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ABsTRAcT

Previous applications of relativistic thermodynamics have been either to sys-
tems in static thermodynamic egniLibrium or to non-static systems in which reversibLe

processes are taking place. The present article deals with non-static systems in which
irreversibLe processes take place. It is shown that the failure of the principle of energy
conservation to hold in relativistic mechanics in its older simple form removes a clas-
sical limitation on the irreversible increases in entropy which can take place in an
isolated system. The removal of this limitation provides possibilities in relativistic
thermodynamics for irreversible processes to take place in an isolated system without
ever reaching an unsurpassable state of maximum entropy and minimum free energy
where further change would be impossible. Such possibilities are found to be illus-
trated by non-static models of the universe which could undergo -a continued series of
irreversible expansions and contractions without ever arriving at a state of rest. Spe-
cial attention is given to a non-static model of the universe in which the irreversible
annihilation of matter would take place in the later stages of expansion and the irre-
versible formation of matter out of radiation in the later stages of contraction. Finally,
remarks are made concerning the bearing of the findings on the interpretation of phe-
nomena in the actual universe.

(1. INTRODUCTION

N PREVIOUS articles the principles for an extension of thermodynamics
- to general relativity have been presented, ' and applications of the prin-

ciples to several different problems have also been given. '
The new principles were first applied to problems in static equilibrium.

For example in the case of a static gravitational field it was shown that the
conditions for thermal equilibrium would necessitate a definite temperature
gradient in order to prevent the flow of heat from regions of higher to those
of lower gravitational potential. And in the case of a static Einstein universe,
it was shown that the concentration of matter in equilibrium with radiation,
assuming their interconvertibility, would be the same as in flat space-time.

The principles were then applied to non-static systems in which reversible
processes take place. In contradiction to a familiar conclusion of classical
thermodynamics, the possibility was found in relativistic thermodynamics
for such processes to take place both at a 6nite rate and nevertheless re-

' Tolman, Proc. Nat. Acad. Sci. 14, 268 (1928); ibid. 14, 701 (1928); Phys. Rev. 35, 875
(1930); ibid. 35, 896 (1930).

' See references 3 to 8.
~ Tolman, Phys. Rev. 35, 904 (1930);Tolman and Ehrenfest, Phys. Rev. 36, 1791 (1930).
4 Tolman, Proc. Nat. Acad. Sci. 14, 348, 353 (1928); ibid. 17, 153 (1931).
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versibly without increase in entropy, owing to an opportunity for correlated
changes in entropy density and gravitational field not contemplated in the
older thermodynamics. This possibility for reversible changes at a finite rate
was illustrated by studies of three diferent systems, —a non-static universe
filled solely with black-body radiation, —a non-static universe filled with
incoherent matter exerting no pressure, '—and a non-static universe filled
with a mixture of monatomic gas in equilibrium with black-body radiation. '
In all three cases it was shown that the systems could expand or contract at
a finite rate and nevertheless reversibly without increase in entropy, the
latter of the three, however, only under the special assumption that the gas
remain in equilibrium with the radiation. It was also shown that the entirely
reversible expansion of such universes would be accompanied by a number of
phenomena, such as the outward How of radiation, which are similar to proc-
esses that have ordinarily been interpreted as irreversible. Finally, the pos-
sibility for the periodic expansion and contraction of these systems was in-
vestigated, since any thermodynamic obstacles to such behaviour are evi-
dently eliminated by the demonstrated reversibility. It was found that no
strictly periodic solutions for the equations of motion of such systems could
exist, but that nevertheless quasi-periodic solutions would be possible such
that the system would expand from zero proper volume to a maximum and
return once more to the starting point without increase in entropy, the solu-
tion failing however at this exceptional point. It was emphasized, moreover,
in view of the physics of the situation, that the return of such a system to zero
volume without increase in entropy could be followed by a duplicate repeti-
tion of the expansion even though the over-idealized analysis fails to carry
through the exceptional point of zero volume.

In contrast to these previous applications to systems which are in static
equilibrium, and to non-static systems in which reversible processes are tak-
ing place, it is the purpose of the present article to apply the principles of
relativistic thermodynamics to non-static systems in which z'rreversible pro-
cesses take place. Such an extension in the range of application may have con-
siderable interest for the interpretation of cosmological phenomena, since,
even though it has been shown that reversible changes can take place at a
finite rate in such a way as to give some phenomena which are similar to im-
portant ones in the actual universe, it is evident that reversible changes form
only a limited class of the totality of conceivable thermodynamic processes.

The special task of this article will be to examine an essential change in
point of view which becomes necessary when the effects of irreversible pro-
cesses in isolated systems are to be studied by the new methods of relativistic
thermodynamics. The necessity for the change arises primarily because of the
well-known conclusion that the principle of the conservation of energy can-
not hold in the mechanics of general relativity in the same simple form as in

Tolman, Phys. Rev. 37, 1639 (1931).
' This was discussed in connection with the work on periodicity; see reference 8.

