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ABSTRACT

In a recent article, it has been shown that the system of relativistic thermodyna-
mics previously developed and applied by the author furnishes an important extension
in our ideas as to the kind of processes which can take place at a finite rate and at the
same time reversibly without increase in entropy. This makes it necessary to re-exa-
mine from the new point of view of relativistic thermodynamics those processes,—in
particular the annihilation of matter by transformation into radiation and the flow of
radiation out into space,—which have hitherto been regarded as furnishing unmistak-
able evidence that the entropy of the universe is increasing at an enormous rate. In the
articlementioned,the importance of such a re-examination was made evident by treat-
ing the highly over-simplified model of a nonstatic universe filled solely with black-
body radiation. In the present article a treatment is given by the methods of relativ-
istic thermodynamics to a less simplified model of the universe containing a perfect
monatomic gas in equilibrium with black-body radiation. Under the assumption
that equilibrium conditions are always maintained between the gas and radiation, it is
shown that the conversion of matter into radiation would then take place in such a
universe at a finite rate and yet entirely reversibly without increase in entropy, and
that this reversible annihilation would necessarily be accompanied also at a finite rate
by an expansion of the universe,—that is by the kind of behaviour which appears in
the actual universe to be associated with a red-shift in the light from the extra-galactic
nebulae. It is also shown that an ordinary observer, who marks out with rigid meter
sticks a small region in such a universe for his study, would find the matter in this
region continually being converted into radiation; would find the energy content,
energy density, and temperature of the region continually dropping; and would find
a continuous net flow of radiation outward through the boundary of the region into
surrounding space, which he would assume to be at a lower temperature than the
contents of his region not only because of the direction of the net flow, but also because
he would find the frequency of radiation entering his region from the outside on the
average less than that of the radiation which was escaping. From the classical point of
view these findings would evidently be interpreted by the observer as evidences for a
continual increase in the entropy of his universe, in spite of the fact that all the pro-
cesses in the model would actually be found to be taking place entirely reversibly when
analyzed from the more legitimate point of view of the relativistic thermodynamics
which must be used under the circumstances. The simplified model used for these con-
siderations is of course by no means a satisfactory representation of the actual uni-
verse, and the assumption that the gas in the model immediately adjusts itself as to
temperature and concentration so as to remain in equilibrium with the radiation ap-
pears arbitrary. Nevertheless, the analogy between the reversible phenomena occur-
ring in such a model, and phenomena in the actual universe which have hitherto been
regarded as necessarily irreversible, is so close as to emphasize the necessity of using
relativistic rather than classical thermodynamics in order to obtain a real insight into
the problem of the entropy of the universe as a whole.
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§1. PURPOSE OF THE PRESENT ARTICLE

N A recent article! it has been shown that the system of relativistic thermo-

dynamics, which I have previously developed? and applied,® furnishes an
important extension in our ideas as to the kind of processes that can occur at a
finite rate and at the same time reversibly without producing any increase in
entropy. As an example, it would be impossible from the point of view of
classical thermodynamics to carry out the actual expansion of a thermody-
namic fluid reversibly and at a finite rate, since the friction of moving parts
and the deficiency between the actual pressure exerted by the fluid and that
which could be exerted with an infinitely slow rate of expansion would lead to
an increase in entropy. Nevertheless, in relativistic thermodynamics, it is
found that the proper volume associated with a thermodynamic fluid could
increase at a finite rate, owing to a finite rate of change in the gravitational
potentials g,,, without involving any increase in entropy.

