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ABSTRACT

It is shown that the application of the Wentzel-Kramers-Brillouin approximate
solution of the wave equation to problems of the transmission of electrons through po-
tential barriers leads to simple derivations of formulas for the transmission coefficient.
This method may be applied systematically to potential barriers of arbitrary form.

1 NUMEROUS examples of the transmission of electrons through poten-
« tial barriers may be found in the literature in connection with the theory
of radioactive disintegration and emission of electrons from metals. In those
cases in which the wave equation does not admit of elementary solutions the
calculations become lengthy and laborious and it has been found necessary to
introduce asymptotic properties of the solutions in order to arrive at results
of physical interest. We have found that the same end results can be obtained
by the use of the Wentzel-Kramers-Brillouin approximate solution of the
wave equation. The calculations are much simplified and can be extended
systematically to any problems of this type.

2. The W.K.B. solution possesses enough similarity to classical behaviour
so that the physical interpretation of every step of the calculation is self-
evident, yet it also possesses properties which are typically wave-mechanical.?
If the one-dimensional wave equation be written in the form

Y (x) + (E — V(x)¥(x) =0 1
the W.K.B. fundamental solutions may be written
x,l/(x) =(E— V)"”4 eti (BT iy, (2)

This approximation is invalid in the neighborhood of values of x for which
E—V(x) =0, that is, where the classical kinetic energy vanishes. In regions
where E— V(x) >0 the solutions have an oscillatory character while in those
regions where E — V(x) <0 they behave as real exponentials. In order to have
an approximate solution valid throughout the range of ¥ we must know the
correspondence between solutions of the oscillatory type in one region and
those of the exponential type in an adjoining region. “Connection formulas”
have been given by Kramers and Zwaan.? They require that
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2 G, Wentzel, Zeits. f. Physik 38, 518 (1926); L. Brillouin, C. R., Juli, 1926; H. A. Kramers,
Zeits. f. Physik 33, 828 (1926); L. A. Young and G. E. Uhlenbeck, Phys. Rev. 33, 1154 (1930)

3 H. A. Kramers, reference 2; A. Zwaan, Utrecht Dissertation, 1929.
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(V — E)y-VigH/0-Bar , (F — V)14 cos{ f (E — V)2dy — 1}
4

)
(V — E)~1/4¢- v-mrtae 2(E — V)~14 cos { f(E — V)l2dy + _Z_}

The above integrals are to be taken between the limits x and x;, (E— V(x,) =0)
in such a way that the integrals are always positive. Since we are always
interested in travelling waves we shall use an alternative form of the above.

(E—V)~tigrif G—v)'az ¢, (V—E)~14{ (i)\/2e+]/ =5 do g g §)tg=f B>t da)
4
(E_'V)—-l/fle—if(E—V)llzdz(____)(V_E)—llzl{ (— i)I/Ze+f(V“E)1/2d’”+%(i)”%‘f("—E)md(z})

In the neighborhood of x =x, we may replace E — V(x) by a linear function of
x and use exact solutions which are expressible in terms of Bessel functions
of order 1/3.

3. We shall first consider a case treated by Fowler and Nordheim,* that
of an electron escaping from a metal into a uniform accelerating field (Fig. 1).
We must consider the following cases: (a) E>Vy; (b) E<Vy; (c) E=TV,.

Case (a).
I
E \/0 2 e/:r
x=0
Fig. 1.

For x <0 we write for the incident electron beam

. 2r 2«
Vo= pieine p= " = (2mE) 5)
A h
for the reflected beam
‘l/r = bp—l/Ze——ip:c. (6)
For x >0 we use the W.K.B. solution for an emerging wave
Y, = cy‘”“e“fo y%d” )

where

2
y == P+ ax; po = —;r(szo)l/z

8w2meF

h2

o =

The constants b and ¢ are normalization factors and y; is normalized for unit

“current.” At x=0 > < ¢;+¢, =y, and ¢! +J/ =y

4 R. H. Fowler and L. Nordheim, Proc. Roy. Soc. A119, 173 (1928).
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14 b = cptiryg i/
L= b= op 2yt + iy is/4) )
Yo = (¥) a=0-

The transmission coefficient is defined as the ratio of transmitted to incident

current i.e.
T = ¢¢

from Egs. (8) we find immediately
dpyo'’?

T = 2 ©)
o+ sl [ 2]
| 4y,
or in terms of energies
. 4(E(E — Vy))t/2 8mim
- (@ = vy s
e?f? h?

[Euz + (E _ V0)1/2]2 +

16k2(E — Vo)?

For an arbitrary V(x) (V(x)<V,) the transmission coefficient may be ob-
tained by replacing in (9) a by (87*m/h*) (A V/dx).=+o.

Case (b).
For this case it is convenient to normalize the transmitted “current”
rather than the incident to unity. We have

= a ~1/23ipa:
i bi‘l” i } w0 ()
, = e~ ipz
Y= y el gut e g > g,
With the help of (4) we find for the region 0 <x <x;

Y = z“l“{ (i)U2gt)] A2de | 1(— i)1/26»—fiflzl/2dx}

It

(11b)
z = — 7.
Boundary conditions at x =0 yield
a+b = pi () A, + (= 0)1A
a—b=- ip—1f2z0—1/4{<<i>1/2A+ — 3(= 1A )at (12)

2 (Gpra, + )
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where
A, = o) s
o (13)
A_=¢ jmlezdx_
Elimination of b from the above allows the evaluation of ad. We find
ad = 71‘1720—1/2A+2{<1 + * A2 — —l—zo”ZAJ>
SPZQ 21)
(14)