Tolman, Phys, Rev. 38, 797 (1931).
8 Tolman, Phys. Rev. 38, 1758 (1931).



RICHARD C. TOL3EAiV

the classical mechanics. On account of this difference, we shall find in relativ-
istic thermodynamics, that the possible increases in entropy which accom-
pany the occurrence of irreversible processes in an isolated system are not
subject to a limitation such as is imposed in the classical thermodynamics by
a fixed constant value for the energy of the system. Indeed we shall find in
relativistic thermodynamics a possibility for irreversible processes to take
place in an isolated system without ever reaching a condition of maximum
entropy and minimum free energy where further change would be impossible.

We may now proceed to the detailed examination of our problem. In the
next section, )2, we shall first obtain some expressions, giving the dependence
of entropy on the variables which determine the state of a system, in a form
which will be suitable for our further work. These expressions will be derived
by the methods of classical thermodynamics, but, in accordance with the
principle of equivalence, will also be valid in relativistic thermodynamics
when applied to an infinitesimal region using proper coordinates. Kith the
help of these expressions, we can then explain in detail in )$3, 4 the reason
why the failure of the principle of energy conservation in its old simple form
does provide hitherto unsuspected possibilities for a continuous increase in
the entropy of an isolated system without ever reaching an unsurpassable
maximum. In )5 we shall then show that such possibilities could actually be
realized in the case of a considerable class of non-static models of the universe.
And in $6 we shall consider in more detail a particular one of these models
which contains a mixture of monatomic gas and black-body radiation which
do not remain in equilibrium, in other words a non-static model of the uni-
verse with possibilities for irreversible annihilation of matter instead of the
reversible annihilation previously discussed. Finally in P we shall make a
few remarks concerning the possible bearing of our findings on the phenom-
ena of the actual universe.

)2. DEPENDENCE OF ENTROPY ON THE STATE OF A SYSTEM

In the present section we shall obtain some expressions for the dependence
of entropy on the state of a system which will be needed for our further work.
The expressions will be obtained by the methods of the classical thermody-
namics, which tacitly assumes fiat space-time, and will be found to be valid
in the curved space-time of general relativity only when applied to an in-
finitesimal region using proper coordinates.

We shall limit our consideration to simple systems, having uniform tem-
perature, pressure and composition throughout, so that the state of the
system can be completely specified by a statement of the energy Z, .volume v,

and number of molecules X~ . X„, of the different substances which the
system contains. Since the entropy 5 of the system is a function of its state
we can then evidently write in accordance with the principles of the differen-
tial calculus

B5 B5 B5 B5
dS = ——dE +—dv + dN& + + de.

BE„
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For an infinitesimal change in energy and volume, however, keeping the com-
position constant, we have for the change in entropy the familiar expression

1 p
dS = —dE+ —dm

T T

which gives us for the partial differenials of entropy with respect to energy
and volume the well-known values

BS 1 BS p
and

BE T Bv T
(3)

where T and p are temperature and pressure, and substituting above can
write our first equation in the more useful form'

1 p BS
dS = —dE+ —d~+ dXg+

T T BEg

BS
~ + dg„.

BÃ„

Two other forms of this equation will also be useful. As an expression for
the entropy of the system in terms of the Helmholtz free energy A we have
by the equation of definition

(Sa)

and in terms of the thermodynamic potential, or free energy Ii as used by
chemists, we have

E+ p8 'FS= (6b)

and by differentiation can write

1 1 S
dS = —dE ——dA ——dT

T T T
and

p v 1 S
dS = —dE+ —dz+ —dp ——dF ——dT

T T T T T

(6a)

(6b)

Equating the expression for dS given by (4) with those given by (6a) and
(6b), and solving for dA and dt, we then easily obtain

and

BS BS
dA = —Sd T —pdv —T dSy-

BXg BE„

BS BS
dF = —SdT + vdp —T dory — . —T dX

Bgg BcV„

(7a)

(7b)

Allowing for the difference in notation this equation is entirely equivalent to a funda-
mental equation upon which Gibbs based his work on the equilibrium of heterogeneous sub-
stances. See his "Collected Works" Longmans, Green and Company {1928)Vol. I, Eq. {&2)
page 63.
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Examining these equations, it is evident that if we regard the Helmholtz free
energy A as a function of temperature, volume and composition, and the
thermodynamic potential F as a function of temperature, pressure and com-
position we can write

Where the subscripts indicate the independent variables, in addition to those
giving the composition X» . - X, which are regarded as determining the
quantities A, Ii, and 5.

