain value of the total momentum, Z(j)p;+Z(o)yfsv. n,
It is we11 known that only states belonging to the same one of these "Compton"
groups inHuence each other's amplitudes, as shown by (17); for this reason in
problems on energy or momentum only a single typical group has usually been
employed, represented by a single initial state for the field. But it appears like-
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wise from (25) to (27) that only members of the same group combine with
each other in producing packet motion, so that many features of this motion,
too, can be obtained from the study of one group alone. On the other hand,
since concentration in space requires that for any given field state the packet
must extend over an appreciable range in g, there will be other features which
depend essentially upon the co-existence of many different Compton groups.
As a matter of fact, in radiation problems the use of a single group has always
compelled the resort to a special device of some sort in order to make connec-
tion with the spatial intensity of the radiation.

If the field is in any single pure quantum state (e.g. , n(sp) =0 except
when s = si), then it is obvious from (25), (26) and (27) that it has no direct
effect upon the motion of the centroid. There may, however, be an indirect
effect through values of the 0, 's arising from interaction with the test particle;
unfortunately this question, involving the field close to the particle that
emits it, lies beyond the reach of the present analysis. In the special case of a
particle at rest with the field in the normal or lowest-energy state, however, it
is clear from symmetry considerations that the acceleration of the packet
centroid must really vanish. This is very satisfactory because it means that
the "infinite energy" Z(o)hv. /2 associated with this state, whatever its true
significance, at least implies no observable electromagnetic field. On the other
hand, if one wave-train is "excited" (one X„not zero), there must be a
steady forward acceleration of the packet corresponding to the mean Comp-
ton recoil and representing an elementary sort of radiation pressure upon the
particle; it seems impossible, however, that the acceleration should include
any component oscillating with frequency v, for there is nothing in the situa-
tion to fix the phase of such an oscillation. In this case we have an elementary
sort of radiation pressure but in the ordinary sense no electric or magnetic in-
tensity.

These pure quantum states of the field represent, of course, ideal condi-
tions that never actually occur. But the same situation should obtain even
with the field in a mixed state whenever the initial spread in the momentum
p is small compared to the Compton kicks, of magnitude Iiv,/c, associated
with all wave-trains that can contribute appreciably to the centroid motion,
as is the case in observations on the Compton effect; for then in each product
of two o.'s in the formulas one factor or the other contains a value of ~ lying
outside the initial range and so vanishes approximately.

The ordinary null-field representing the absence of all radiation, which we
always take as a starting point in emission problems, cannot, however, be as-
sumed to correspond to the field's being entirely in its quantum state of low-
est energy, for from (17) it is obvious that the presence of charged particles,
even if unaccelerated, will not leave the field in this state. The null-field ap-
pears to be one containing many different quantum states with amplitudes
that are completely disorganized. Such a lack of organization, arising eventu-
ally from the various time-factors in (17), prevents the existence of any cor-
relation between the n's that come to be multiplied together in (25) and (27),
so that positive and negative values cancel each other on the whole, i.e., we
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have complete destructive interference among the wave-trains, and the net
physical effect is nil.

A physical wave-train must likewise be represented by a combination of
field states, only in this case there is a certain type of coordination among
their coefficients. Of this an example is obtained in the next section.

THE CLAssIcAL CAsE

We are now ready to attack the principal problem of the present paper,
namely, the manner in which the quantum theory of radiation passes over
under suitable conditions into classical theory as a first approximation.

