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ABSTRACT

There should be three noncombining varieties of methane, the nuclear singlet,
triplet and quintet, and two of ammonia, the nuclear doublet and quadruplet, just as
there are two of hydrogen, the nuclear singlet and triplet ("para" and "ortho" hydro-
gen). In this paper the statistical weights of the rotational states have been evaluated
and used in conjunction with the Raman spectra data to calculate the heat capacities
of each separate variety of methane, of the true equilibrium mixture and of the
"frozen equilibrium" mixture. The feasibility of demonstrating experimentally the
existence of these different varieties of methane is discussed in the light of the present
calculations.

'HE elegant experiments of Bonhoeffer, Harteck' and co-workers and of
Eucken' who experimentally verified the predicted' existence of the two

symmetry modifications of hydrogen, nuclear singlet and triplet (commonly
designated by the perverted' nomenclature, para and ortho-hydrogen) led
one to immediate speculations concerning similar modifications of other com-
pounds containing more than one hydrogen atom to the molecule. Owing to
a discovery by one of us' of some peculiar differential vapor pressure effects
with methane at liquid air temperature treated with and without active char-
coal, it was deemed desirable to make calculations of the relative amounts of
the different forms, their specific heats and the average specific heat of the
mixture in true equilibrium and of the one in the frozen metastable equilib-
rium, since it was by such differences that Bonhoeffer was able to make his

' BonhoeA'er and Harteck, Naturwiss 17, 182 (1929);Zeits. f. phys. Chem. 84, 113 (1929)
Sitzb. Preuss. Akad. Wiss. 103, (1929). Abhandl. a. d. Kaiser Wilhelm nst, f. Phys. u, El
Chem. 12, 121, 129, 305 (1929).

~ Eucken, Naturwiss 17, 182 (1929); Eucken and Hiller, Zeits. phys. Chem. 84, 142—157
(1929).

3 Heisenberg, Zeits. f. Physik 41, 239 (1927); Hund, ibid. 42, 93 (1927).
4 Cf. Eucken and Hiller, Zeits. f. phys. Chem. 34, 142 (1927) their footnote 4; Mulliken,

Trans. Faraday Soc. 25, 634—645 (1929), especially p. 638 his footnote 16.
' G. S. These experiments were first made during the winter of 1929—30. Later experiments

more carefully performed showed that the observed differences in vapor pressure might be
ascribed to delay in reaching equilibrium between liquid and vapor as well as to a change from
the "frozen" to the pure equilibrium which was at first postulated. A minor effect may still be
found to exist by means of an improved differential method for determining the vapor pressure
which we intend to apply. In the meanwhile Harteck and Schmidt (Naturwiss. 18, 282 (1930)
have looked unsuccessfully for such an effect in nitrogen, methane and chlorine.
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SYMMETRY MODIFICA TIONS OF METHANE 999

famed experiments, In this paper we wish to present the results of this calcu-
lation, reserving for a possible subsequent one the description of the experi-
mental work which has been in progress now for over a year.

THEQRETICAL

In order to calculate the heat capacity of a gas, it is necessary to know
the energy levels e; and their a priori probabilities. When these are known,
use is made of the familiar equations:

g p,~
—e;/ kT (1)

E=g-
ei

MC. = BE/BT.

If we neglect stretching effects, the rotational levels are given by the
formulae

e; = j(j + 1)h'/8''I

if the molecule is rod-shaped, or

e = (h'/Sir2) [j(j+ 1)/A + (1/C —1/A)i']

if it is shaped like a symmetrical top.
The c priori probabilities measure the degeneracy of the energy levels and

may be looked upon as the number of levels which happen to have exactly
the same energy. The vector model of the molecule is an accurate guide in
simple cases for 6nding the number of these levels, for it is the number of
quantized orientations which the angular momentum may take on in a force
field, (2j+1) for the rod shaped molecule or (2j+1)' for the symmetrical
top, if we lump all possible values of 7. associated with each j.The rigorous
rule is to be found from the application of the Pauli principle in quantum
mechanics. The a priori probability is the number of dijjeremt ways of com-
bining subsidiary eigenfunctions to get a total eigenfunction completely anti-
symmetric' in the protons. The total eigenfunction may be ordinarily' taken
as a product of the electronic, vibrational, rotational and nuclear eigenfunc-
tions, which we call subsidiary.