With the help of (8) we can now re-express our fundamental Eq. (4) in
two further useful forms, giving us altogether the three expressions

1 p BS 85
dS = —dE+ —do+ dN»+ + dN„

T T BN» z, v ~Nn E,.
1 p 1 BA 1 BA

dS = —dE + —dii —— dlVi — ——— dX„(9b)
T T T BcV» y,„TBN„y,„

p 1 BF 1 BF
dS = —dE+ —dv —— dE& — —— dN„(9c)

T T T BN» T,„TBN„z,„
f3. LIMITATION ON ENTROPY INCREASE IMPOSED IN CLASSICAL

THERMODYNAMICS BY CONSERVATION OF ENERGY

With the help of these equations we can now see clearly the reasons why
the classical thermodynamics has accustomed us to expect that the occur-
rence of irreversible processes in an isolated system would ultimately lead to
a condition of maximum entropy and minimum free energy such that no
further change would be possible.

For example, we could consider our isolated system either to be a co-
herent mass of solid or liquid situated somewhere in free space, or to be a mass
of gas situated in free space and prevented from escaping by enclosure in an
idealized container, having constant volume but otherwise adding nothing
to the thermodynamic properties of the system of actual interest. We could
then apply Eq. (9a) to analyze the increase in entropy which must accompany
the occurrence of irreversible processes in such systems.

Considering the variables B, v, X» X, to be changed one at a time
from their initial to their final values in order to calculate the increase in en-
tropy 65 which accompanies the change in state of the system, we should
conclude that the first term on the right hand side of Eq. (9a) could con-
tribute nothing to the increase in entropy, since we should have

owing to the constant value of 8 for an isolated system prescribed by the
classical principle of the conservation of energy; and we should also conclude
that the second term could contribute nothing, since we should have
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owing to the value of the pressure p= 0 in the case of the coherent mass, and
owing to the constant volume of the idealized container in the case of the gas.
Hence we should be forced to the conclusion that the actual increase in en-
tropy accompanying irreversible processes in our system could be calculated
solely from the last terms in Eq. (9a) in accordance with the expression

od = f (
—'-) dd', + +( ) dN.

The possibilities for increase in entropy, however, provided by this last
equation are limited, since for our isolated systems of constant energy it is
evident that there is only a restricted range of possible adjustment for the
variables X~ to N which determine the composition. Hence when the most
favorable adjustment has been reached the entropy will be at a maximum and
further change cannot take place. In addition it is to be noted by comparing
the equivalent forms (9a), (9b) and (9c), that in this final state of the system
not only will the entropy be a maximum, but the Helmholtz free energy A

will be a minimum for adjustments in composition at constant temperature
and volume, and the thermodynamic potential or chemists' free energy I'"

will be a minimum for adjustments in composition at constant temperature
and pressure. It is by considerations such as these that the classical thermo-
dynamics has led to the belief that the ultimate state of an isolated system
would be a condition of maximum entropy and minimum free energy, where
possibilities for further change or for the performance of useful work would
no longer exist.

f4. POSSIBILITY PROVIDED IN RELATIVISTIC THERMODYNAMICS FOR REMOVAL

OF LIMITATION ON ENTROPY INCREASE IMPOSED BY THE

CONSERVATION OF ENERGY

We may now turn to an analysis of this same problem using the meth-
ods of relativistic thermodynamics. To carry this out, we cannot forthwith
apply Eqs. (9) to our isolated system as a whole to caicuiate the entropy
increases which accompany the irreversible processes that take place in it,
since our reason for resorting at all to a relativistic treatment lies in the con-
sideration that gravitational action in producing a deviation from the Rat
space-time of the classical theory may have an important eRect on our re-
sults; and in the curved space-time of general relativity such quantities as
the entropy, energy, and volume of a system need special interpretation.

In accordance with the principles of relativistic thermodynamics, how-
ever, which I have previously developed, ".we can define the entropy of a
finite system by the expression

"See reference 1, last article $3.



326 RICHARD C. TOI.2IIIAN

IX4
5 = Qo —

g
—d $)ZXgl$3
ds

and by applying the second law of thermodynamics in its relativistic form
obtain as a necessary condition for thermodynamic change in an isolated
system

BS l3 d$4
gag —

g
—ifxidxiifxi + 0

8$4 8 $4 ds
(14)

where x~, x2 and xa are the spatial coordinates, x4 is the time coordinate, Qo is
the proper density of entropy as measured by a local observer, g is the determi-
riant formed from the gravitational potentials, dx4/ds is the ratio of increase
in coordinate time to increase in proper time at the point in question, and the
integration is to be taken over the whole range of spatial coordinates necessary
to include the system.