The classical case, as stated above, is one in which the particles can be rep-
resented by wave-packets that preserve a certain particle-like character for a
considerable length of time. To avoid disrupting them it appears that the
radiation field must be sufficiently coarse-grained to be approximately uni-

form over the wave-packet for each particle; that is, if Ax is the effective
diameter of the packet and ) the wave-length of the radiation, we must have
Ax/X«1. At the same time the spread of momentum Ap must of course
satisfy the relation of indetermination, AxAp)k (roughly). Now such a
spread of momentum tends, as time goes on, to blur the packet; we may say
roughly that the diameter will increase at a rate Av=Ap/m and so will be-
come equal to X in a time Xm/Ap. During this time we shall want to follow

the particle during at least several oscillations under the influence of the
field. Hence we shall want to have (Xm/d, p) v =wc/Ap)) 1, a condition that is

easy to satisfy at ordinary speeds, By multiplication of these three inequalities
we can obtain others; combining two of the latter with the first one above, we

can write as an expression for the relation of indetermination and the con-
ditions for the classical case combined:

Dx/X « 1, hv/(cAp) « 1, X )) h/@ac.

The second of these inequalities can be interpreted as meaning that the
maximum Compton kick due to the field, hv/c, must be much less than the
indefiniteness in momentum; thus it is characteristic of the classical case that
the Compton effect is reduced to a slight blurring of the packet which is quite
negligible as compared with the effect of the natural degree of indefiniteness
in the velocity. The third inequality, on the other hand, sets an actual limit
to the smallness of the scale upon which anything like a classical relation be-

tween radiation and motion can hold at all. Characteristic quantum phenom-
ena are possible under suitable conditions upon any scale; for instance, in

principle the Compton effect might be observed with free electrons and Hert-
zian waves, the electrons being so closely controlled in velocity for this pur-

pose that their position would be indefinite by miles. On such large scales
phenomena may be either approximately classical or more or less quantum-
mechanicaJi in character, depending upon conditions, But below the limit of
size set by the third inequality above radiation phenomena are bound to pre-
sent more or less of a non-classical aspect.

Let us now fix our attention upon the radiation emitted by a particle of
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charge e, mass m, and coordinates x and ~, as detected by its effect upon a
second particle for which corresponding quantities are e', rn', x', ~'. To make
the first particle radiate we must subject it to an accelerating force, and to
preserve classical conditions this force must likewise be practically uniform
over the packet; we shall represent it by a potential energy term 1/'= —tf(t) «.
The complete wave-equation will then be

BP 82—e —= P(tr)«v, Q
' + e'—)t + (1/2m)(eV —ye g(o)b, R )')t

00 '

+ (1/2~')(~V' —&e' P(G) b.R.') 2P —g «P, (29)

the primes on 7' and R' indicating that x' in place of x occurs in these opera-
tors.

To allow, first, for the effect of V, consider the simpler case:

—22/tt = ("/2 )2'll + ("/2 ')ll'9 —2 *2, 2 =f ( ) »tt' '*+ ' "'2222

One easily verifies that

t«(p') = t«tt(p —Gt, p')e«, Gt = ttdt,
0

t

2 = —2/'I/2 ' + (1/2 ) —2 t+ 22 Gl —",G)22
0

t t
—2 dt 26 tf'(t2) t2dt2

0 0

(3o)

is a solution reducing to 2«=n() at t = 0 (the term tf «lt arising in the wave-
equation from an integration by parts in p); we have thus for the rate of
change of n,

(31)

V„denoting a vector whose components are Bt«/23p/, . The quantity G, repre-
sents, of course, the total change in the mean expectation of momentum,
p fpn*a dp=, during the time t.

Returning now to the general case, let us write

(32)

For the present, however, we shall assume that initially only one field
state is present, that is, t«(spp') differs from zero only for one chosen value of
s and ffo/*(spp')n(spp')dpdp'=1; and in order to restrict our calculation to
radiation by the first particle alone we shall consider only the wisps of side-
terms that arise out of this initial state through the inHuence of the First
particle as expressed by its term in the Hamiltonian. Adding the g-effect out
of (31) in (17), in which we now add p' as a new variable in all n's, we find:
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n(s, pp') = OP)n(s+, pp')

y (ef'/c1Ã)(h/4s) '~'(1V,g y g
~+ —,') '~'bg pn(spg p')e+'~'

n(s.*,pp') = (OP)n(s*..pp')
—(fe'/4c'nz) [(lV + —' + —') (X„+—,

' + —,') ]'~'b, b,n(sp„p') e'&» +»&' (33b)

