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ABSTRACT

A general method of finding the wave function for LS coupling which is similar
to that of Gray and Wills is described. The successive transformations which carry
the angular momentum matrices, 5', L' and J' to a diagonal form, are determined by
writing down these matrices in terms of the unperturbed wave functions and solving
the resulting linear equations for the transformation coefficients. This yields the wave
functions appropriate for LS coupling. The method is applied to give the wave func-
tions for ail the states of I.S coupling with the smallest value of j Mq

~

in the follow-

ing electronic configurations: P', d', P', p's and p's. The matrix of the spin-orbit inter-
action is calculated with these wave functions and is factored according to J values
because J' is an integral of the motion. By adding the electrostatic energies as com-

puted by Slater's method to the diagonal elements (the electrostatic energy is known

to be a diagonal matrix in LS coupling), the complete energy matrix is obtained.
Setting the determinant of the matrix equal to zero, the secular equation for each J
value is found for the above electronic configurations. These equations determine the
position of the energy levels in intermediate coupling provided that second order per-
turbations may be neglected and provided magnetic effects other than the spin-orbit
interaction do not contribute appreciably to the Hamiltonian.

INTRODUCTION

' "N A previous paper' the calculation of the matrix elements of the spin-
- - orbit interaction in I.S coupling has been made for any two-electron con-
figuration from the commutation relations which angular momentum vectors
satisfy in matrix mechanics. This makes it possible to obtain in a simple man-

. ner the secular equations for any two-electron configuration. Although the
method can probably be employed for more complex configurations, there are
difficulties connected with the necessary extension. Furthermore, if the pre-
cise form of the magnetic interaction terms in the Hamiltonian is not cor-
rect, other calculations which it may not be possible to carry out by this
method, must be made. For these reasons it is profitable to consider a quite
different approach to the whole problem.

It was remarked in the above mentioned paper that difficulties with the
unperturbed wave functions used by Slater' arose because these functions
were not written for definite values of the total angular momentum, J'-. In
this paper we propose to find the transformation to functions which make J'
a diagonal matrix. Now such a transformation is by no means uniquely de-
termined and, in fact, wave functions correct for any coupling scheme in an
isolated atomic system have this property. For in any such coupling scheme

' M. H. Johnson, Jr, Phys. Rev. 38, 1628 (1931).
' J. C. Slater, Phys. Rev. 34, 1293 (1929).



J' is always an integral of the motion so that the proper wave functions must
be written for definite values of J'. For several reasons it is preferable to find
the wave functions for LS coupling rather than those for jj coupling (say). In
the first place we know that in I.S coupling the electrostatic energy is a
diagonal matrix. We can then avail ourselves of the calculation of electro-
static energies by Slater's method in the cases where such calculations have
been made. By his method we can always obtain the electrostatic energies if
there are no two multiplets of the same kind in the group of states considered.
In any other coupling scheme we should have to compute the whole matrix
of the electrostatic energy, a task which it is profitable to avoid if possible. In
the second place it is often very easy in LS coupling to find the matrices of
other quantities such as the electric moment, the energy in a magnetic field
etc. , directly from matrix relations. This may obviate the necessity of using
the wave functions, which are rather awkward sums of determinants, in find-
ing such matrices.

From our present point of view the situation is greatly simplified by the
existence of spatial degeneracy and the fact that Slater's functions are writ-
ten for definite values of J,. J, is an integral of the motion so that in the trans-
formations we contemplate it is a diagonal invariant. It is therefore only
necessary in making these transformations to use linear combinations of func-
tions with the same value of 3'. Because of the spatial degeneracy we know
that all the states of distinct energy will be represented among the functions
for the smallest value of ~31& ~. Hence for the energy level problem it is only
necessary to consider functions for the smallest value of lllIz ~. This will still
be true no matter how the Hamiltonian is modified (for an isolated atom) for
no internal interaction can affect the spatial degeneracy or the fact that J,
is an integral of motion. Then if the actual Hamiltonian differs from the one
which we shall employ, the transformations we determine can still be used to
advantage.