4 elgvibr It'rot4'nuclei (6)
' An antisymmetric function, A, is defined as one which has its sign changed by inter-

changing the designations of two like particles; a symmetric function, 5, is defined as one which
suffers no change from such an interchange. If the like particles are electrons, we speak of
symmetry characteristics in (regard to) the electrons; if the like particles are protons, sym-
metry in the protons; if the like particles are nuclei, symmetry in the nuclei. Symmetry in the
electrons is of interest to a discussion of the electron multiplicities. In the present problem we
are interested only in the symmetry characteristics in the nuclei (or protons —the designations
are equivalent for hydrogen) and hereafter shall be understood as referring only to the latter
type.

~ Hund, Zeits. f, Physik 43, 805 (1927).
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If the molecule is in its lowest electronic and vibrational state, they may be
disregarded since theyare symmetric(exceptions occur when thereis an extra
unlike atom in the molecule, with the result that the lowest vibrational state
may be double, both A and S) and do not change the symmetry character
of any function which they multiply. In the case of two equal nuclei, the
products obey the rule

5&&5=5
5&&A =A
A&&A =5

As an illustration of how these rules are applied to the problem of a priori
probabilities, let us review the case for hydrogen. Hund' has shown that the
even numbered rotational states are S in the nuclei and the odd ones are A.
There are (2j+1) diferent eigenfunctions which belong to each s; rotational
level. For each successive value of j, there are therefore, beginning with zero,
1S, 3A, 5S, 7A, etc. eigenfunctions. Since to obey the Pauli principle, the
total eigenfunction (6) must be A, each S eigenfunction listed above may
combine with only an A function of the nuclear spin (and not with a S one)
while each 2 above must combine with a S nuclear spin function. If we
represent' the two spin eigenfunctions(corresponding to the two orientations)

byn and/, wehave the following possible combinations,

A'yA2

~lp2+ ~2pl 5 ~lp2 2pl A

S

and see that there are 3S and 1A ones. This means that the u Priori proba-
bilities of the successive rotational states of hydrogen are 1, 3 X3, 1 X5, 3.X 7,
1)&9, etc. and since there is very little coupling force to re-orient the nuclear
spins in the molecule, a system of nuclear triplet molecules will act as a dis-
tinct molecular species entirely independently of a system of nuclear singlet
molecules. If the temperature is lowered greatly, the triplet molecules fall
into their lowest rotational state (j= 1) and the singlet molecules into their
lowest (j=0) and only after a catalytic action which involves a dissociation
of the molecules into atoms will the triplet kind change into the singlet va-
riety" until equilibrium is established.

When we wish to extend these considerations to the case of three like
atoms, we 6nd eigenfunctions which are not completely symmetric or anti-
symmetric, occurring along with those which are. Hund" has introduced the

Hund, Zeits. f. Physik 42, 93 (1927).
Pauli, Zeits. f. Physik 43, 601—623 (1927).

' We hold with Rodebush that there are only two varieties of hydrogen and that the
definition of Giauque (J. Am. Chem. Soc. 52, 4812, 4822 (1930); Giauque and Johnston, ibid.
50, 3221 (1928) which calls each molecule in a different energy level a diferent kind is an un-

justified distortion of the word's commonly accepted meaning.
» Hund, Zeits. f. Physik 43' 788 (1927).
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term "symmetry character" to designate these different kinds and has dis-
cussed the rules of manipulating them. 5(3) is an eigenfunction, Sin the inter-
change of two of any three particles; 5(2+1) is 5 in a certain pair but not for
any other; and 5(1+1+1)is S in none. Hund has also shown that the latter
character symmetric in no pair is completely antisymmetric A(3), that the
first completely symmetric is antisymmetric in no pair A (1+1+1)and that
the second is reciprocal to itself, i.e. , is likewise A (2+1).

As an illustration, we take the three different eigenfunctions, c, b, and c
as characterizing successively the three equal particles, 1, 2, and 3.

5(3)

5(2 + 1)

5(1+1+1)=

~1~2&3 + ~163C2 + ~2~1C3 + ~2~3&1 + &3~1~2 + &3~2&1

The reader may easily verify the fact that the sign of S(3) remains unaltered
on interchanging any two of the three particles, that of 5(1+1+1)is changed,
and that of S(2+1) remains unaltered if one interchanges particles 1 and 2,
but a new function is obtained on interchanging 3 with one of the other two.
Hund and others call the latter eigenfunction "degenerate. " Whether we
should count this degeneracy in computing statistical weights may be seen
by setting up the spin functions for three like nuclei, and comparing the
results with those given by the vector model, which we know gives the correct
multiplicity. Each nucleus has two orientation possibilities. Therefore, there
are 2 permutations of the eigenfunctions as well as orientations of the com-
ponent vectors. In the following tabulations it may thus be seen that the
complete degeneracy must be counted, otherwise a dissociation of the mole-
cule into separate hydrogen atoms would create new nuclear spin statistical
weights, which is impossible.