The two signs of inequality and equality in the above expression refer re-

spectively to the case of irreversible and reversible processes, and we may now

limit ourselves to the former since our present interest lies in irreversible
processes. Furthermore, for our present purposes it will be su%cient to con-
sider cases where the general inequality given by (14) is satisfied by ha~ing
the inequality

(15)

itself hold at each point in our thermodynamic Quid. "
The physical interpretation of this expression can be made more evident,

however, if we choose our coordinate ~stem so that the thermodynamic
fluid under consideration is everywhere at rest in the spatial coordinates x&,

x~ and xa. Since the macroscopic velocities dxi/ds, dx2/ds and dxi/ils will then

everywhere be zero, it is evident that the amount of Huid in any given coordi-
nate range 6x~ 6x~ 5x3 will not be changing with the time; and in accordance
with the principles of relativity we can write for the proper volume 8vo of the
small element of Huid in such a range the well known equation

d$4
gvp = Q —

g
—gx&8x2gx3
dS

and, by substituting above, rewrite expression (15) in the form

d$4

d$4 ds

dSo
POQ —

g
—gxigxggx3 = (40giio) = ) 0

d$4 d$4

(16)

~' This has the effect of limiting our present considerations to cases where the proper

entropy of each element of the Quid will be found increasing with the time when measured by

a local observer, without reference to the How of heat in or out of that element. (See expression

17}.If flow of heat were taking place out of an element, we could have irreversibility even with-

out an increase in the proper entropy of the element, but this will not be of interest for our

present purposes since the later work of this paper will deal only with systems where there is no

Row of heat. In any case there is of course no loss in rigour in using (15) since we are only in-

terested now in having a slgcient condition for irreversibility.
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We thus obtain as a suf6cient condition for the occurrence of irreversible proc-
esses in our isolated system the very satisfactory result that the proper ent-
ropy, Sp=gp 6vp, of each element of fluid as measured by a local observer
shall increase with the time. "

This simple condition, moreover, is now in a very satisfactory form for
purposes of calculation since the proper entropy of a small element of the
fluid will depend on its proper energy, Ep ——ppp6vp, proper pressure pp, proper
temperature Tp, and number of molecules in the element X~ X, in the
same way as in the classical therinodynamics. Hence, by analogy with Eq. (4),
we can now write

1 Pp BSp
dSo = dip + d(Iso) + dNi+

Tp Tp BiV g

BSp
+ dX„

OE„
(18)

as an expression which gives the dependence of the proper entropy of our
small element of fluid on the variables which determine its state. Andour
sufhcient condition for irreversible processes will be met if the proper entropy
of each small element of the fluid, as calculated with the help of Eq. (18), in-
creases with the time.

At first sight it might appear as though Eq. (18) provided no more op-
portunity than our former classical Eq. (4) for a continuous increase in en-
tropy without reaching an unsurpassible maximum corresponding to the
most favorable values for the variables Nj X„.And from the classical
point of view this would seem to be the case, since attempts to adjust the
other variables Ep and 6vp so as to obtain a greater increase in entropy would
appear to be of no avail, as the energy and volume of one element of the
fluid would have to be increased at the expense of other elements.

In relativistic mechanics, however, it is well known that the principle of
the conservation of energy does not hold in the simple form which would re-
quire a constant value for the total proper energy of an isolated system. The
quantity analogous to energy which is actually conserved in relativistic me-
chanics is"

4 4

JfJf (Z4 + t4)dxgdSpdx3 collst. . (19)

where Z4 is the energy-momentum tensor-density and $4. is the pseudo
tensor-density of potential energy and momentum. In proper coordinates the
first term of this expression reduces to proper energy

4
44XyJX2JX3 = ppp8Vp = Ep (20)

and the second term reduces to zero, but in general proper coordinates cannot
be used throughout the whole system, and in general the total proper energy
of an isolated system is not a constant in relativistic mechanics.

"Since an increment in proper time dto and the corresponding increment in coordinate
time dx4 are both to be taken as having the same sign, the inequality (17) is also true for. a
local observer."See for example, Tolman, the third article in reference 1.
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Hence in relativistic thermodynamics we must investigate the possibility
that a continuous increase in the proper entropy of each element of an isolated
system could be brought about by increases in the proper energy of the ele-
ments, without every reaching an unsurpassable maximum. In the next sec-
tion it will be shown by an illustrative example, that this new possibility for
the continuous occurrence of irreversible processes without reaching a lanai

state of quiescence, might actually be realized in a way which is not trivial.

(5. POSSIBILITY FOR CONTINUOUS INCREASE IN ENTROPY IN A NON-

STATIC UNIVERSE IF THE COSMOLOGICAL

CONSTANT IS ZERO OR NEGATIVE

a. The mechanics of the model.

As an isolated system to illustrate the possibility for the continuous oc-
currence of irreversible processes, we shall choose a non-static model of the
universe filled with a homogeneous distribution of matter and energy. "The
line element for such a non-static universe can be derived" by treating the
contents of the model for purposes of large scale considerations as a perfect
Huid, and written in the form

~g (t)
d$2 = —— (dr' y r'de' + r' sin'odd') y dh'

[1 + r'/4R'j'
(21)

where r, 0 and P- are the spatial coordinates, t is the time coordinate, R is a
constant, and the dependence of the line element on the time is given by the
exponent g(t).