THE METHQD oF FINDING WAvE FUNcTIoNs FoR IS CQUPLING

Our method of obtaining the wave functions for LS coupling is perfectly
straight-forward. We compute the matrices of I', S' and J' with the unper-
turbed functions and then find the transformations to make these matrices
diagonal. We know that the wave functions for I.S coupling must be written
for definite values of I.', S', J', and J, so that this is an obvious procedure.
The matrix components in which we are interested may be calculated from
the following formulas which can be obtained by an application of the equa-
tions that Condon' has given for matrix elements calculated with Slater's

' E. U. Condon, Phys. Rev. 36, 1121 (1930). The notation used here is very similar to
Condon's. The single electron wave functions are written as u (1).The 1 stands for all the co-
ordinates (including spin) of electron 1 and the subscript n stands for the set of single electron
quantum numbers n 1 nz& and m. . The antisymmetric wave functions are

Pg = (pl) &&2 g( —1) P/~(1)~p(2) ~ ~ ~ zq(N)

where the sum is extended over all the permutations, P. Matrix components are written in the
Dirac notation
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wave functions. Rather than use J', we use L.S which must also be diagonal
if L', 5' and J' are diagonal.

(A IL,'I A') = 4I(nl 1*In')(pl l. l
p') —(nl l*l p')(p

I

l In') } if A' differs

from A in 0. and P

(A
I
I.2

I
A) = m. 2 y Q I 1.(1. + 1) —m,.'}

Q Il (l +1) m~—.(m~. +1)}(I l,m~. + 1m,.I
1

I
eslpm~~m„)

all pairs
a,P

(A
I

I-'
l
A') = 0 otherwise

(A IS'IA') = 4I(nl ~*In')(pl &*I p') —(nl ~*l p')(pl ~*In')} if A'di«rs
from A in n and P

(A
I

S'
I
A) = Ms' + sS —S' where ill = number of electrons

E' = number of pairs 0., P with the

same e, l', and m~
(A

I
S'

I
A') = 0 otherwise

(A
I
I &I A') = 2I(nl l. ln')(p

I
~*l p')+(pl l*l p')(nl ~*In')

—(nl l,
l
p')(pl s,

l

n') —(pl l,
l
n')(nl s

I
p')} if A'differs

from A in n and P.
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I

& &I &') = & 2( I&.
I

")( "I*.
I

') —ZNI &.
I

')(
I
.

I &)} &

~l t P

A'diGers from A in 0.

(A
I
I, S

I
A) = ~r,~s

(A
I
I S

I
A') = 0 otherwise.

In these formulas

(n
I
l,

I P) = -,'Il (l + 1) —m/. (m$. + 1) }'~'(0 l m(. + 1m,.I
1

I
ttplpm/pm, p)

(n
I
s,

l p) = —',(e.l mi.m,.+ 1I 1I eplpmem„)

(Al&IA') = f&~&0~

where the integration implies a summation over the spin coordinates. The abbreviation

( l pl j) = f I (k)f(k)Np(k)

which is consistent with the above notation, is also introduced. Thus, for example, formula (b)
on page 1129 of Condon's paper is, in this notation

if A' divers from A only in the individual set of quantum numbers n.
**In carrying out this summation it must be remembered that the exclusion principle oper-

ates to eliminate the terms for which 0."is equal to any of the other quantum numbers p ~ ~ ~ p.
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Mi, = mi„

All the diagonal elements of the unit matrix are unity and all the nondiagonal
elements are zero. The signs must always be so chosen that 3II& =2VI&'. We
see that L' and S' have no components between states of different M~ and iV8
values as is required by the fact that both these matrices commute with L,
and S,. Although the furmulas appear formidable, they are actually very
easy to use when one has become familiar with the notation.

The required transformations are easy to obtain because the matrices L',
S' and L.S commute with one another. The matrix S' is usually the simplest
so that we first find the transformation, R, which carries it to a diagonal
form. 4

RS'R ' = (5')'
RL'R ' = (L')'

R(L S)R ' = (L S)'

where (5')/ is diagonal and commutes with (I.')' and (L.S)'. The last two
matrices can therefore have components only between the degenerate states
of (S') '. Thus R tends to simplify the matrices I.' and L.S. Let T carry (I') '

to a diagonal form, leaving (S') ' invariant.

T(L S)'T ' = (L S)"
where (I.')" is diagonal. Now (L.S)" can only have components between
states which are degenerate in both (I.')" and (S')", and so is further sim-
plified. As L' and S' had no components between states of different 3EII, and
3EI8 values, the transformations R and T have no components between states
of different 3II~ and different 2II8. Hence L,"=L, and S,"=S,. The trans-
formation TR carries us to a representation in which L', S', L, and S, are
diagonal matrices. Finally let U carry (L.S)" to a diagonal form, leaving
(I.')" and (S')" invariant.

