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It is shown that the application of the Kentzel-Kramers-Brillouin approximate
solution of the wave equation to problems of the transmission of electrons through po-
tent:ial barriers leads to simple derivations of formulas for the transmission coeKcient.
This method may be applied systematically to potential barriers of arbitrary form.

NUMEROUS examples of the transmission of electrons through poten-
t ~ ~ tial barriers may be found in the literature in connection with the theory

of radioactive disintegration and emission of electrons from metals. In those
cases in which the wave equation does not admit of elementary solutions the
calculations become lengthy and laborious and it has been found necessary to
introduce asymptotic properties of the solutions in order to arrive at results
of physical interest. Ke have found that the same end results can be obtained
by the use of the WVentzel-Kramers-Brillouin approximate solution of the
wave equation. The calculations are much simplified and can be extended
systematically to any problems of this type.

2. The W.K.B.solution possesses enough similarity to classical behaviour
so that the physical interpretation of every step of the calculation is self-
evident, yet it also possesses properties which are typically wave-mechanical.
If the one-dimensional wave equation be written in the form

0 "(&) + (~ —y'(*))4(~) = 0

the W.K.B. fundamental solutions may be written

p(x) = (E —V)-'&4e~&f&s v&'dx.

This approximation is invalid in the neighborhood of values of x for which
Z —V(x) =0, that is, where the classical kinetic energy vanishes. In regions
where 8—V(x) )0 the so1ntions have an osciilatory character while in those
regions where Z —V(x) (0 they behave as real exponentials. In order to have
an approximate solution valid throughout the range of x we must know the
correspondence between solutions of the oscillatory type in one region and
those of the exponential type in an adjoining region. "Connection formulas"
have been given by Kramers and Zwaan. ' They require that

' National Research Fellow, Mass. Inst. of Technology and Harvard University.
G. Wentzel, Zeits. f. Physik 38, 518 (1926);L. Brillouin, C. R., Juli, 1926; H. A. Kramers,

Zeits. f. Physik 33, 828 (1926);L. A. Young and G. E. Uhlenbeck, Phys. Rev. 33, 1154 (1930)
' H. A. Kramers, reference 2; A. Zwaan, Utrecht Dissertation, 1929.
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The above integrals are to be taken between the limits x and x, (Z —V(x,) = 0)
in such a way that the integrals are always positive. Since we are always
interested in travelling waves we shall use an alternative form of the above.
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In the neighborhood of x =x1 we may replace 8—V(x) by a linear function of
g and use exact solutions which are expressible in terms of Bessel functions
of order I/3.

3. We shall first consider a case treated by Fowler and Nordheim, 4 that
of an electron escaping from a metal into a uniform accelerating field (Fig. ].).
We must consider the following cases: (a) Z) Vp', (b) Z& Vp, (c) 8= V'p.

Case (a).

Fig. 1.

For x (0we write for the incident electron beam

2' 2g= P '"e"* P = —= —(2mB)' '
h

for the rejected beam

$p
—1/2~—t', p x

For x & 0 we use the W.K.B.solution for an emerging wave
1

4tv/ = cy '"e+'fp y'"*

where
2'

y = P' —Ppp + /Ex; Pp ———(2422Vp)1/2
h

87''meIi

h2

(6)

The constants b and c are normalization factors and 4tv; is normalized for unit
"Current. " At X = 0 )& 1tc;+p, =lp/ and p„'+f„' =1/'V4

' R. H. Fowler and L. Nordheim, Proc. Roy. Soc. A119, 173 {1928).
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The transmission coefficient is defined as the ratio of transmitted to incident
current i,e.

from Eqs. (8) we find immediately

4P)y 1/2

or in terms of energies

2

[p + yo"'1'+
4yo

4(g(g —U2)) 1/2

e2P 2

[Pl/2 + (+ U )1/2]2 +
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(9)

(10)

For an arbitrary V(x) (V(x) & V//) the transmission coefficient may be ob-
tained by replacing in (9) n by (82r2222/f22) (d V/dx), 1.2.

C ~0

Fig. 2.

Case (b).
For this case it is convenient to normalize the transmitted "current"

rather than the incident to unity. We have

P. = aP
—'"e'&*

x&0= Pp
—&/2e—su.

lp, = y 1/'e'/„, & '* -x ) xl.X ]/2

With the help of (4) we find for the region 0&x &xl

—2
—I/4

I (2) 1/2e+/ x&/2dx + 1( 2)1/2S—J*xl/id*I

(11a)

(11b)

Boundary conditions at x =0 yield

g +. fl
—pl/22 —1/4

I (2)l/2g + 1( 2)1/2g }

8 —$ = zp j. 2z 14 1123 L ~1/2g ~01/2

& X/2g
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Elimination of b from the above allows the evaluation of cu. Ke 6nd

A
&u = —,'p.;~/2~+2

Spado

2P

+ —+ ———A

Examination of the relative orders of magnitudes of the bracketed terms
shows that terms containing A are negligible. The error introduced by
dropping these terms increases as B~VO but in this case the entire approxi-
mation becomes invalid since the critical point x~ approaches x=0 where
boundary conditions must be satished.