The new possibilities thus furnished may be of considerable importance
in connection with the problem of the entropy of the universe as a whole,
since they make it necessary to re-examine from the point of view of rela-
tivistic thermodynamics processes which were formerly regarded as furnish-
ing unmistakable evidence for a continuous increase in the entropy of the
actual universe. To illustrate this possible importance, consideration was
given in the article mentioned to the highly simplified model of an expanding
universe filled solely with black-body radiation. It was shown that the in-
crease in proper volume of such a universe, with an accompanying decrease
in the proper temperature of the black-body radiation filling the universe,
would occur at a finite rate and nevertheless reversibly without increase in
entropy. Furthermore, it was shown that there would be a number of phe-
nomena in such a universe which would be regarded by an ordinary observer
unfamiliar with the expansion of his universe as evidence for a flow of radia-
tion away from his immediate neighborhood into colder regions of surround-
ing space, and hence would be interpreted from the classical point of view as
leading to an increase of entropy, in spite of the fact that there would be no
increase in entropy from the point of view of the relativistic thermodynamics
which must be applied under the circumstances.

It is evident that such possibilities make the use of relativistic thermo-
dynamics imperative for a correct analysis of the entropy changes taking
place in the universe. The model of an expanding universe filled solely with
black-body radiation, however, is lacking from the point of view of giving a
representation of the real universe since it neglects the presence of matter
which is such a characteristic feature of our actual surroundings. The model
was chosen for the purposes of the previous article to illustrate the possibili-
ties of relativistic thermodynamics with a minimum of mathematical com-

1 Tolman, Phys. Rev. 37, 1639 (1931).

2 Tolman, Proc. Nat. Acad. Sci. 14, 268 (1928); ibid. 14, 701 (1928); Phys. Rev. 35, 875
(1930); ibid. 35, 896 (1930). ‘

3 Tolman, Proc. Nat. Acad. Sci. 14, 348 (1928); ibid. 14, 353 (1928); ibid. 17, 153 (1931);
Phys. Rev. 35, 904 (1930); Tolman and Ehrenfest, Phys. Rev. 36, 1791 (1930).
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plexity, and in the present article we shall turn our attention to a more com-
plicated model, containing matter as well as radiation.

The system which we shall treat in the present article will consist of a
nonstatic universe containing black-body radiation and in addition a perfect
monatomic gas. For the purposes of the discussion we shall accept the possi-
bility of the conversion of matter into radiation and shall assume that the
gas in our model adjusts itself, as the universe changes in size, so as to re-
main always in equilibrium with the radiation which is present. Under these
assumptions, it will then be shown that the annihilation of matter in such a
universe, that is its transformation into radiation, would take place at a
finite rate entirely reversibly without increase in entropy and would neces-
sarily be accompanied at all reasonable temperatures by an expansion of the
universe, i.e., an increase in proper volume, also at a finite rate. Attention will
also be turned to a consideration of the phenomena that would be found in
such a universe by an ordinary observer who makes measurements on it. It
will be shown that if such an observer should mark out with rigid meter sticks
a region of the universe in his immediate vicinity for study, he would find the
number of atoms of matter in this region continually decreasing with the
time, partly to be sure owing to a net flow outwards across the boundary but
more important for our present considerations partly also owing to the an-
nihilation of matter. He would also find the energy content, energy density
and temperature of his region decreasing with the time, would find a net flow
of radiation outward across the boundary, and would find that the observed
frequency of the radiation entering his region from the outside was on the
average less than that of the radiation that was escaping. It is evident that
our ordinary unsophisticated observer would be inclined to interpret such
phenomena from the classical point of view as an irreversible annihilation of
the matter in his immediate neighborhood accompanied by an irreversible
flow of radiation into the colder depths of surrounding space, in spite of the
fact that all the processes in the system would really be taking place without
increase in entropy, when analyzed from the more legitimate point of view of
relativistic thermodynamics.

The analogy between the experimental findings of the observer in the
hypothetical model and our own findings in the actual universe is close
enough to emphasize again the necessity of using relativistic rather than clas-
sical thermodynamics in analyzing the problem of the entropy of the universe
as a whole. Nevertheless, the model of a nonstatic universe filled with gas
in equilibrium with radiation may be very lacking from the point of view of
giving a representation of the actual universe; the assumption that the gas
immediately adjusts itself so as to remain always in equilibrium with the
radiation present appears arbitrary; and certain other characteristics of the
model will be discussed which may not appear satisfactory.