U(L S)"U ' = (L S)"'
U(Lg) // U—y (Lg) /// (L9) //

U(S2)//U —g y'9)/// y'2)/

Where (L S)'" is dia.gonal. This transformation involves together the states
of a single multiplet. After it the wave functions will be correct for LS coup-

R is determined in the manner in which any principle axis transformation is found. The
determinant of the matrix S' is set equal to zero in.order to obtain its characteristic values. (It
is not actually necessary to do this as the characteristic values of S' are known from the com-
mutation rules which the components of S obey. ) The set of homogeneous linear equations
BS =(S')'R together with the normalization condition determine the transformation coeK-
cients.
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ling as we still then have secured that L', S', J' and J.be diagonal matrices.
We can combine the three transformations into a single one, U'1R, which
will enable us to pass directly from the unperturbed functions to the func-
tions correct for LS coupling. It is apparent one advantage of treating L', S'
and I.S separately, instead of attempting to make J diagonal directly, is
that we factor the transformation into relatively simple parts.

The spin-orbit interaction is

Hp = Qf(rk)lp, sp, .

Its matrix components in the initial representation are easily found from the
formulas Condon' has given. They are

(A
~

Hp
~

A') = —',(e l,
~ f e~'f ') [f (l + 1) —nap (pppp + 1)]'"

(nz~. + 1»e,„+ 1
~

1
~

m~. I,.) if A' differs from A in n

(A [ Hp) A) = g(pp f
) f) I f )mt. prp, „

(A
~

Hs
~

A') = 0 otherwise

where (pp. f«
l f ln "f ') = j~ R -&,(r)f(r) R.-"&"(r)d»

Then the matrix of the spin-orbit interaction in IS coupling is given by

Hp"' ——(UTR)Hs(UTR) '.
II2'" should be factored according to J values since J' is an integral of the
motion and is diagonal in this representation. We observe that the energy
matrix will always factor according to Jvalues after the transformation U2 R
though the form of the interaction terms be quite different than the above.
For no matter what the internal interactions in the atom may be, J' will

always be an integral of the motion.
As we remarked before, we can obtain the whole energy matrix by adding

the electrostatic energies to the diagonal elements of II2"'. It is easily shown
that the diagonal element of the whole energy matrix are the energies of the
states of the atom if I.S coupling is physically realized (that is if I.' and S' are
also integrals of the motion). The secular equations in any case are found in
the usual way by setting the determinant of the energy matrix equal to zero.
As the matrix is factored according to Jvalues, we obtain a separate algebraic
equation for each J value which is of the same order as the number of states
with this J value.

The procedure we have followed is closely related to the method used by
Gray and Wills' to find the wave functions for LS coupling. If we examine the
meaning underlying their manipulation with the operators L +iL„and
S,+iS„,we see that they determine linear combinations of the unperturbed
wave functions which make L', S', L, and S„diagonal (strong field functions).
Thus the result of their first process is just the transformation 1R with the

' Gray and Wills, Phys. Rev. 38, 248 (1931).
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difference that they determine all the strong field functions whereas we deter-
mine only those for the smallest value of

~

MJ ~. Similarly their second process
with the operators J + iJ„gives the transformation U, again for all the wave
functions. Our method is essentially the same as theirs, the only difference
being in the manner in which the transformations are determined. The pos-
sible advantages of the present method are in the first place the compactness
furnished by the matrix notation and in the second place the fact that it is
only necessary to use the wave functions for the smallest value of |MAL ~.

To illustrate our procedure in detail the complete calculation is given
below for the configuration p'. Only the results, that is the transformation
UTR, the energy matrix in IS coupling and the secular equations are given
for the configurations d', p', p's and p's .

APPLICATIONS

The con6guration g'
From Slater's notation' the wave functions for the smallest value of

~
Mg ~,

BID —0 are

Pz ML hhs

(oyz) (-]'/2) -1 ]

(] '/z) {-]-'h) 0 0

]Q (Q l/2) (0-/z} 0 0

~ (-il/2) (i-~l) 0 O

g (]-fA) (0-a} ] -]

The angular momentum matrices determined by our formulas are

I lI IKEY
Tz 0 p -] W/2 O-W/z O

Q 2 2 0 Kiz VX

L'=~P Z4 2 0 L'S=O 0 0

0 2 2 K/2 -R/2

~ p 0 2 O Fi/z 0 -VV. -]

The transformation R is very easy to obtain and is

$2

Z 0 0
0

0 0 0 0 0
0

0 2

] 0 O

~i/. O ~il.
R'= 0 0 ] O 0 =p-'

Vyz 0-&y,

0 0

' Reference 2. In each bracket is placed the set of quantum numbers a for one of the
electrons. The quantum numbers n, l, np, Ip ~ ~ ~ ng, lg are omitted from the brackets as these
quantum numbers do not change in the set of wave functions for one electronic configuration.