With this choice of coordinates, particles at rest in the coordinate system
will not be. subject to acceleration but will remain permanently without spa-
tial velocity. Hence the choice of coordinate system is such that we may re-
gard the thermodynamic Huid 611ing the model as macroscopically at rest with
respect to the spatial coordinates, and can apply expressions (I'/) and (18) of
the preceding section to the entropy of any small element of this fiuid. For the
proper volume of a small element of the Huid contained in the coordinate
range Or M 6P, we may evidently write

~3 g/2

8v r' sin 05r8MQ
[1 y r /4R2~]'

(22)

and this in general will be changing with the time, if g(1) is not a constant. In
accordance with the above, however, the contents of the element will not be
affected by any net How of particles across its boundaries.

'

Of the possible non-static models which could'agree with the line element
(21), the special class which will illustrate our considerations will be obtained
if the constant R occurring in the line element is real, and the cosmological
constant A occurring in Einstein's relation between the energy-momentum

'4 For a partial historical account of various treatments which have been given to the
non-static line element for the universe, see Tolman, Proc. Nat. Acad. 10, 582 (1930).

"See Tolman, Proc. Nat. Acad. Sci. 10, 320 (1930).
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tensor and the curvature of space-time is not a positive quantity. If R is real
the "radius" of the model Re«'will be real and the universe closed. As to the
cosmological constant A, our only experimental evidence is that it must be
small enough not to affect phenomena in the solar system. If we take it zero
the equations of relativistic mechanics are somewhat simplified, but there is
one point in our later development where a small negative value might seem
preferable. These restrictions, R real and A=O or A. (0, will be adopted in
what follows.

We are now ready to consider the behaviour of this class of non-static mod-
els. Taking the material filling the model as a perfect Huid of proper macro-
scopic density ppo and proper pressure po, the components of the energy-mo-
mentum tensor corresponding to the line element (21) have been worked out, "
and with A. =0 give for the pressure and density the values

Sorpo = (—SorT; ) = ——e ' —
g

——,ogo
R2

o = (1, 2, 3)

4
Sorpoo ——(SorT,) = —e-o + -o, go

E2
together with

To =0
. (p W P)

(28)

where the dependence of the pressure and density on the time is given through
their dependence on the exponent g(t) and its first and second time derivatives
R and g. Furthermore, substituting the expressions for T„" in the fundamental
equation of relativistic mechanics, which for this purpose can be expressed
most conveniently in the form

we obtain'" for the case p, = 4

v

1g-~P 0
Bg~p

~~V ~~@
(24)

p()l)e3 g /~ d ee g /2

d$ (1 + r'/4Ro)o dt (1 + ro/4Ro)o

which, since r and R are independent of t, can also be written in the simple
form,

d d—(pooe'"') + po
—(e"") = o

dt dt
(26)

and in addition by noting the expression for proper volume given by (22),
can be written in the specially illuminating form

d—(poo»o) + po —(~so) = 0
dt dt

"See reference i5, Eqs. {34)."See Tolman, Proc. Nat. Acad. Sci. 16, 409 (193()),Eq. (4).

(27)
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This last form shows that, as the exponent g changes with the time, the be-
haviour of each element of the quid is such that its increase in proper energy
can be regarded as the work done on it by its surroundings. In other words as
time proceeds each element of the Huid may be regarded as subjected to an
adiabatic" expansion or compression, according as g is increasing or decreas-
ing with the time.

We can also obtain information as to the behaviour of the model as a
whole over long periods of time. Solving for g the equation for pressure given
by (23), we obtain

g = ——e g —~3j' —SvrP(). (28)

Since R is real by hypothesis and the pressure po could not be negative for the
kinds of Huid with which we shall wish to regard the universe as filled, we see
that the acceleration g would always be negative, and hence, if the model were
expanding, that g and the "radius" Re«' would ultimately reach maximum
values and the model would start contracting. The only possible exception to
such behaviour would perhaps be a special case in which g would become in-
finite and g and po zero at the upper limit. "Even this possibility, however,
could be ruled out, by ascribing a small negative value to the cosmological
constant A, since the equation corresponding to (28) when A is not omitted
reads"

g = ——e g —4g —87ipo + A.
R'

and with A a negative constant, the acceleration would always be negative
even if g went to infinity and g and po to zero.

After the model has passed its point of maximum expansion, then in ac-
cordance with (28) the negative acceleration would get greater and greater
and the contraction would continue at an increasing rate to zero proper vol-
ume with g = —Qo and the "radius" Beg~' = 0. The equations of motion fail to
carry us through this exceptional point, perhaps because of an over idealiza-
tion of the model. "From a physical point of view it is evident, however, that
this contraction to the lower limit could only be followed by renewed expan-
sion. "

We thus see that relativistic mechanics appears to provide within its
framework conceivable models of non-static universes which would undergo a
continued succession of expansions and contractions. In any case we shall as-
sume this possibility in what follows.