We may now turn to the detailed analysis of the problem.

§2. THE RELATIVITY CONDITIONS FOR A REVERSIBLE ADIABATIC EXPANSION

As a consequence of the relativistic generalization of the second law of
thermodynamics which I have previously given, the conditions for a reversi-
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ble adiabatic change in an isolated system consisting of a thermodynamic
fluid at rest in the spatial coordinates xi, xs, x3, but with a state depending on
the time coordinate x4, will be satisfied if the following expression holds at
each point of the fluid*

a
(s =5 ) =0 0
EN ds

where ¢, is the proper density of entropy as measured by a local observer
stationary with respect to the fluid, and the other quantities have their usual
significance. Or since the proper volume of fluid ¢V, in any given range of
spatial coordinates dxidx.dx; is determined by the well-known relativistic
expression

- dx4
dVo = — £ d—dxldxzdxg (2)
S

this condition for reversibility can also be written in the form

EN ds R

In accordance with this result, the proper density of entropy ¢, can be
changing reversibly at a finite rate with the time x4, provided the proper vol-
ume 4V, is also changing with the time at such a rate as to preserve the
equality

doo a
-— (dVo) 4+ ¢o — (V) = 0. 4)
6x4 6x4

The proper volume dV,, however, is determined by the quantities v/—g and
dx4/ds and these in turn by the gravitational potentials g,, so that relativ-
istic thermodynamics provides the possibility for a combined change in en-
tropy density and gravitational field taking place reversibly and at a finite
rate. It is the dependence of proper volume on the gravitational field, neg-
lected in the classical thermodynamics, which leads to this new possibility
characteristic for relativistic thermodynamics.

As shown in the previous article, if the conditions for reversibility are not
satisfied the entropy of the system as a whole [¢.d V, would increase with the
time, and since there are no processes by which an isolated adiabatic system
could decrease its entropy, the system could never return to its original con-
dition. On the other hand, if the reversibility conditions are satisfied, for
example by the fulfillment of Eq. (1), there would be no increase in the en-
tropy of the system as a result of the processes that take place. Hence there
would be no thermodynamic hindrance to a return of the system to its origi-
nal state,—this without reference, however, to the quite separate question as
to whether or not the equations of motion, for the particular system involved,
exhibit a periodic solution.

4 See reference (1) §7.
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§3. CoMPOSITION OF AN EQUILIBRIUM MIXTURE OF GAS AND RADIATION

In order to apply the above criterion for reversibility to the problem to be
treated in the present article, we must first investigate the conditions for
thermodynamic equilibrium in a mixture of gas and radiation, assuming the
possibility of their interconvertibility.

To do this let us consider a system, consisting of a mixture of perfect
monatomic gas and radiation, and small enough in extent to be treated by the
methods of classical thermodynamics as they would be applied by a local ob-
server using proper coordinates. Since the thermodynamic condition of such
a system will evidently be completely specified by a statement of the three
independent variables, energy content E, volume V, and number of mole-
cules-of gas IV, we can write for the entropy .S of the system in accordance
with the first and second laws of classical thermodynamics, the general differ-
ential expression

dE  p as
S = — 4 —dv +(—) dan (5)
T T AN/ py

where p is the pressure and T the absolute temperature.

To use this equation for determining the equilibrium concentration of gas
under the assumption that matter and radiation are interconvertible, we
must first substitute into it the condition that the gas present shall be in
equilibrium with the radiation. This condition will evidently be given by the

equation
' < as > 0 ©
ON/py

since otherwise the entropy of the system could be increased at constant en-
ergy and volume by a transformation of radiation into matter or the reverse.
Hence substituting Eq. (6) into (5), we have the simple expression

dE

s = —dv 7
-t ™

holding true if the gas is present at its equilibrium concentration.