***The reciprocals of any of our transformations are easily obtained because of their uni-

tary character. Thus R ' =R*.As all our transformations are real, it is only necessary to inter-
change the rows and columns of a transformation matrix to obtain its reciprocal.
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2 0 0
0 0 0

(s')'= o o o o o

0 0 2

O 0 Z

2 0 0
z Zeta

(i2)'= o zvz 4 o o

0 0 2

0 9

0 0 3 0
0 0

(is)'= o o o
3

0 0 3
-3

We observe that in fact (1.2)' and (I .S) ' have components only between the
degenerate states of (52) '. The transformation T is equally simple.

3 0 0
W/3% 0

0~/s-F/. O O =T'

0 0 3

0 Q

(S2) II (S2) I

2 0 O

0 0
(L2f'= o o o o o

0 0 2

0, 0

(I S)" = (I S)'

The invariance of (I .S) ' to T is peculiar to this case and does not represent the
general situation. The product TE.

0 0
~/6 V~/z Vi/t'

p ~i/ ~i/3V/3 0

VX 04/~.

is the transformation from the initial to the strong field functions. Finally for
Uwe have

7/6 0 0 2'R DYs

0 0 0
U= 0 0 t 0 0

&i/~ 0 0 0-fbi
Wi/3 O 0-&@~i/~

(S2) III (S2) I (I 2) III I 2) II

0 0
0 0 0

(L.5)"'= o o o o o
0 0-3

0 0 -2
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The transformation to L,S coupling is then

IKKKV
P, W/|'. lt/g 0 -W/3 A/s

D 0 Vl/( D/3&/(. 0
UTR='s, 0 AY~-%&i/a 0

3P +V~ 0 0 0 fez

~P t(l/3 4~r~ o Ill/a VS

0 0 0
(s')"'= o o o p p

0 0 l2

0 0
2.3 0 0

(L')"'= o o o o o
0 0 i2

2-3

230 0
(&')"'= o o o o

00 tZ

0 0 0 l2 0 0

The connection between the Roman numerals and the ordinary multiplet
notation as shown by the labelling of UTR, is evident when we remember
that the characteristic values of the angular momenta are of the form 1(1+1).
These characteristic values are the basis of the usual multiplet notation.

The matrix of H2 calculated with the initial wave functions, is

-'/~ a ~PYz-W~T~ 0
0

H = ariz

cL 0 0 0
0 0 0 aV~/i

0 0 -a .ei~'

0 ay Yi-nf~/~ -~/z

Applying U'1R, we obtain for the spin-orbit interaction in L,S coupling

Sp

'D~

3p

'Po

~/~ ~~lag 0 0
a&/2 0 0 0 0
0 0 0 0 aYF

0 0 0-~/z 0
0 0-~VX 0 -a

This is in agreement with the result previously found. for this configuration. '
As the secular equations, determined from the above matrix, have already
been given, we will not write them down again.

* In this matrix and following matrices of the spin-orbit interaction, c is an abbreviation
for (ni If Inl).
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The con6guration d'

The wave functions for Sf' ——0 are

NL Ms

(2-I/z) (-l-'/z)

II (I-'/z) (0-'4) I -I

( Z'!z) {-Z-i/z) 0 0
t~/2) (1 t/2) 0 0

( Pi/2) (0-Vz) 0 0

( 2- Yz) {-2'A ) 0 0

( t -~/2) (-t ~A. ) 0 0

( 1)/Z ) (-2i/2) -I i

(-Ii/z ) ( 0'iz)

The transformation into LS coupling is

3 p'

3p

3p

3p

UTR='S,

'D2

Pp

1=2

m E 7 xr xrlIK rx.

