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ABSTRACT

The theory of thermionic currents for a plane parallel electrode arrangement
including space charge eftects is developed by using Fermi-Dirac statistics and by tak-
ing into account the wave-mechanical nature of the electron. The use of the Wentzel-
Kramers-Brillouin approximate solution of the Schrodinger equation leads to results
quite analogous to those of the classical calculations. The current-voltage character-
istic is but slightly different but the expressions for potential distribution (and hence
space charge, 6eld, energy density, etc.) are appreciably modified by wave mechanics.

'HE theory of thermionic currents when space charge effects are consid-
ered has been handled classically for the case of plane parallel electrodes

by Epstein, Fry, Langmuir and Gans. ' These authors have derived expressions
for the voltage-current characteristics and for the potential distribution be-
tween electrodes. Applications of these theories can be made to special cases
only with the help of numerical tables since the integrals occurring must be
evaluated numerically or graphically. It. is the purpose of this paper to in-
vestigate the modifications in the above theories which result from the use of
quantum rather than classical mechanics.

We shall make the assumption that the area of the electrodes is large
enough so that we may treat the problem as one-dimensional, and we shall
think of the cathode surface as characterized by a sharp jump in potential.
This is of course only an approximation to the actual state of affairs as the po-
tential must change continuously from inside the metal to the space outside.
Inside the hot cathode the number of electrons per unit volume whose ener-
gies lie between E and E+dE (E = mvP/2, where so is the conponent of veloc-
ity normal to the emitting surface) give rise to an incident current. '

4~mek T
di = —log (1 + Ae s'~r)dE

h'

where A is determined by

Eq. (l) is derived on the assumption of a Fermi distribution of electrons in-
side the metal. The constants have the usual meaning, n is the number of free
electrons per unit volume and ) a de Broglie wave-length.

' P. Epstein, Verh. d. Deutschen, Phys. Ges. 21, 85 (1919);T. C. Fry, Phys. Rev. 1'7, 441
(1921);I. Langmuir, Phys. Rev. 21, 419 (1923); R. Gans, Ann, d. Physik 69, 385 (1922).

' See e.g. , A. Sommerfeld, Zeits. f. Physik O'7) 28 (1928).
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THERMIONIC EMISSION AND SPACE CHARGE 227

The electrons escaping from the metal into the region between cathode
and anode give rise to a current and space charge which depend on the ap-
plied potential difference and on the separation between anode and cathode.
If we denote by D(Z) the probability that an electron of energy Z (in the
sense of Eq. (1)) inside the cathode escape from the metal (the so-called trans-
mission coefficient) and by Pn the wave function of a transmitted electron
from an incident electron beam P; which is normalized to unit current, the
total current may be written

47f.mek T
D(E) log (1 + Ae ~~ )dE (2)

and the potential in the region between cathode and anode o &x &t is deter-
mined by Poisson's equation

d'P 16~'em' T—= —4mp = —— fngn log (1+Ae s'"r)dE
dx h8

(3)

where fD is of course, a function of d. Eqs. (2) and (3) together with the
boundary conditions completely determine the current-voltage characteristic
and the potential distribution between the electrodes. From the latter one
may obtain expressions for the space charge, energy density, and field distri-
butions by differentiation.

We shall employ approximate expressions for fD and D(Z) as obtained
by the use of the Wentzel-Kramers-Brillouin approximation to the solution
of the Schrodinger equation. All the necessary formulae have been given by
the author and L. A. Young. Even with the help of these approximations it is
not possible to obtain explicit expressions for D (Z) and Pn which are valid
for all values of x and B when Q(x) is arbitrary, but we must break up the in-
tegrations in (2) and (3) into various ranges and use appropriate expressions
for D(Z) and fn in these ranges.

The problem divides itself into three subdivisions depending on the man-
ner in which the potential varies from cathode to anode. Since according to
Eq. (3) d'Q/dx' is always positive, we have the following possibilities:

Case I. P increases monotonically from cathode to anode.
Case II. Q decreases monotonically from cathode to anode.
Case III. P possesses one and only one minimum between cathode

and anode.
We shall consider the three cases separately.

Case I. Accelerating Geld; no potential minimum

We shall restrict our discussion to such potential differences which, al-
though large enough to prevent the formation of a potential minimum, are
not so large that "field" currents become appreciable. Hence in this case we
need consider only those electrons whose energies lie above a certain value
8', since the transmission coefficient for the others is practically nil and their
contribution to the space charge is completely negligible, except possibly for
a region of atomic dimensions near the cathode.



In this case we write Eq. (2) as

4memk 7
D(E) log (1 + Ae '" )dE.

h' g
(4)

Fig. 1 shows a diagram of the barrier at the cathode surface, and the general
shape of the potential energy curve. W; is defined by

kV; = kT log A.