With the help of this equation, however, we may now determine the equi-
librium concentration of gas molecules present, by substituting for .S, E and p
the following evident expressions for their values in terms of N, T and V.
For the entropy of the mixture we may write

3 N 4
S=—2~NklogT—Nklog?—I—NklogbeE'”—l—i;—aVTs (8)

where k is Boltzmann’s constant, a is Stefan’s constant, and b is a constant of
the right magnitude to assure the same starting point for the entropy of the
gas and radiation. The first two terms of this expression give the well-known
dependence of the entropy of a perfect monatomic gas on temperature and
concentration; the third term is introduced in_:order to give the same starting
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point for the entropy of the gas and radiation, the constant of proportionality
being written as k log be*’? to obtain simplicity of form in the final formula;
and the last term is well known as giving the entropy of black-body radiation.
For the energy of the mixture we may evidently write

3
E = Nmc? + 7NkT + aVT* )

where m is the rest mass of each atom and ¢ the velocity of light. The first
two terms give the internal and kinetic energy of the N molecules, and the
last term the energy of the radiation. Finally, for the pressure we may evi-
dently write

;1>=—]XkT-|-l-aT4 (10)

14 3

where the first term is the pressure of the gas and the second the pressure of
the radiation. On substituting these expressions (8), (9) and (10) into Eq. (7),
and eliminating a considerable number of terms which mutually cancel each
other, we obtain the final result

bT3/2N

(kT log - mc2> dN =0 (11)
which can itself be true in general only if we have the relation between equi-
librium concentration and temperature

N . ,
7 = BT (12)

This expression for the concentration of a perfect monatomic gas in equi-
librium with black-body radiation of temperature T was first obtained by
Stern,® who based his derivation on all three laws of thermodynamics and ob-
tained a specific value for the constant b which depended on his method of
introducing the third law of thermodynamics. It was later shown by myself®
that it could be derived, with an undetermined value of the constant b, from
the first and second laws alone, thus avoiding possible uncertainties as to the
correct method of introducing the third law of thermodynamics into such a
problem.

As noted above the derivation of the formula assumes a system of gas
and radiation of small enough extent to be treated by the methods of classi-
cal thermodynamics as they would be applied by a local observer using proper
coordinates. Hence when we use the formula in our later considerations of the
universe as a whole we must remember that the concentration and tempera-
ture are those which would be found at the point of interest by a local ob-
server. To indicate this with certainty we may rewrite Eq. (12) in the form?

§ Stern, Zeits. f. Electrochem. 31, 448 (1925); Trans. Faraday Soc. 21, 447 (1925-26).

6 Tolman, Proc. Nat. Acad. Sci. 12, 670 (1926).

7 This form of equation which gives in the presence of a gravitational field the proper concen-
tration of the gas in terms of the proper temperature, has previously been specifically derived
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No = bTy e metitn (13)

where N, denotes the number of molecules in unit proper volume and 77y the
proper temperature as found by a local observer, using natural coordinates
at rest in the fluid.

It should also be specially noted, for use in our later considerations, that
Eq. (7) for the dependence of entropy on energy and volume when the gas is
present at its equilibrium concentration means that a local observer will find
the proper entropy Sy of a small definite portion of the fluid in his neighbor-
hood, related to its proper energy Eg, volume V), temperature 7' and pressure
po by the relation

dSo = @B—}——@dVo (14)

(1] 0

provided the gas is present at its equilibrium concentration as given in Eq.
(13).

§4. THE LINE ELEMENT FOR THE NONSTATIC UNIVERSE

We must now briefly review certain general properties of the nonstatic
universe,® as a preparation for our consideration of the special model of a
nonstatic universe filled with a mixture of gas and radiation.