3@o%5 Pj's 855 0 /+2'/~ %go-f~&S

g fAO PF/5 1fN5 0 2+/l5 It/j$ f/[ +/IP

P~. S o 0 o p 0 6'fi&
Pi% -tt3/I. 0 0 0 0 0 -Qy5-fy;

0 p ~-ft'. fi~~4% fv~ 0 g

0 0 4i~ACi&)776';& 0 0
0 0 fl7() 4ffgp W/35 ~$p gl+7p 0 Q

F/i'-Fi. -~Pi»% P -Zoo rip ] /AS ~/+

Fig5 Z% -~j~P-~gO 0 -)'/PO-Z@~ ~ax-K~

If we transform the matrix of the spin-orbit interaction into I5 coupling, we
obtain a result which has already been given. ' For this reason we do not write
down the matrix of the spin-orbit interaction and the secular equations.

The configuration ~'
The wave functions for SIC ——-', are

p3

r (I-i.) ( or. ) (o-s.)
z (t-/) ( ~/ ) (-I-/, )
m ( ~tt. ) (OV') (-~-~/2)

ZZ ( tV. ) (0-j&) (-i/2)
r (t-Yi) (o~, ) (-i/)

M„NIg

-t/2

i -V2

P y2

0 Y2

0 j;/q
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The transformation into LS coupling is

The matrix of the spin-orbit interaction in LS coupling is

2
D~j,

J = 5/2 *D OSj&

J = 3/2

2 4 2
~h ~~/z D~lg

'Pj 0 a -~ia5

"S3@ a 0 0

Day~ &jg8 0 0

I /2
2
Pj,

~R(~
(

0

The electrostatic energies calculated by Slater's method when referred to the
'D multiplet are'

2D ~ 0
'F' 6/25F' = 2X

4S: —9/25F' = —3X.

Taking 'D5~2 as the reference level the secular equations are

1=5/2 —W=0
J = 3/2 —W' —W'X + W(9a'/4 + 6X') + 15/4Xa' = 0

J=1
2

—8'+ 2X = 0.

The secular equations are in agreement with those obtained by Inglis' for this

configuration.

The con6guration ~'s

The wave functions for 2(I~ ———,
' are

7 D. R. Inglis, Phys. Rev. 38, 862 (1931).This calculation also

confirmsthe

results�obtaine

by D. R. Inglis and M. H. Johnson, Jr. (Phys. Rev. 38, 1642 (1931))who found the matrix of

the spin-orbit interaction in IS coupling for this configuration by working backwards from the

secular equations.
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pz

( l-'k ) ( 0/'~ )
( l'/z ) (P-'/z )

( l-Yz ) {0-/z )
E ( iV. ) (-~/z )
Y ( Va ) (-l-&. )
6 '( Ok' ) ( 0-/z )

1K (-lY. ) ( t-~. )
( 0~k) (-l~&a )

S

(o~/.
(0-/z

( oak

(o-v.
{ Ojlz

( Oi~"

( Oia

( OYz

et„gs
) ~ jtz

i -Vz

) ~ -/.

) 0 /tz

) 0 Yz

0

) 0

) -l ~l.

The transformation into L,S coupling is

P/

4g

0/
zS

UTR=
gp

R/

'03/

&Pl(,

The matrix of the spin-orbit

I E 1Kmpm@~
'h~ghflz-g2 z/g -jy 0 /a 0
&i0E~. r~ Fir /y+ O -WV& tt/&

r~-re 0 0-~lio-Qs-fio 0
p 0 0 0 le-Ci. Wi~ 0

&&~~&~~@~~-j&s-l&Ci's 0 M~ -f)~

/~ /3 -$s-P@vN$ o-kg o

+IO +IO 0 0 V/IS 5FS'-8/jS 0

WK@%WF. -&~ -'i& 0 5 &

interaction transformed into IS coupling is
zo 4p(

/2 Day 0 oPiz-
4Pz/ -@lyly ~/z

J =3/2 'D„, 0~/~&h%vW

~Pg/ ~iffYs -% ~/iFS

'8/z 5%~/&5~i9

J = 1/2

4
R/, Rg, S/I

~P~ -5'fr. 'gf~t~-ZnP/3
2

'Pya W% Pg&f'Tg

'SI(, -~&Pk&% 0

The electrostatic energies calculated by Slater's method, are'

'D 2F'(Ps) + F'(P') + 1/25E' —-'G'

4P 2F'(Ps) + F'(P') —5/25F' ——',G'

'P: 2F'(Ps) + Fo(pa) —5/25ta + -'G'

aS.2to(Ps) + Fo(ta) + 10/25ta 'G
8 E. U. Condon and G. H. Shortley, Phys. Rev. 3'7, 1025 (1931).
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It is convenient to use the midpoint between the 'D5~~ and the 'P~~2 levels as a
reference point from which to measure energies. The electrostatic energies
become