Zot/? a 1
p 4?20 2

Examination of the relative orders of magnitudes of the bracketed terms
shows that terms containing A% are negligible. The error introduced by
dropping these terms increases as E— V), but in this case the entire approxi-
mation becomes invalid since the critical point x; approaches x=0 where
boundary conditions must be satisfied.
Due to our altered normalization the transmission coefficient for this case
is
4pzel124_2
T = (a@)t = . (15)

o 2
P2 + <— + ZOII2>
420

We have
z = po? — p? — ax
20 = POZ _— P2
A2 = g—4(p2—p2)32/3a
We obtain, therefore
A(E(Voy — E))1/2e—4x(V—E)32/3eF
. MEW— B) »

B+ (— L - E)1/2>2
4(Vy — E) ’

It is easy to see that for all values of the electric field F obtainable in practice
the term in F can be neglected giving

p o HEWo — E))
. = Vo

in agreement with the final results of Fowler and Nordheim.* Eq. (15) may
be generalized for an arbitrary V{(x) (V(x) < Vo) just as in the case of Eq. (9).
Case (c).

This case cannot be treated by the W.K.B. approximate method but it is
easy to treat it exactly in the following manner. For x <0 we write as usual

¢i —_ P—1/2ez‘pz \Pr —_ bp~1/26—i;nz‘ (18)
For x>0 we have the wave equation

V' + axp, = 0. (19)

g~4x(Vp-E')3/2/3eF (17)
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The solution of this equation for small values of ¥ which represents an out-
going beam for large x may be written:

Yo = c(l = Be=i"/3x) (20)
)
I‘ J—
3

o 9y

The boundary conditions at x =0 yield

where

1486 = cpt/2
o= ‘ (22)
1 — b= — icBpV2imI3,
The transmission coefficient
T
48 sin Y
T=1-—0bb= (23)

22+ B2+ 248 sin—’;—

It is easy to show that the above expression is still valid for more general
potentials if F is taken as the field at x=0.

4. As our next example we will consider a potential barrier with external
retarding field of the type indicated in Fig. 3.

]

Fig. 3.

It is clear that in this case there will be no transmitted current and that
only electrons possessing energies greater than V, will contribute appreciably
to the charge density for x>0. Only these electrons will be considered. As
usual we write for the incident and reflected beams (x <0).

\1’1' — P—l/zeipx ¢r — bP—llze—ipx'

For x>x, where x;=(E—V,)/eF we write for the transmitted electrons
(no current!)

de——f:lzlﬂdx
25114

z=—y

y = p? — po* — aw.

'z (24)
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Making use of the connection Egs. (3) we find for the region 0 <x <ux;.

Y = dy~ ! cos { f y2dx 4+ 1;—} (25)

This represents a stationary wave in this region. Boundary conditions at
x=0give

1456 =dpt?y;Y4cos 4

(26)
1— b= — idpt/zy1h {_fl_ cos A + y,!/2 sinA}
4y0
where
4= f Yo + — = i:w>3""+1
0 4 3o 4
we find
(27)

4ygll

1 facosd 2y
p{cos"’A +——< +sinA> }
PP\ 450

Since 4 varies extremely rapidly with p we may take the average values of the
trigonometric terms in the denominator to obtain

8y01/2

dd =

(d—J) (ap) = (28)
o)
P 172 16}’02
The average charge density over the range Ap is
Wap = (d—g)wyﬁm cos? { f y2dx + ‘;L} . (29)

S

x=0

Since the space periodicity is approximately A, the de Broglie wave-length,
we may replace cos?{ [ilyl/%dx+r/4} by 1/2 to obtain

4(yo/ y)112

fcas
p Pg 16y02

The above results allow a complete discussion of the following case (Fig. 4).

Wapan = (30)
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This form of potential curve approximates the space charge condition in
vacuum tubes. The retarding field acts effectively to increase the work func-
tion.

5. In conclusion we shall consider two cases where the form of potential
barrier is modified by an image field. The first example is illustrated by Fig.
5. For x<x9 V(x) =0 and for x >x¢ V(x) = Vy—e?/4x. Nordheim® determines
xo by Vo=e?/4xo. We can find the transmission by using the generalization of
Eq. (9).

4pwol/? 4E 1
T = = = (31)
[;b F 1/2]2 + [ii]? 4F -+ (Zﬁ)z 14 _E_
- 4y, T \ke2E 16RIE?

It is interesting to note that Rk, the ionization energy of hydrogen, enters
naturally because of the occurrence of a hydrogenic potential in the wave
equation. This formula is valid for E2 V, since ¥y >0 throughout the finite
region of x. Anyone who has attempted to follow Nordheim’s calculations will

g .
----- - |
T VO '
/e |
Xo Xo
Fig. 3. Fig. 6.

see immediately the advantages of the method used here. As our last example
we will consider the example of image field plus a uniform accelerating field
(Fig. 6). For x <xo V(x) =0 for x >x,
e?
V(x) =Vy— — — eFx
4x

AVy = + (eF)12.

The generalization of (9) for all electrons possessing energies greater than

V—AV, gives
eSF 1/2
4__E1/2 (E _I_. >
4V,

63F 1/2y 2 [ 63F — 4‘[/02 2
El2 E B S
(o (e o) o]

1 4"<E+Z?7o> )

It is hoped that these examples will indicate the advantages of the use of
the W.K.B. approximation in problems of this type and will suffice to facili-
tate its application to other cases of interest.

58 L. Nordheim, Proc. Roy. Soc. A121, 626 (1928).