"Note that in English usage the word "adiabatic" applies to a change in state with no
How of heat into the system, without reference to whether the change is a reversible or irre-
versible one."In a later paper my colleague Professor Morgan Ward and I hope to show that this ex-
ceptional case would not occur even with the cosmological constant A exactly equal to zero.

'o See reference 15, Eqs. (34).
2' Compare, Einstein, Berl. Ber., 193', p. 235.
2' Compare, Tolman, reference 8.
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b. The thermodynamics of the model.

We must now inquire into the thermodynamics of such models, since from
the classical point of view we have become accustomed to the idea that there
must be some thermodynamic hindrance to such a continued succession of
expansions and contractions in an isolated system. From the relativistic
point of view, however, it appears that no such hindrance could exist, since
we were led to the conclusion that the series of expansions and contractions
would take place solely from the fact that the expressions (28) —(28a) pre-
scribe a negative value for the acceleration g so that expansion will always be
followed by contraction. And, if we fill our model by hypothesis with a ma-
terial that cannot exert a negative pressure, "it is evident that this negative
value of j would obtain without reference to the thermodynamic nature of
the reversible or irreversible processes taking place inside the model.

It hence appears in general that relativistic thermodynamics could not im-
pose restrictions which would prevent such a series of expansions and contrac-
tions. It will also be of interest, however, to analyze the thermodynamics of
our model in somewhat more detail.

In the first place, it is of course immediately evident that there would be
no restriction imposed on the succession of expansions and contractions pro-
vided they took place reversibly without increase in entropy, since the model
would then arrive at the lower limit of contraction with unchanged entropy,
and a renewed expansion identical with the previous one could be initiated.
Such behaviour, which becomes of interest since relativistic thermodynamics
provides new possibilities for reversible changes at a finite rate, '4 has already
been discussed in a previous article. "

In the present article, however, we are primarily interested in any ther-
modynamic hindrance to the succession of expansions and contractions which
might arise because of irreversible processes. To analyze this point we may
best consider the behaviour of a small element of the fiuid which we take as
filling our model. In accordance with Eq. (27) as g(t) increases and decreases
with the time, such an element would be subjected to a series of adiabatic ex-
pansions and compressions without How of heat from the outside and with
perfect balance between internal and external pressure, because of the uni-
formity of po throughout the model. Irreversibility with its accompanying in-
crease in entropy could arise, however, on account of internal changes with-
in the element, and in general this would presumably occur since the expan-
sions and contractions would take place at a finite rate, and the internal vari-
ables, in our case the quantities N& . N„which determine the composition
of the Huid, wouM adjust themselves to the changing volume with a certain
lag behind the condition of equilibrium, thus leading to an increase in the en-
tropy of the element.

It is evident, however, that such behaviour would provide nothing which
"Note that the non-negative pressure would be necessary only in the last stages of ex-

pansion.
'4 -Reference 5."Reference 8.



332 RICHARD C. TOLMAS

would make the continued expansion and contraction impossible. Except for
the absence of friction and the balance between internal and external pressure,
the behaviour of the fiuid in the element is similar to the classical behaviour
of a fiuid placed in a cylinder with non-conducting walls and subjected to a
series of compressions and expansions with the help of a movable piston. Clas-
sically the entropy of the Huid would increase because of the lag in the ad-
justment of the internal variables determining the state of the system behind
their equilibrium values. And this increase in entropy would continue as long
as the expansions and contractions were continued, without of itself prevent-
ing us from subjecting the Huid to further expansions and contractions, pro-
vided we have the desire to do so and the mechanical energy which may be
needed to move the piston. Similarly in the relativistic case, if the equations of
relativistic mechanics do inevitably prescribe a continued succession of ex-
pansions and contractions for a particular class of non-static models of the uni-
verse, it is evident that the occurrence of irreversible processes inside the
model furnishes no thermodynamic preventive to such behaviour.

Before turning from this general discussion of the thermodynamic be-
haviour of the class of models under consideration to the discussion of any
special model, it will also be of interest to analyze somewhat more in detail
the mechanism by which entropy increases occur in the elements of our Huid,
and show a general type of relation which exists between the entropy content
and energy content of an element. In accordance with Eq. (18) we can write
for the rate with which the entropy of any given element is increasing with
the time

dSp 1 dip Pp d(Bop) BSp dNr BSp dN+- + + +
dt Tp dt T() dt BNg dt BN„dt (29)

It is evident from this that the immediate occasion for the entropy increase
taking place at any given time in an element must lie in the changes taking
place in the variables

¹ X„,which determine the composition, since for
the erst two terms above we can write

d&o Po d(bpo)+ ———0
To dt To

(30)

owing to the adiabatic character of the change given by Eq. (27). The changes
in the variables

¹

. K, however, can contribute to a positive rate of
entropy increase since they will occur in the direction towards equilibrium
under conditions where the partial dilferentials ((BSp(BNy ' ' ' BSo/8N ) do
not have their equilibrium values. For example if the Huid were a mixture of
diatomic gas and the elements, into which it dissociates in accordance with
the reaction

A2 ——2A (31)

and the rate of expansion were too great for the dissociation to keep pace, we
should have A2 breaking up into 2A under non-equilibrium conditions and
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this would lead to an increase in entropy. We thus see that the immediate
mechanism by which the entropy increase actually takes place is through the
adjustment of the internal variables N» - X which determine the compo-
sition.