The line element for a nonstatic universe filled with a uniform distribution
of matter and energy can be derived® by treating the contents of the universe
for the purposes of large scale considerations as a perfect fluid, on the basis of
two requirements,—(a) that the fluid shall at all times be uniformly dis-
tributed spatially, and (b) the stability requirement that particles which are
at rest in the coordinates used shall not be subject to acceleration.

The line element so obtained can be written in a variety of forms depend-
ing on the choice of coordinates. For the purposes of the present article it will
be most convenient to write it in the form!°

dar?
dst = — o —— 4 2402 4 42 sin26d 2) d 15
( — 2 sin? 04° ) + (15)

where 7, 6 and ¢ are the spatial coordinates, ¢ is the time coordinate, R is a
constant, and the dependence of the line element on the time is given by the
exponent g(2).

for the case of the gravitational field produced by a spherical distribution of perfect fluid
(Tolman, Phys. Rev. 35, 923, 1930), and for the case of the gravitational field in a static Ein-
stein universe (Tolman, Proc. Nat. Acad. Sci. 17, 153, 1931).

8 For an account of various treatments which have been given to the nonstatic line element
for the universe, see Tolman, Proc. Nat. Acad. Sci. 16, 582 (1930). .

? Tolman, Proc. Nat. Acad. Sci. 16, 320 (1930). See also ibid. 16, 409 (1930) and note that
the five assumptions mentioned in §2 of that article can be included under the heading of the
two requirements (a) and (b) which are stated above.

10 Tolman, Proc. Nat. Acad. Sci. 16, 511 (1930). Compare Eq. (5) and note that the r of
that article is our present 7.
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§5. MECHANICS OF THE NONSTATIC UNIVERSE

In accordance with the requirement (a) used in the derivation of the line
element, the proper macroscopic density poo and the proper pressure p, of the
fluid which we take as filling the universe will be independent of the position
7, 0, ¢ but may be changing with the time ¢ Indeed, working out the com-
ponents of the energy-momentum tensor I, which correspond to the line
element (15), and equating to those for a perfect fluid we obtain as the only
nonvanishing components!!

1
8rT) = 87T = 81Ty = — Swpo = et - A (16)
3
87TT: = 87rp00 = E; e v + %g2 — A (17)

where A is the cosmological constant; and these equations give the depend-
ence of pressure and density on the exponent g and its time derivatives ¢
and §, and thus on the time itself.

Using these expressions for the components of the energy-momentum ten-
sor we can now easily apply the principles of relativistic mechanics in the
well-known form

=0 (18)

with u=1, 2, 3 we merely obtain identities, but substituting into this equation
for the case u =4 we easily obtain'?

6( 7% sin 063”/2> + 6( 72 sin fe39/2 > 0 (19)
N Vi) PeN\vT =R T

This important result can also evidently be directly obtained by combining
Egs. (16) and (17).

§6. MEASUREMENTS OF SPACE AND TIME IN THE NONSTATIC UNIVERSE

In accordance with the requirement (b) used in deriving the line element,
free particles which are at rest in the coordinate system 7, 8, ¢ will not be
subject to acceleration but will remain at rest, and this can be directly verified
by calculating the Christoffel three-index symbols which correspond to the
line element (15) and substituting into the geodesic equations which govern
the motion of a particle in general relativity.

As a result of the above, unconstrained observers who are at rest with
respect to the coordinate system will not be accelerated but will remain per-
manently at rest with respect to the coordinate system and with respect to
the fluid filling the universe. In accordance with the form of the line element
(15), the proper time for such observers as measured by local clocks will evi-

1 Tolman, Proc. Nat. Acad. Sci. 16, 409 (1930). Egs. (2).
2 See reference 11, Egs. (4).
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dently agree with the coordinate time ¢. For the proper distance dly, however,
as measured with rigid meter sticks we shall evidently have

eﬂ/?dr
dly = \/—wﬁ“’/—R2 (20)
for points at the coordinate distance dr in the radial direction, and
dly = re?'2d0 and  dly = 7 sin 0e?/2d¢ (21)

for the 0 and ¢ directions. Furthermore, for the proper volume d ¥V associated
with a small range of coordinates we shall evidently have
vy = SO dods 22)
e la——— 4 .
’ V1 = r/R?