(33a)

the latter valid only for 0 @7.For o.= r we get such equations as

n( pp') = ( P)n( pp') —( "/4"~) 2(.)( A'-+ 1)b 'n( pp'),

in which the last term is enormous but after all merely serves to rotate o; at
high speed in the complex plane; the same sort of rotating term really should
appear in all of the a' s, except for changes in one or two N, 's whose effect
vanishes with AvA~, hence this rotation will be without physical effect in the
end, and we shall accordingly ignore it from this point on. All other a's are
zero. Accordingly, by (31) and (30),

n(spp') = n, (s, p —G„p')e« (34)

Upon substituting this value of n in the last term in (33a,b) we get, since
b, ~=b, ~.~ =b, ~„~~, equations of the type,

n = (OP)n y n(spp')Z(p, t),

whose solution vanishing at 5 = 0 is

t

n = n(spp') F(p —G&+ G&„ tr)dt&.
0

We thus find:

n(s.pp') = (ei/cst)(h/4~)'&'(1&1. , y -' + ')'t'n(sp*. p')-
t

b. (p —G, + G„)e~"'Ct„(35)
0

n(s. , pp') = —(te'/4c'ss)
t

[(1V„+-', + —,')(1V„+ —', + —',)]'~'b. b,n(sp. , p') e"»'+I'"&"dt's, (36)
0

in which all u's denote values at time t and the second equation holds only
for 0 gT.

We now direct our attention to the second particle and find in its space
the mean vector potential due to the radiation field emitted by the first par-
ticle as represented by (34), (35) and (36). In Eq. (25) we replace the sub-
script j by a prime throughout and add ~ as another variable in all 0.'s; the
sums Z(s)Z(o) reduce to two sets of terms, one set in which our chosen initial
n(spp') functions as n(spp') in (25) and the values of n given by (35) as the
o.'s in the bracket, and a second set, complex conjugates of the first, in which



R"A VZ iVECHANICS OF RADIATION

these roles are reversed. The values of n given by (36) yield nothing appre-
ciable. Putting

+ Gty . Qly

the result can be written:

t
—N.,n*(spr&. ' )n(sr&,p')] b,' p, e '"'"dt& + conjugate.

0

(37)

In p~ we should have, according to (25), g&,+ in place of p, but this is imma-
terial because b. (g&,~ —p) =+pl&v.b, n. =0.

The p and p' integrations may now be carried out first; this requires a bit
of packet theory which can be indicated in sufficient detail as follows. As-

suming that only the one state s contributes appreciably to the integrals, one
easily finds, after a partial integration or two in one set of p's,

h2

(av)(x —x)' —= (x —i)'p"pdq =
I jt ~

&7„n 'dpdp' —X';
4~'

whereas if we introduce the centroid explicitly by writing n =Pe rv',

h'
P*Q„Pdpdp' = 0, D' =— av x —x ' = - g P 'dpdp'. 38

47r'

Similar formulas hold for the second particle as well. The Compton shift of

~ in the factor e ""' serves to introduce into the result the location of the
particles. The occurrence of the same shift in P, on the other hand, is unim-

portant under our conditions. For the difference between such an integral as

ffb, ~&l3*(g&,+)p(p)dpdp' and (av)b, .~&=ffb, p&p*—(Is)p(J&)dpdp' should be
of the order of (ffb, p&ylsv. ~V'„P

~ ~P ~dpdp', which, since the spread of mo-

mentum is small in the quasi-classical case and b, is a constant, is nearly the
same as ykv. [(av)h, z&] ff ~PV'„P ~dpdp', and by the Schwarz inequality the
square of the latter integral cannot exceed ff ~p ~'dpdp'ff ~'7„p ~'dpdp'=

ff ~V„)8 ~'dpdp'=-4sr'D'/I&' by (38). Thus the original difference is of order
2srD[(av)b. p&])'X. and so is small compared with (av)b, ~& itself by the
first of the inequalities (28). A rigorous treatment of the matter is readily
constructed, with further use of the Schwarz inequality, but it is devoid of
physical interest and wi11 be omitted.