Three nuclei

nnn S(3)
nnP S(3) S(2 + 1)

nPP S(3) S(2+ 1)

PPP S(3)

degeneracy two fold

Four nuclei

nann S(4)
nnaP S(4) S(3 + 1)

nnPB S(4) S(3+ 1) S(2+ 2)

nPPP S(4) S(3 + 1)

PPPP S(4)

(10)

degeneracy three two
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The two doublet systems represented are roughly analogous to the different
systems of same multiplicity and like I so often encountered in a super-
multiplet in electronic spectra. For four nuclei the total number of permuta-
tions including degeneracies is 16, as is also the total number of independent
orientations of the four nuclei. The symmetry characters with more than two
terms in the argument are excluded because, as Hund has shown, these do not
occur when the spin can take on not more than two values. The S(2+2) char-
acters are missing from the aPPP case since there is only one pair of different
eigenfunctions. How this works out can be seen by writing equation (9) with
b =a. The function for S(1+1+1) would come out identically zero.

The results of Hund show that in a molecule like NH3 the number of

f;b,s of the lowest state are one 5(3) and one 5(1+1+1).The number and
kind of rotational eigenfunctions are given in Table I,

TABLE I. Rotational eigenfunctions of ammonia.

/even

=0

(2j+1) s(3)

=1, 2

2(2j+1) S(2+1) (2j+1) s(3)
(2j+1) s(1+1+1)

jodd (2j+1) S(1+1+1) 2(2j+1) S(2+1) (2j+1} S(3)
(2j+1) s(1+1+1)

where r —= 1 means (r —1)/3 is a positive integer (can be zero). For each positive
value of T there is a negative one, which we take account of by the factor 2.

Likewise, the results of Elert" show that, in the ground vibrational state
of methane, there is one 5(4) and one 5(1+1+1+1)function. In our discus-

sion we shall discard the use of the "half system" proposed by Hund and used

by Elert, and translate the latter's results into terms of the "complete" sys-

tem, at the same time keeping account of the two different vibrational sym-

metry characters of the lowest vibrational state. This is less confusing in

making the ultimate count of the different ways of getting a completely anti-
symmetric eigenfunction. As to the rotational states, all three moments of
inertia are equal and hence formula (5) applies, giving an a priori weight of
(2j+1)' to each j term, the fine structure being completely degenerate. Elert
has demonstrated that the following distribution of these (2j+1)' characters
among the different j states holds, at least for the first few states, and believes

the rule is general, although he could not prove it.
TABLE II. Rotational eigenfunctions of methane.

—=0
1
2
3

5

S(4)

(j/6+1)(2j+1)
[(j—1)/6](2j+1)
(1/3) (j/2 —1)(2j+1)
[(j—3}/6+1](2j+1)
(1/3) {j/2+1)(2j+1)
[(j—5) /6] (2j+1)

s(3+1)

(3j/2)(2j+1).
f(3j+3)/2](2j+1)
(3j/2)(2j+1)
[(3j+3)/2](2j+1)
(3j/»(2j+1)
[(3j+3)/2](2j+1)

s(2+2)

(j/3) (2j+1)
f(j—1)/3](2j+1)
[(2/3) (j/2 —1)+2](2j+1)
f (j—3)/3](2j+1)
(2/3) (j/2+1) (2j+1)
[(j—5)/3+2] (2j+1)

12 Elert, Zeits. f. Physik 51, 6—33 (1928).
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In order to compute the a priori probabilities we now proceed as follows.
From (11) we see there are five S(4) spin eigenfunctions, three times three
S(3+1) and one times two S(2+2). We desire to count the total number of
ways we can combine the functions (6) to get a completely antisymmetric
function, S(1+1+1+1).ln doing this we must keep in mind that, according
to Hund and Elert only one-fourth of the products of two S(2+1) or two
S(2+2) functions can be combined to a completely symmetric function and
one-fourth to a completely antisymmetric one, while one-ninth of the com-
binations of two S(3+1) functions multiplied together can be resolved into
a completely symmetric function. "Table III gives the results, keeping sepa-
rate those arising from each nuclear spin state, as these form different non-
combining varieties of methane, just as they form the two non-combining
varieties of hydrogen.