VJt VJg

x=0
Fig. 1

//

x=1

For potential curves of the type shown in Fig. 1, it has been shown' that the
transmission coefficient is very nearly

4E'"(E —W,) '"
k'e'(d4 //dx)'. 0El/2+ (E II/ )i/2]2+

128s'/r/(E —W.) '

Without appreciable error we may neglect the last term in the denominator
and write

4Ei/2(E —II/' ) i/2

D(E) =
[El/2 + (E II/' ) 1/2]2

This expression is valid for Z) W and we shall introduce a slight error by
using it for energies down to E = II/', . For zero field at the surface (5) is exact
for E~ 8' and in practice goes very nearly to zero as B—&8',. The error so
introduced will tend to make our results somewhat too small.

If now in Eq. (4) we change the variable to

and write
kT

—8';) 0 (5a)

there follows. '

4s./se(k T) '
Z D(y + P) log (1 + s—x/& e &)dy

h'

3 N. H. Frank and L. A. Young, Phys, Rev. 38, 80 (1931).
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Expanding the logarithm, we obtain

4xme(kT)'
z e « "r

I D(y + P)e "dy
h' 0

or

4x.///e(k T) '
4at e-x/ / &D(P)

hs
with

00 ca (y + p)1/2 1/2e xdy
D(P) =

J D(y+ P)e "dy = 4
J e [yl/2 + (y + p)1/2]2

This is essentially the result obtained by Nordheim' and Sommerfeld' for
saturation current. For all temperatures occurring in practice p= W,/kT is
large compared to unity, so that we can evaluate D(p) by expanding D(p+y)
in powers of y/p. This expansion is, of course, not valid over the whole range
of integration but the presence of the exponential nullifies any errors which

might arise from large values of y.
The result of this integration. gives:

2&~/2 8 15~»2
D(P) = + 0 ~ ~

Pl/2 P 2P3/2

or

W, 27r"'(kT)'" 8kT 15''"(kT)'"
D -+ \ ~ ~

k T W~'/2 W~ t/t/ 3/2
(8)

Numerically, for tungsten at about 2800'K, W, =10 volts; kT—:0.2 volt,
so that

W
P = —- —50

kr
with this value of P

D(P) = 0.40.

This result was found by Nordheim, who later retracted it in the light of cal-
culations made with an image field. ' lt seems to the author that the latter
question is open to objection and that the first results, essentially those ob-
tained here, are more nearly correct. It must be further pointed out that the
value of D here calculated is probably too small as the potential energy prob-
ably reaches the value W, a short distance (order of atomic dimensions) from
the cathode surface and then drops as we come into the metal. The effect of
this is to reduce the value of p in Eq. (5) so that the value D =O.SO which is
demanded by experiment seems entirely reasonable. The lowering of the
work function due to the applied 6eld (Schottky correction) is neglected in

this treatment.
' L. Nordheim, Zeits. f. Physik 40, 833 (1928).
' L. Nordhcim, Proc, Roy. Soc. 4121, 626 (1928),
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To find the potential distribution for this case we employ Eq. (3) in which
we replace the lower limit of the integral by W without appreciable error.
Forgo we use the W X—B—approximation' (normalized to unit current),

whence

Sar 2m

[Z —W. —ed]
h'

D%)

Eq. (3) becomes

m CC m
PaPa =

2 (e —)Y. — 4)'" ( 2) (e —)V. — 4)'"

d2$

with the notation

16vr'mekT m ')~ " D(E) log (1 + Aei) r)dE

2 )r. (E —W, —ed))'"

E —5'
(e negative)

kT

(10)

(10')

Eq. (10) goes over into

d'u g' " D(y+ P)—e ~dy
dx' 4 o (y+ u))"

One integration yields

—= g [p(, p) —p(o, p) + .,]
dS

where we have placed

P(M, P) = " D(y + P) (y + ~) '"e "dy
0

(13)

The constant t.-~ depends on the held at the cathode by virtue of the relation

g Cy

and hence is always positive.
Another integration of (12) gives

tl ds
gX

(p(s, p) —p(0, p) + c,)")' (14)
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Here we have chosen the second integration constant so that u = 0 when x =0.
To determine ci, we place x = I in Eq. (14) and find (u =ui at the anode)

c4
gl =

(P(s, P) —P(o, P) + &i)"'
(15)

which is a transcendental equation determining c&. Inserting this value of c&

into Eq. (14), we have found the potential u as a function of x. The condition
that case I exist, expressed in terms of the potential difference between anode
and cathode and of their separation, is obviously from (15)

ds
g) &

(P(s, P) —P(o, P))'"
(15')

since c~ ~0.
The results so far obtained are very similar to those obtained classically.