Accordingly, writing

(ng)s&)o= p(spry')e r(v *+v' *'&- (39)

and p& ff~~p*(sg&~')p(s~~')dpdp', where ~( ——~—G,.+G«and so represents
the value of ~, the average momentum, at time t~, (37) becomes:
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or

A' = —('/2 ) Q( ib .& '+"''*"""'& Jh. p '" "d4+ t g t

t
A' = (e(cm) g(a)h, b, pi sin p.(t + yx, —yS.' —ti)dti.

0

(4O)

This expression agrees with that in (9) except that ~&(m replaces v and
the two sets of centroid coordinates replace those of the radiating particle and
of the field point respectively. We thus obtain Anally the classical expression,
(12), for A, with pi/m replacing v throughout; the first particle affects the
second approximately as if they were classical particles following their re-
spective packet centroids.

The calculation just given is readily generalized to cover the initial pres-
ence of more than one field state. The only cases of this sort which are of in-
terest in the present connection are two in which a great many states occur
with certain relations as to amplitude and phase. On the one hand, the ampli-
tudes may be entirely disorganized, representing a physical null-field. Then
combinations between each of the initial states and the side-terms arising
out of the others will destroy each other by interference; each initial state
will yield a contribution to A like that just obtained but multiplied by the
probability of the state, k, ' =J1 ~n(st') ~'dpdp', and the total result foremis-
sion by a particle will come out as before. On the other hand, the various
states may be so correlated in amplitude that they represent in the space of
the radiating particle a vector potential Ao coming from other sources. In the
latter case intercombinations between each of these initial states and the
side-terms arising out of the others serve to introduce into the radiation from
our particle the component arising from a term, —eA, /cm, in its velocity; but
we shall give no further details.

The results just obtained constitute, unfortunately, only a partial deduc-
tion of the classical law, since the law of force, Eq. (24), has not the usual
form in terms of derivatives of A. Apparently it is necessary to show directly
that (24) or (27) leads also, under our conditions, to the familiar formula,
mx=eZ+evt&Hjc. This is in fact not hard to do, but we shall indicate the
details only for the most difficult term, the last one in (24) or the eP term in

(27), representing the combined effect of the velocity due to the vector poten-
tial and the magnetic IIield of the same physical wave-train. This term con-
tains the average of the product A XH, but such an expression cannot in
general be separated into the product of the averages, A XH'.

To evaluate this quadratic term it turns out that we have to go to the
second approximation for the values of n. We have here a characteristic dif-
ference between classical and quantum mechanics, for in classical theory the
values of the P's and Q's are obtained once for all in terms of other quantities
(Eq. (Sa) above). As a matter of fact, contrary to first appearances, a given
a(s) does not correspond to an assignment in classical theory of the amplitude
of each P and Q; it has reference to a more fundamental wave-oscillation de-
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void of any classical analogue whatever. A set of amplitudes of the classical
I"s and Q's corresponds to a wave-packet for the field consisting of many
n(s)'s in combination. Thus Eqs. (35) and (36) do not really correspond at all

to the classical Eqs. (Sa).
To obtain the second approximation we insert the values of n(s, +pp') as

given by (35) for n(sPP') on the right of (33a), repeat with o changed to r in

(33a) instead of in (35), and, adding the results, obtain a(s„""pp');from this
n(s„&+pp') can at once be written down just as in obtaining (35) from (33a).
The resulting two double integrals with respect to t fit together into one, thus:

t tg t

J b, g2e~'I"'2dt~ b, p&e+'I""&dt& + b, p2e+'»' dt2 b, gee~'&'"dt~
0 0 0 0

pt t

dt j b, ~~b, p~e+'I""&+'"~"dt2.
0 0

Accordingly

n(s pp') = —(7re'/c'm'h)(N + —' + ')')'(N +— —' + -') '&'