TABLE III. Rotational 7/fIeights of diferent varieties of methane.

0
1
2
3

5
6
7
8
9

10

S(4)
Quintet

5X1
0
0
7
9
0

13 2
15
17
19 2
21 2

S{3+1)
Triplet

0
3 3

~ 3
7 6
9 6

11 9
13 9
15 12
17 ~ 12
19 15
21 15

S(2+2)
Singlet

0
0
5 2
0
9 2

11 ~ 2
13 2
15 ~ 2
17.4
19 ' 2
21 F 4

CALCULATIONS

Before making use of Eqs. (1) to (4), we shall introduce the substitution

where

o = h'/8m'IhT

= 0.7166/T

6 = 28 = 2h/8ir'cI cm —'

(12)

(13)

(14)

is the spacing in wave numbers of the lines in the normal band spectrum.
Unfortunately, in the case of methane, we are entangled with an am-

biguity in interpretation of the experimental data. Cooley'4 found three differ-
ent spacings, 5.41 (7.7p band), 9.77 (3.31@) and 15.3 cm ' (3.5p band), of
which 9.77 most likely represents the moment of inertia of the molecule
(5.66&& 10—"gm. cm'). This is near the value obtained from Raman spectra, "
5.17&&10 ' corresponding to an absorption-emission line spacing of 6=2

&3 Cf. LudloE, Zeits. f. Physik 57, 227—241 (1929)."Cooley, Astrophys. J. 62, 73—83 {1925)."Dickinson, Dillon and Rasetti, Phys. Rev. 34, 582 (1929)."Mecke, Zeits. f. phys. Chem. B'7, 108-129 (1930),
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&5.363 cm ', and since this value was capable of the more accurate measure-
ITlent wc shall take lt 'to tl anslRtc 0" into teIHperaturc, .

o = 0.716 X 10.726/T.

Further support for the correctness of this moment of inertia as against
thRt cRlcUlatcd frolTl thc otheI spRclngs 10.2 Rnd 3.61 +10 49, lies ln Meckc sl~

comparison of the CH, NH and OH nuclear distances in the free radicals
with thc co1rcsponding dlstRnccs ln the saturated hydrides. The Usc of
I= 10,2 g 10 would glvc a CH dlstancc oUt of linc with the tl end ln
other molecules of the series.

Abbrevlatir g the summation of the statistical weights by

and changing the variable from T to o in (3) we get

C'/~ = (o'/Q*') [0'd'Q'/«' —(dQ*/do)']
= o'd' ln Q/do'

(16)

(16a)

where '6 rcfcrs lcspectlvcly to thc nuclear quintet, triplet Rnd slnglct forms,
The v'alues of Q; are to be obtained from (15) and Table III and are, up 'to the
1000 power in the exponent:

'Q = 9e-"+ 15e "+42e '"+ 54e "'

(19)

The coef6cients of the terms in the above expressions as well as of those
for the various derivatives are arranged in Table IV, at the bottom of which
Rrc given the CRICU1Rted vRlues of cori cspoIKllng BUMs fol foUr different vRlucs
of 0, chosen to represent temperatures ranging from below the boiling point of
liquid hydrogen to those of liquid air and above. In Table V are given the
corresponding rotational specihc heats obtained by applying Eq. (16). An
idea, of the rapidity of convergence of the different series for the least value of
o (0,0430) and the consequent accuracy of the summations may be gained
from Table VI in which are given the ratio of the next to last to the last term
taken and the percent oI the whole sum (up to and including the last term)
which the last term constitutes. From this we see that the series for Q~ is still
diverging where we stopped oII, (although it converges later on) and that for

Qo is just beginning to converge. At the other temperatures the series are on
the ~hole satisfactorily convergent. The values in parentheses are those for
0' =0.0861.
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Qi
2

TAaLz IV. Summation coefficients.

—dQi/d~
2

0'd'0'i d~'-(~0'id~i'
1 2

0
2
6
8

12
14
18
20
22
26
30
32
36
42
44
48
50
54
56
58
62
68
72
74
76
78
84
86
90
92
96
98

i%urn

26

17

38

9
15

117

180

204

285

10

18

22

30

18
90 60

1008

180 1080 360 3600

2970 660

1092 4914 1092

4032

45864

163800
840 10080 1680 47040

113256
203280

1224 14688 4896 88128

174960

428400

3420 25650 3420 307800
413712

76440

2160

37800
22680

157464
158760

843696
855360

1347192
1684800
2274480
534600

4422600

4723920
9807912

14636160
1667952
8996400

12597120
13329360
30844800
12046320

49650624
30164400

4127760

35280

126720

336960
39600

976512

82368

699840
2962080

446160

3309696
2681280

152880

145.614
53.733
16.369
6.043

o =0.0430 16.168
.0861 5.970
.1937 1.880
.3873 1.071

Burn, =Za;e™

72999 7543516
6282. 1 540870,
201.92 10711
11.241 328.33

32.239
11.940
3.576
0.987

where a is value given in upper part of table.