In fact, if we place D (E) = 1 and introduce i, instead of g' with the help of
Eq. (7), the resulting equations are identical with the classical expressions.
This is not surprising in view of the fact that for 0 &x &l the electron density
is so low that the Fermi-Dirac and Maxwell-Boltzmann statistics become in-
distinguishable.

Case II. Retarding Qeld; no potential minimum

For this case the transmission coefficient is practically zero for all elec-
trons in the cathode with energies less than W, +e$ ~ where Q ~ is the negative
potential difference between anode and cathode. The expression for the cur-
rent is according to Eq. (2);

47rmek T
D(E) log (1+Ae Ether)dE-

Wa+ @$1

Changing the integration variable to y = [(E—W, —e$,)/kT] and expanding
the logarithm as before, one obtains

4irme(kT)' l'" e4,
z y+ P+ e

—
&dY

h' ~p kT

and placing u, = —equi/kT there follows with the help of Eq. (7)

D(P —ui)
i = i,e"1

D(P)
(17)

which is the equation of the characteristic for this case. D and P are defined as
before. To evaluate D(P —ui), we can write

1
D(X+ P —») = 1 ——[(v+ P —Ni)'" —(X —») ]'

P2

which is equivalent to Eq. (5).



If we now remember that P»1 and —u&»1, the latter is necessary if the
conditions of case II are fulfilled, *we may write, with

whence there follows

(18)

This expression is very much more nearly equal to unity than that for D(P)
since it represents the eA'ect of the transmission coefficient on the current
which is due to electrons whose energies Z lie far above W, . (Z & W, +eP,).
For these electrons the transmission coeScient differs but little from unity.
To obtain a rough idea of the magnitude of D (P —u~) let us consider a re-
tarding voltage of about 10 volts. Then

—N~ =p —50;y =1
so that

D —1 —0.03 = 0.97.

In finding the potential distribution between the electrodes for this case,
we must remember that all electrons whose energies in the cathode lie above
8", contribute to the space charge. We must divide the energy range into
two parts:

(a)

(b)

E ) g + egi

8'. + ey & E ( 5'. + e@,.

For (a), we have as before (Eq. 9)

m "' D(E)
2 (E —W, —e4)'~'

and for (b) we use'

m "' 4E'"(E —W.)'"
2 (2E —W,)(E —W. —e4)'~'

Poisson's equation takes the form

(19)

* It is tacitly assumed that the separation of the electrodes is of the order of magnitude of
one centimeter.

' This expression is obtained from Eq. (30), p. 85, Phys. Rev. 38, (1931).Eq. (30) should
read

and the term in n& is neglected compared to yp
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16sr'erik T I '/' «+'&~ (E —W,) '/'E'" log (1 + A e / )--—dE
k' 2 s.+~ (2E —W,) (E —W, —equi)"'

D(E) log (1 + Ae—e/'r)

j+ dE
(E —W, —e4)'/'

(20)

The use of t/t/, +eP as the lower limit of the first integral is necessary as no
electrons whose energy in the cathode is less than 8',+eP contribute to the
density of charge at the position x where E = W, +eP(x). Changing the inte-
gration variable to y = (E—W, e///)/k —T and setting u = e/k/k T—(20) can be
written after the logarithm has been expanded

d2u gze« I«« «s 4(y u—)1/2(y +. p u)1/2e —
w/fy

dx' 4 J 0 y'/'(2y + P —2u)

D(y + P u)e-"dy—

'8—te 1 y1/2

where g' is defined by Eq. (10'). If we define

/'««~ 4(y —u)'"(y + p —u)"'e "dy
r(u —u, ) = -',

(2y+ P —2u)y'"

D(y + P —u)e—
&dy

'V—Q1 y 1/2

one integration of Eq. (21) yields

2 tc—te1

g2ete 1 e'r(z)dz + cz
GX p

The constant c2 is always positive since

(21)

(21')

(22)

= g'e~tC

Another integration leads to the equation for the potential distribution

te Q1

e"~/zg(l —x) =
Jt

where we have placed

(p(s) + cz)'"
(23)

For x=0, Eq. (23) gives

S

p(s) = e'r(z)dz.
0

f' "1 dS
e te1/2g)

jo (p(z) + cz)

(23')

(24)

as the transcendental equation determining c2. Since c2~0. Case II occurs
when
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dz
g) ( ~