++ t

n(sp«) I b, p, e+'&"dt& . b, p, e+'»'~dt&. (41)
0 0

We now go to Eq. (27), replace in it the subscript j by a prime and add P
as a variable in n, and then substitute for the n's in the e" term on the right
a(spp'), n(s, +pp') from (35), and cr(s„++pp') from (41). Most of the terms
in Z(s)Z(o, r) vanish, but the two series of values n(s.+) and n(s,—) combine
with each other and with themselves, and n(s) combines with n(s„++). The
sixteen expressions thus found we shall not write down; we shall merely state
that, after the ~ shifts have been replaced by centroid factors as was done in
calculating A, the terms all combine up very nicely and give us for the e"
term in (27):

(e'/c)s') JfJT ~

)3(spp') 'dpdp'( e'/cm')—
t

(e/c)n) g(o)b, b, p& sin p, (t + px, —yx, ' —s~)dt~
0

Comparison with (40) then shows that the first square bracket represents the
vector potential emitted by a particle with momentum ~1, while the second
bracket is the curl of this potential taken with respect to the coordinates of the
second particle, since curl jb f(x, ') j =7f(x, ') Xb, =n,Bf/Bx„'Xb, .The whole
expression thus represents the expected classical component of acceleration,
(e'/cm')( —e'A/cm') XH=ev~ XH/crr), , averaged for all momentum constit-
uents of the radiating packet just as if each of these radiated its own com-
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piete field. Since this packet was supposed to be very concentrated in momen-
tum we have thus the classical result.

The waves obtained above are diverging spherical waves, but of course by
removing the radiating particle to infinity they can be converted into plane
waves. In classical theory such waves can also be obtained more simply
merely by assuming just one pair of the Q's and P's to differ from zero by a
finite amount. The expression obtained in the latter way is, however, really of
the nature of a singular solution; it is not the limiting form of (9) above; and
in quantum theory it seems to possess no true analogue.

Apparently the simplest adequate representation of a plane train is the
following. Introducing the centroids into (35) and (41) as before by means of
(39), let us drop out of the factor, exp( —tp x), the part that merely cancels
in the end and retain only exp[ —I(z,+ —g&) x] =exp[+i@.yx. ] and the
similar expression in both o and ~. As the emitting particle recedes to infinity
let its charge e increase in proportion to its distance; we then drop it from
view as a particle by ignoring g& in P, where it merely serves to average over
the packet, and writing —pn for x, in which we now regard p merely as a
large number with the dimensions of distance and n as a unit vector. For p-
6&+ 6&& =~& let us write C&E cos pot&, the integrals are then easily evaluated.
Omitting, finally, the factors referring explicitly to the second particle, we
find in this way from (35) and (41) as the representation of a plane wave-
train of frequency t 0

——ttIit'2x, with electric vector in the direction I and ray-
direction n, the following coordinated set of field states:

~(s) = k
pC p.AvDcv

~(s ) = — ~ (tie + i + i) i/& I I c+ippyan n~
2 ch

ei(ttoQtt&) t f ei(—»+tttr) t ]
(42)

p() + ptr p() + ptr

p'C' p,AvAcv
cx(s., ) = — —(iV„y —' + —') 't '(i'' y —' y —') U«it t,t I,

4 ch

po + pa

ei(»+tt ) ~ $ ei (—»+tt ) t
e$'ypEl ' (+ptrl1g + tsgslg) — — +

po + po

1 e'(»~&~" —1 ei(»&») ' —1
+

po pr+ —po p,+

in which p is to be made infinite at the end, C=eCi/cmp and is arbitrary, and
k is another arbitrary constant that we have introduced for generality; 0 and
y are to take on all positive values. The corresponding vector potential for a
particle placed in the field with coordinate x is, from (11), in which we re-
place vi(t) by kpii/m and then zii by Cit cos tsot, assume yv„negligible,
drop the last term as likewise negligible, put r =p+n x, and then let p~~:

A = kC1 cos p.o(t —yri x —to) .