314364
27062

388.24
1.6087

TABr.H V. Rotational heat capacities of separate forrgs of methane.

178'K
89
40
19.8

C;/R

Quintet Triplet
i=1 2 3 1 . 2

0.00430 2 834X10 ' 8.737X10 ' 1 782X10 ' 0.5173 0.659'
.0861 8.316X10 ' 2.566X10 ' 5.196X10 5 1.3059 1.3881
1937 4 244X10 4 1.400X10 4 2.934X10 ' 2. 1433 l 4999

.3873 5.232 X10 ' 4.107 X10 ' 1.540X10 ' 1.4701 1.3485

Singlet
3

0.5603
1.4067
1.1380
0.2477

TABr,E VI. Convergence data for series.

next to last
Ratio term

last
Percent of whole which

last term constitutes

Qi
d —(dQ/

Q2
Q2d2Q2/d0'2 (dQ2/der) 2

1.5
8.

(4-7)
(8.7)

=0.043 (0.0861)

0.98 (2 .. 1)
7 (9.1)

0.043 (0.0861)

(0.3)
(0 3)

(0 2)
(0 2)

Q3
Q.,d2Q. /dg 2 —(dQ3/dg) 2 20

(8.4)
(21)

2.5
0.6

(0.1)
(0, 1)
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In order to draw curves for the heat capacities we wish to know their
asymptotic behavior at very low and very high temperatures. In the former
case 0 becomes large and the first terms in the series, the coefficients of which
are given in Table IV, are the only important ones. Using solely these, the
heat capacities were calculated for 0 = 0.5 and 1.0 (T = 15.4 and 7.7'K respec-
tively) and the corresponding points were used in plotting the curves.

The extrapolation of the curves in the other' direction is more difficult.
At high temperatures, a. becomes small and the series may be replaced by
integrals

(& = If P(2j+ 1)s "'+"'di (20)
80

where p(2j+1) is the number of rotational eigenfunctions of methane given
in Table II. Since p is expressed analytically only for every sixth value of j
and is a different function depending on whether one starts with 0, 1, 2, 3, 4 or
5 we must split the above integral into six.

e =
Jl (P.)+ JI (P.)+ Jt'(P.)+ Jf(p.).

0 1 2 5

Changing variables in each case, we get for the S(4) functions

(21)

Po = U+ 6)/6 = q+
P& ——U —1)/6 =

q

P& = (j —2)/6 = q

P» = (j+ 3)/6 = q+
P4 = 0+2)/6 = q+
p =(j —5)/6=q

j=6q
j =6g+1
j =6g+2
j =6q+3

1 j =6q+4
j =6q+5

(22)

and leaving all five intervening terms in the integral, for the other five in-

tegrals, dj~dq (not~ 6 dq) we have

(Po) = (q + 1)(»q + 1)
0 0

f (P,) = f q(12q+ 3)e &"+'&&"+—2&'dq

1 0

(P2) = q(»q + 5)s"'+""'+"'dq
2 0

Jf (P.) = f (q+1)(12q+7) """"""'dq
3 0

f (P4) = „f (q+ 1)(»q+ 9)s "'+4&&6'+"'dq
J0

P5 ——
~ q 12q + 11 e «~+»«~f+') dg.

5 80
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It may be shown that

(q + s) [2(6q + b) + 1]e & ~+ i& ~+~+ ~'dq

(1 —
&) [ se b&—b+1)s + err/4~1/2~ —1&2/12

—( "/6) [b+ -' —(b+ -')'~/3+ (b+ -')'~'/ o —(b+ l)'~'/4 ] I ( 4)

Inserting the appropriate values of a and b from (23) and repeating the
calculation in a similar fashion for the S(3+1)and S(2+2) functions we get

'Q& = 5(rr'"o "'/12) [1+e/4 —30rr "'o'"+o'/32+ 302.4~ '12e'" j (25)

3Q —(9 1&2 —3/2/12) I 1 + /4 74 —1/2 3/2 + 2/32 + 840 4 —&/9 5/2. . .
I (26)

'Q = (2~"'e "'/12) [1+~/4 —78~ '"~"'+~'/32+1094 4~ ""~'" ] (27)

Whence we obtain by differentiation of In Q, remembering that &r is small

'P = 5/(5 + 9 + 2) = 31.2 percent (31)

Nuclear triplet 'F = 9/(5+9+2) = 56.2 percent
Nuclear singlet 'F = 2/(5+9+2) = 12.5 percent.