—te1/2

( (s))"'
Case III. A jpotential minimum exists

Let us suppose that the minimum occurs at x =x, so that

du du—&Ofor0& x& x; —)Oforx & x&l.
dx dx

(a) For the region x (x(/, we have the same relations as in case I except
that now only those electrons with energies greater than W, +e@ (rather
than W,) must be considered. Thus we obtain in place of Eq. (11)

d'u g' " D(y + P)e &dy-

dx' 4 (y + u)'"
where

u

Changing the integration variable to s=y+u and integrating (25) once
with respect to u, there follows

(
du 00

= g'e" D(s + P —u„)(s + u —u„)'"e 'ds + c'—
dx p

(2f)

where c' must be determined so that du/'dx =0 when x =x (i.e. , u =u ). Thus
we write

=
g2e "fp(u —u, /-'l —u ) —P(O, p —u )]

dx
(26a)

where the function P(s, s) is defined by Eq. (13).Another integration yields

tc Qm ds
ge"""(x —x ) =

(P(e, P —u-) —P(o, fl —u-))"' (27)

Here the integration constant has been so determined that u = u when
x =l, we have

&m ds
ge~m/2(I x )

(P(s, ff —u-) —P(o, fl —u-))'" (28)

(b) For the region 0 &x&x we proceed analogously to case II, with the only
difference that we replace l by x and u& by u . Hence we write

&m dg'
e~m/2g(x x)

(p(s))'"
where p(s) is defined by (23'). For x = 0, there follows

ds
q~mt2g X

(p(s)) "'

(29)

(30)
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The sum of Eqs. (28) and (30) yields

g$
—e

—~m/&

tC 1 tom

[(p( p- .) - P(o, p -)1"

( (s))'"-
(31)

These last two equations determine the position and magnitude of the po-
tential minimum.

For the current we have in complete analogy to Eq. (4)

47fmek T
D(E) log (1 + As s'"r)dE

h' W'a+ elm

whence there follows exactly as in case I

D(P —u )
i = i,e"m

D(P)

which is the equation of the characteristic for this case.

SUMMARY AND CONCLUSIONS

(32)

(33)

The theory of thermionic currents between plane parallel electrodes has

been developed from the Fermi statistics and by taking into account the
wave-mechanical nature of the electrons. The results are entirely analogous

to those obtained classically. We must distinguish among three cases:
I. Accelerating field; no potential minimum.

II. Retarding field; no potential minimum.
III. The case of the existence of a potential minimum.

The current-voltage characteristics are:

D(p —Ig)

D(P)

D(p —I )

D(P)

If all the D's are set equal to unity, we have the classical equations ex-

cept for the fact that u (the minimum value of the potential) is determined

by a different equation (Eq. (31)).
Expressions for the potential as function of position between the electrodes

have been derived which are quite analogous to the classical functions. For
application of these equations it is necessary (just as in the classical case) to
perform numerical or graphical integrations. A typical wave-mechanical dif-

ference occurs in the case of the expressions for charge density due to those
electrons which emerge from the cathode but are turned around between

cathode and anode. The density is calculated classically by dividing the cur-
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rent due to these electrons by their velocity and multiplying by 2 (once going
out and once returning). Quantum-mechanically, we must not form rg from
the expressions for two travelling waves, but must find a P-function which
represents a standing wave in the region considered and then form Pp. In so
doing, interference effects which are totally foreign to classical calculations
appear and modify the expression to be used for this density.

It is furthermore not necessary to carry out the numerical evaluation of
the functions which determine the potential distributions in order to see the
general difference between our results and the classical results. In every case
the density of charge is less in our theory than in the corresponding classical
case. Thus the potential distribution curves, although of the same general type
as those obtained classically, will have decidedly smaller curvatures. Physi-
cally, this is easily understandable since the largest contribution to the classi-
cal density came from those electrons which, according to our theory, can-
not get out ot the metal because of the transmission coefficient D(E).

We have neglected the dependence of the work function on the field and
as we have not extended the theory to include strong fields this neglect is not
serious. The omission of secondary reflection from the anode is perhaps more
serious. Recently, R. S. Bartlett and A. T. Waterman' have published a series
of papers in which they discuss the equilibrium distribution of electrons in
the neighborhood of the surface of a metal and have drawn conclusions there-
from for the case of accelerating and retarding fields. The author does not
consider such extension of their results entirely justified. The objections
which they raise to the use of Poisson's equation because of the granular
nature of the electron gas seem to the author to be largely nullified by the
fact that the wave mechanical expression for density is a continuous function
of the coordinates. An approximation in the theory here developed is the use
of the equilibrium distribution function instead of a modified distribution
which exists in the case of steady state flow of current. It can be easily shown
that errors so introduced are entirely negligible.

' R. S. Bartlett, Phys. Rev. 37, 959 -(4931); A. T. Waterman, ibid. 38, 1497 I', 193$).