On account of this fact that the actual. mechanism of entropy increase lies
in the adjustment of composition, it might at first sight be supposed that the
continuous increase in entropy would require no change in the energy of the
element. In the long run, however, this is not the case. Let us consider the
condition of an element of the Quid at two different instants t» and t2 which are
a long time apart so that there has been a very great increase in its entropy,
and for simplicity let us pick tp such that g(t) for the universe and 6vp for the
element have their earlier values. We could then use Eq. (18)

PG BSG ~~0
dSp = —dEp + d(bvp) + dory + ' ' ' +=dX„(32)

~0 ~G BE» ax„
to calculate the difference in entropy of the two states, by considering the
effect of changing the variables one at a time from their initial to their final
values. If the increase in entropy has been large it is then evident that the
proper energy ZG will have to be greater in the final state than in the initial
state, since 5v0 is taken the same in the two states, and the adjustment of the
composition at constant BG and 6v0 could only lead, as already discussed in

$3, to a limited increase in entropy.
We hence conclude that in the long run we must expect the proper energy

of each element of the Huid filling the model to increase with the time. The
mechanism by which this occurs will of course have to lie in a general ten-
dency for the pressure PG to be on the average greater during a compression
than it was during the preceding expansion. This, however, is in qualitative
accord with the behaviour that we should expect if the composition lags in
adjusting itself to equilibrium. We thus see that although the actual mecha-
nism of entropy increase lies in the adjustment of composition, which some-
times takes place in one direction and sometimes in the other according as
conditions are changed, nevertheless in the long run the continued increase
in entropy involves and is made possible by an increase in proper energy.

The possibility for such an increase in proper energy is, as discussed in )4,
a characteristic feature of relativistic as distinguished from classical mech-
anics. For example let us return once more to our comparison between the
classical behaviour of a Huid placed in a cylinder with non-conducting walls
and subjected to a series of expansions and contractions, and the relativistic
behaviour of an element of the Quid in our expanding and contracting uni-
verse. From the classical point of view, it would not be the increase in the
entropy of the quid in the cylinder per se, which would prevent us from sub-
jecting it to further expansions and compressions, but the fact that ultimately
we should expect to have no further external mechanical energy available
for completing another compression. In the relativistic case, however, the
laws of mechanics do not require any constancy in the total supply of proper
energy. Indeed in accordance with Eq. (27),
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—(ppp8sp) + Pp (8pp) = 0
dt dt

(33)

jf po is positive, the proper energies of ul/ elements of the Quid are decreasing
when the model is expanding and increasing when it is contracting, and hence
in the long run there can be a tendency for the total proper energy to increase,
if the pressure on compression tends to be higher than on expansion.

Noting the expressions for proper volume and proper density of energy
given by (22) and (23), it is evident that the proper energy of each element of
the Quid and the total proper energy of the model will be proportional to

38~pg3g/2gg/2 +g3g/2j2 ~

R
4 (34)

Hence in a long series of expansions and contractions we must expect g(t) and
the "radius" of the model Re«' to become greater and greater at succeeding
times when the velocity g has the same values, for example at succeeding
points of maximum expansion. Similarly for succeeding points where g(t) and
the "radius" Reg/' have their earlier values we must expect the velocities j
to get greater. This permits a rough plot of the "radius" Re«' against the
time for any model of the class under consideration —the upper limit of the
"radius" to which the model expands gradually getting greater and greater,
and its rate of change at a given value also getting greater.

f6. MODEL OF NON-STATIC UNIVERSE WITH IRREVERSIBLE
ANNIHILATION OF MATTER

In a previous paper" I have treated a non-static model of the universe,
containing a mixture of perfect monatomic gas and black-body radiation,
which were taken to be capable of conversion one into the other. Making the
hypothesis that equilibrium was maintained between the matter and radia-
tion, it was shown that such a model could expand or contract reversibly at
a finite rate, with a reversible annihilation of matter (i.e. , conversion into
radiation) during expansion and a reversible formation of matter during com-

pression. Kith the help of our present considerations, we may now treat such

a non-static model, on the perhaps more probable hypothesis that the inter-
conversion does not have a high enough rate to maintain equilibrium —in

other words, a non-static model of the universe with the possibility for irrevers-

ible annihilation of matter.
In such a model if we start expanding from a point at which the matter

and radiation are at their equilibrium concentrations, or better pass through
such a point in the course of an expansion, then as the expansion continues
matter will tend to go over into radiation, ' and, if this cannot take place
rapidly enough to maintain equilibrium concentrations, irreversibility will re-