Due to our altered normalization the transmission coeAicient for this case
1s

p2+ + ~ 1/2

WVe obtain, therefore

= po p 0!X

~0 Po P
2 —e

—4(@02—. y&)3/&/3e

4(g(V g))1/2& 4s(ro E)&/2—/8sF—

It is easy to see that for all values of the electric held j obtainable in practice
the term in I' can be neglected giving

in agreement with the final results of Fowler and Nordheim. i Eq. (15) may
be generalized for an arbitrary V(x) ( V(x) (Vo) just as in the case of Eq. (9).
Case (c).

This case cannot be treated by the W.K.B.approximate method but it is
easy to treat it exactly in the following manner. For x &0 we write as usual

For x &0 we have the wave equation

lit)" + o.XP] = 0. (19)
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The solution of this equation for sma11 values of x which represents an. out-
going beam for large x may be written:

where
P, = e(1 —Pe

—' "x) (20)

The boundary conditions at x = 0 yield

+ $ —gpj/2

jcPp
—1 /2g —i m'/8

The transmission coef6cient

(22)

4pp Sln
3

p'+ p + 2pp s&n—
3

(23)

It is easy to show that the above expression is still valid for more general
potentials if Ii is taken as the 6eld at x =0.

4. As our next example we will consider a potential barrier with external
retarding 6eld of the type indicated in Fig. 3.

x=0

Fig. 3.

It is clear that in this case there will be no transmitted current and that
only electrons possessing energies greater than Vo will contribute appreciably
to the charge density for x)0. Only these electrons will be considered. As
usual we write for the incident and reHected beams (x(0).

p
—1/2~i px P —$p

—l /2g —i px

For x&x~ where x~ ——(Z —Vo)/eF we write for the transmitted electrons
(no current!)

de f zl l~dz—
$1

(24)

y

p=p po
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Making use of the connection Eqs. (3) we find for the region 0&x &x(.

P &1 7rf = dy "4 cos II y'/2dx +— (25)

This represents a stationary wave in this region. Boundary conditions at
@=0give

where

1 + 5 = dp'/'y() '/' cos A

1 —b = —idp '/'yo '/' cos A + yo'/'sin A
4yo

(26)

wefind

&1 7r 2 7r
yl/2d& + —

y
3/2 +

0 4 3n 4

4y I/2
(27)

p cos' A + — + sinA

Since A varies extremely rapidly with p we may take the average values of the
trigonometric terms in the denominator to obtain

(dd)(~n) = 8y 1/2

p 1+—— +1
(28)

The average charge density over the range Ap is

(29)

Vo

x=0 xo

Fig. 4.

Since the space periodicity is approximately ), the de Broglie wave-length,
we may replace cos' I f„*'y'('dx+.7r/4 } by 1/2 to obtain

4(yo/y) "'

p 1+— +1
(30)

The above results allow a complete discussion of the following case (Fig. 4).
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This form of potential curve approximates the space charge condition in
vacuum tubes. The retarding 6eld acts effectively to increase the work func-
tion.

5. In conclusion we shall consider two cases where the form of potential
barrier is modihed by an image held. The 6rst example is illustrated by Fig.
5. For x(xo V(x) =0 and for x)xo V(x) = V,—e'/4x. Nordheim' determines
xo by Vo ——e'j4xo. AVe can find the transmission by using the generalization of
Eq. (9).

tp+ y "'J'+
4yo

4E, +

It is interesting to note that RA, , the ionization energy of hydrogen, enters
naturally because of the occurrence of a hydrogenic potential in the wave
equation. This formula is valid for Z Vo since y&0 throughout the 6nite
region of x. Anyone who has attempted to follow Nordheim's calculations will

&oj

Fig. 5.

Vp

XQ

Fig. 6.

see immediately the advantages of the method used here. As our last example
we will consider the example of image held plus a uniform accelerating Beld

(Fig. 6). For x (xo V(x) =0 for x)xo

g2

V(x) = Vo ———&»
4x

AVO = + (e'F)'".

The generalization of (9) for all electrons possessing energies greater than
V—6 Vo gives

It is hoped that these examples will indicate the advantages of the use of
the W.K.B. approximation in problems of this type and will suffice to facili-
tate its application to other cases of interest.

~ L. Nordheim, Proc. Roy. Soc. A121, 626 I,'1928).