'D: 3/25F'+ -'G" = n
4F — 3/'25F' —-'G' = —n
zF — 3/25F' + —,'O' = P
'S: 12/25F' + -'G' = y

The secular equations are

J = 5/2 W' —(n —a/4)' —a'/2 = 0

I = 3/2 —W' + 1F'(p ——'g) + 14 In2 + g/6(2n y 5p) +. (xg)2I
—n'p —1/12an(n + 4p) + 1/16g'(4n + p) + (-'g) 3 = 0
—14" + 74'l —-+ p+ ~ —9/4 I

—1YI--(p+ ~)+ p,
+ g/6(7n —12~ —8p) —(3g/4)'I —npv

+ a/12(llnp + 3np —13pp) + a'/16(7n —17p + 15&) + 3(3g/4)3 = 0

The configuration g's
The wave functions for MJ ——0 are

p3

(1-/. ) { OY~)

(1-/2) { lY~ )
IK ( li'~} { OV~)

m ( 1/. } (o-v}
(t-v~} { o/. }
{1-Yi} {0-Y~)

K ((-Yz) ( 0/z )

7Ir { l/2} (0-/2}
IX ( -l Yz ) ( 0-'/z )

X 1', -it/& ) (-l-rz)

(0-1/. )
(-1 —~/2 )
(-I-Y~ )

(-lj~ )

(-1Y& )

C-1/z )
(-1-Y~ )
(-l-&f~ }
( oi~')

( l~r. )

S

(0-vz)
(0-rl&)

(0-/12)

C
0-j'~)

(o-Yz)

( os}
( pj's&

( OYz)

( 0'/z )

{ or. )

iNL Mg

1
'-1

0 0

Q o

0 0
0 0
0 o

0 0
-l 1

-l 1

The transformation into LS coupling is

j: It I1IIf VV( VKVEIKX
3D ~y &Ho y/F~4j& PA-hP& Fy~-XV' &iso RHQ

3 P /2f/)+&Pi~ Pj~ P -Pi& -P~ 0 yY~ /2@~ yg~

'P 0 0 'j~ 0-'j~ «
I

s, o o P Ci. P" O' P& F~~ 0 o

'D~ Q 0 4~~-Fla ~~f4/~fig-Q kP3 0 0
UTR =

'P, v~ -/. p 0 0 Q 0 0 Y. -r.

o o g& fz~ wja-lK -cY~-Pp~ 0 0
'tj, y. Zi 0 0 O 0 0 0 -4-/~

D, y pp& /pe&-/&pj;, pg&-/&fli+41%+jf~/87~A /Pfs /l%

&p. V/~ -Vi~ -Kj& 0 fH~i~hf% 0-@»-fi«4
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The matrix of the spin-orbit interaction in IS coupling is

3D

~D3 0

Pz Sz Dz Dz

'P, 0 a aA-'P6

5z ct O 0 0
'0, aVj~O 0 0
'0, -~F80 0 0

'p, ~p, ~s, 3D,

'
p, Q 0 aF/g-alii.

3P, 0 0 AY~-~/a%

'S, aEi&~~tao 0

'D, -aCro-~W~ZO O

3p

J=O sp0

The electrostatic energies calculated by Slater's method are, when referred to
the 'D multiplet,

'D: 0

1D ~ $61

'F: 6/25F'

'F: 6/25F'+ —,'G' = y

'S: —9/25F' —-'G' = 8

'S: —9/25F'+ G' = a.
We find the following secular equations with the 'D3 as the reference level ~

J=3 —H/ =0
J = 2 W' —W'(n+ P + 5) + W' In(P + 5) + P5 —9/4a'I

WInP5 —a'/4(7n + 58) I
—4n6a' = 0

W' —W'(P + v + u) + W'I P(v + u) + v~ —9/4a'I
—WIPE@ —a'/4(6P + 3y + 5p) I

—5/12a'a(2P + y) = 0

—8 +P=O.J=0
In conclusion it is the writer's pleasant duty to acknowledge his indebted-

ness to the counsel of Professor J. C. Sister under whose direction this work
was done, to the discussions and criticisms of Professor E. C. Kemble and Dr
L. A. Young, and finally to Harvard University for the award of a Whiting
Fellowship which made the completion of this work possible.