"Reference 7.
''I See Eqs. (36) and (38), reference 7. %'e pick for our illustration a case where the tern-

perature does not have the extremely high values where formation of matter accompanies ex-

pansion.
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suit and the changes of matter into radiation that do occur will be accom-
panied by an increase in entropy. In accordance with our general treatment
of the mechanics of this class of models, the expansion will continue to a maxi-
mum pointwherecontractionwill set in. As thecontraction proceeds, thematter
will still be for a time in excess of its equilibrium concentration and will con-
tinue to change into radiation, thus making the pressure higher on the return
path than at the same volume during the expansion. As the contraction
proceeds still further, however, a point will be reached where we again pass
through new equilibrium values for the concentrations, immediately followed
by conditions such that radiation will now be going over into matter irrevers-
ibly with increase in entropy, the actual pressure of the radiation being now
higher than would correspond to equilibrium. We thus see in a general way
the mechanism by which increase in entropy and increase in proper energy
would take place in such a model.

We may also draw certain conclusions as to the long range behaviour of
the model. For the proper entropy Sp of an element 6vp of the Huid filling
the model, we may evidently write the sum of the entropies of the gas and
radiation in the element

3 6Vo
So = —Sk log To+ Ã0 log —+ Sk log be"'+ —aTp 680

2 E 3
(35)

where X is the number of atoms in the element, k is Boltzmann's constant~
a is Stefan's constant, and b is a constant of the right magnitude to assure
the same starting point for the entropy of the gas and the radiation when their
interconversion is to be considered, the form of the term containing b being
chosen in such a way as to give a simple form to the expression for the equilib-
rium concentration of gas, which can be shown to be"

6Vo
0$T 3/2~ —mc2/ kTp (36)

where m is the mass per atom and c is the velocity of light.
By using the ordinary methods for determining a maximum, it can easily

be shown from Eq. (35) that at a given temperature To and a given volume
Svp, the proper entropy 5 would have its maximum possible value with the
composition

~V = be3/2T3/2bV (37)

And substituting this value into (35) we obtain in general for the proper en-
tropy of an element

3/2 3/2 4 3
So ~ bke To + —aTo boo

3

In accordance with our hypothesis of irreversibility, however, we must expect

"See Eqs. (12}and (13},reference 7,
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the entropy of any given element of the Huid to increase ultimately without
limit. Hence we can conclude from (38) that in a long series of expansions and
contractions, the proper temperature and thus also the proper energy of any
given element will be greater and greater at times when the volume of the
element and "radius" of the model return to their earlier values; and vice versa
that the volume and "radius" will become greater when the temperature re-
turns to its earlier value. This is in agreement with our more general considera-
tions in the preceding section.

f7. CoNct, ustoN

The main purpose of this article has been a further examination of the
bearings of relativistic thermodynamics on the well known problem of the
entropy of the universe as a whole. The work has again illustrated the neces-
sity of using relativistic rather than classical thermodynamics in treating this
problem, and has demonstrated that the framework of general relativity at
least provides a class of conceivable models of the universe which would
undergo a continued series of expansions and contractions without being
brought to rest by the irreversible processes which accompany these changes.
The findings of relativistic thermodynamics thus stand in sharp contrast to
the familiar conclusion of the classical thermodynamics that the continued
occurrence of irreversible processes would lead to an ultimate condition of
maximum entropy and minimum free energy where change would cease.

Attention has also been given to a somewhat special non-static model
of the universe containing a uniform distribution of matter and radiation
which by hypothesis could be converted one into the other. Such a model
would undergo a succession of expansions and contractions and would provide
possibilities in the later stages of expansion for the irreversible transformation
of matter into radiation, and in the later stages of contraction for the irrevers-
ible transformation of radiation back into matter, without ever being
brought to rest by thermodynamic obstacles. The result is of interest in con-
nection with the annihilation or transformation of matter into radiation which
the astrophysicists believe to be taking place in the actual universe.

It should perhaps be emphasized again, however, as I have previously
done, that at present we discuss only very highly idealized models of the uni-
verse, partly on account of mathematical difficulties, and partly on account
of the limited range of our observational knowledge which at best extends to
some 10' light-years. For example the hypothesis of roughly uniform condi-
tions throughout the whole universe at a given time, which is assumed in the
derivation of the non-static line element for the universe, can be justified only
on the grounds that it introduces simplification into the mathematics, and
that we have at present no observational knowledge to the contrary. For
reasons such as these we must not be too dogmatic in our assertions as to the
actual universe. The important thing at the present time is to investigate the
properties of the highly simple and abstract models that we can treat, in order
to gain ideas as to the general kind of phenomena that could conceivably be
present in the actual universe.