This relative proportion should remain unaltered if we cool ordinary
methane gas down to extremely low temperatures, but should change over
into the equilibrium proportion obtaining at that temperature on exposure
of the methane to suitable catalysts ("dissociation catalysts" ). The latter
proportion

(32)~;=Q'/(Q +Q. +Q.)
is to be determined by substituting the appropriate values already calculated.

The results are all summarized in Table VII which gives the relative equi-

TABLE VII. Heat capacities of frozen and true eguilibrium mixtures of methane.

'C&/R = 1.5 —12.7&r'r'+ 655.8esr (28)

'C2/R = 1.5 —31.3o'" + 1817e'" (29)

'Cq/2&' = 1.5 —33.01e3/2 + 2357g5/& (30)

From these expansions the heat capacities of each form was calculated for
. &r = 0.01(T= 768'K).

It is possible now to estimate the relative amounts of each form at high

temperature from equations 25—1'. They are
Nuclear quintet 5(rr'&2&r 3&'/12)/(5rr'"&r "/12+97r'&'&r "'/12+2~'&'&r "'/l2)

5F1 'Fs 'Fs 'C1/R 'C2/R 'Cs/R
C„/R

frozen
C,/Z
equil.

7.7oK
15.4
19.8
40
89

178
768

1
0.5
0.3873

.1937

.0861

.043

.01

80.1 19.5 0.3 0.006 0.488
56.8 37.6 5.7 .626 .902
43.3 48.8 8.0 1.47 1.349
32.0 55.7 12.2 2, 143 1.500
31.2 56.2 12.5 1.306 1.388
31 2 56 2 12 5 0 517 0 659
31.2 56.2 12.5 1.493 1.487

0.0003
.0804
.248

1.138
1.407
0.560
1.491

0.28
.71

1.25
1 ' 65
1.36
0.60
1.49

0.10
.70

1.31
1.66
1.36
0.60
1,49
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librium proportions of the different symmetry forms, their separate heat
capacities, the average heat capacity of the mixture in frozen equilibrium and
that of the mixture in true equilibrium. Figs. 1, 2 and 3 portray the same data
graphically. The average heat capacity is calculated from the formula

5p 5C + 3p 3C + lp lg (33)

C„/R
2.Q*

3 )

I

i

oq I

00 'IP
0 40 50 IP.O lQO'K

TSARps' 01"Q

Fig. 1. Rotational heat capacities of methane.
Q Quintet O Triplet Singlet
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Fig. 2. Equilibrium amounts of different symmetry forms of methane.
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CONCLUSIONS

of Table UII and Fig. 3 shows that according to our calculations,A study o a e an ig.
there should be two regions propitious for detecting a c ange in sp
after catalytic treatment, were it not for vap pf or ressure limitations. The more
practical wou e t a a eld b h t t the temperature of boiling hydrogen where the
specific heat should increase some five or six percent. ...e ot g...e other re ion s ou
be at the much lower temperature of 8'K where the heat capacity should
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Fig. 3, Average rotational heat capacity of methane.

decrease some 64 percent. The inaccuracies involved in the cessation of our
sums at a possibly too early point (Table VI) affect only the values obtained

0at 178'K, where the frozen equilibrium proportions are practicaliy iuentical
with those at true equilibrium. From the standpoint of these calculations it
seems that experimental difficulties of working with methane vapor at such
low temperatures would be almost insurmountable in view of the fact that it
cannot be held in the gaseous state in concentrations greater than those cor-
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responding to its vapor pressure, which indeed must be less than 0.1 mm even
at 40'K. Whether the same distribution would hold among the different va-
rieties in the solid crystal as we have calculated for the gas, we are not pre-
pared to state. A catalytic change in the solid state might perhaps be detected
by raising the temperature to a test temperature accurately controlled and
observing any alteration in the heat capacity of the vapor. Such changes
should however be exceedingly minute. These considerations lead one to be-
come exceedingly pessimistic concerning any method of demonstrating the
different varieties by means of the specific heats of the vapor.