The intensity of the beam (Poynting's vector) is xvPk'C')2c.
If in Eqs. (42) we put s=0 and take it to refer to the "normal" state of the

field (X,.=0), then only states of the type 0, 0.+ and 0„++occur. This simple
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case is really adequate for the treatment of all practical problems; in the pres-
ent paper the mere general case of any initial state was preferred merely as a
matter of theoretical interest. For problems in energy or momentum one may
then, as is usual, simplify the procedure still further by starting with a single
state, either 0, or 0,+ for a particular value of 0", but to obtain motional phe-
nomena complete expressions such as those given by (42) must be used.

RADIATION AND A FREE CHARGED PARTICLE. PHOTONS

The results obtained above suggest the following general picture of the
action of monochromatic radiation upon a free electron or other charged
particle.

Beginning at one extreme, we may have the particle so closely controlled
in momentum that the Compton recoil kv/c is much greater than the spread
or indefiniteness in momentum of the particle, the position of the latter being
then indefinite to the extent of many wave-lengths of the radiation. The prin-
cipal effect of the radiation in this case is to produce an internal statistical
distribution of momentum and a resultant spreading of the packet, which,
being proportional to the first power of the time, easily out distances the
spreading required by the indetermination principle and so results in the
phenomenon of the recoil electrons. This Compton spreading, being confined
to the forward hemisphere relative to the incident rays, involves a forward
acceleration of the packet centroid; we have thus, in physical terms, radia-
tion pressure but no force corresponding to an electric or magnetic field of
the type usually associated with electromagnetic waves. Theoretically such a
case can be realized at any frequency whatever.

If we now progressively decrease the indefiniteness of position and at the
same time unavoidably increase the indefiniteness of momentum, different
quantum states in the packet eventually begin to combine in (25) and (27)
and so by "interference" to cause the classical motion of the packet as a
whole. At the same time the Compton recoil becomes progressively more and
more masked by the initial indefiniteness in momentum of the particle and
therefore harder to distinguish from the latter in observation. This change in
the phenomenon reaches an advanced stage when the packet "diameter" be-
comes equal to the wave-length of the radiation.

Finally, when the whole packet becomes very much smaller than a cubic
wave-length and at the same time sufficiently well-defined in momentum so
that it will stay small during many field-periods, then we have the fully de-
veloped classical case. The Compton shift in momentum is now so small that
it is altogether lost in the general initial blur of the momentum; the elemen-
tary radiation pressure represented by this shift must at the same time pass
somehow into the classical radiation pressure. The smallness of packet re-
quisite for this case can be secured initially for any wave-length of radiation,
but this condition can be made to last during many periods only if the wave-
length considerably exceeds the "Compton wave-length", X = h/mc, or 0.0242A
for electrons and less in proportion to the mass for heavier ions.

Ip t.-he centroid motion, when thus fully developed, there is no trace of
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the billiard-ball action which is characteristic of the Compton effect and
which suggests so strongly the existence of photons. One might explain the
absence of such discontinuities by pointing out that under those conditions in
which the classical motion is actually observable there mould always be very
many photons acting, so that any discontinuities in the elementary processes
would be smoothed out. In the usual photon formulation of radiation theory,
however, the photons are associated with the quantum states themselves, a
state s with quantum numbers X, being regarded as one in which there are
X„photons moving in each of the directions n„whereas we have seen that
the centroid motion arises as a combination effect between these states. It
seems unlikely that a satisfactory law can ever be found which would repre-
sent the centroid velocity as arising in a simple way from many impulses im-

parted independently by the separate photons. The preferable view seems to
be that the photon is, like a wave on the ocean, not an ultimate building
block of the world but merely a special form or appearance that sometimes
takes shape.