Although particles which are at rest in the 7, 8, ¢ system of coordinates
will remain at rest, nevertheless it is evident from Eqgs. (20) and (21) that
the proper distance between such particles will in general be changing with
the time, since g is a function of the time. Thus for the proper distance I,
from a particle located at the origin to a particle permanently located at the
coordinate distance 7, we shall have

T e?2dy
o V1 — 7*/R?

Also in accordance with Eq. (22), the proper volume associated with a given
coordinate range will in general be changing with the time on account of its
dependence on g. For the proper volume of the universe as a whole we can

write

27 T R eglzd,

14 =f f f ————— drdfde = w?R3%/2, (24)
° 0 0 o V1 — 7%/ R?

In accordance with this result we can regard Re?/? as the radius of the universe
and speak of an expanding universe if g is increasing with the time and a con-
tracting universe if g is decreasing with the time.

This completes the review of the general properties of the nonstatic uni-
verse which will be needed in connection with the discussion of our special
model. :

r
Iy = = Re?/? sin~1 = (23)

§7. GENERAL PROPERTIES OF A NONSTATIC UNIVERSE
FiLLED wWiTH A PERFECT MoNATOMIC GAS IN
EquiLiBriuM WiTH BLACK-BODY RADIATION

a. The mechanics of the model. We must now turn to a consideration of
our particular model of a nonstatic universe filled with a perfect monatomic
gas in equilibrium with black-body radiation. The mechanics of such a uni-
verse will be completely determined by equations which we have previously
given,—namely, Eqgs. (16) and (17) connecting the pressure and energy den-
sity of the mixture with the quantity g(¢), Eqgs. (9) and (10) which give the
pressure and energy density in terms of the temperature and concentration
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of the gas, and Eq. (13) which gives the equilibrium concentration of the gas
in terms of the temperature. Referring to these equations we can write

1
Smpo= — et =~ 362 + A = 87(NokTo + LaTy) (25)
3 3 .
871',000 = —]%; d + %g2 — A = 87 N0m62 + ? NokTo + (ZT()) (26)
No — bToslze._mczlkTo (27)

where g(¢) is the quantity occurring in the line element (15) which determines
the dependence on the time, N, is the proper concentration of the gas in
molecules per unit volume as measured by a local observer, and T is the
proper temperature of the mixture.

Examining the above, we note that we have three equations for the three
variables g, Ny, and T as functions of the time, and hence should expect the
possibility of a solution for these quantities as functions of the time, in terms
of initial conditions at some particular time, and the constants R, A, &, a, m
and b. These equations are so complicated, however, being simultaneous, sec-
ond order, and non-linear, that it will not be practicable to try to find an ex-
plicit solution for them. Instead, we shall find it possible to draw from them
the conclusions which will interest us without obtaining a solution.

b. Reversibility of changes in the model. First of all it is important to
show that the changes taking place with the time in such a universe would be
thermodynamically reversible, not leading to any increase in entropy. As in-
dicated in §2 of this article and shown more in detail in the previous article
already mentioned, the relativistic condition for reversibility will be satisfied
for a system of the kind we are considering if we have Eq. (3) holding at
each point in the fluid. And with our line element and coordinates this condi-
tion for reversibility can be written in the form

i) <¢ 72 sin fe30/2
ai\ /T = r7/Re

since, however, ¢odV, is the proper entropy of the fluid contained in the
coordinate range drdfd¢, the condition can now be rewritten in accordance
with Eq. (14) of §3 in the form

9
dfd&dqs) = E(QSOdVo) =0 (28)

1 8( 72 sin fed0/2 p d0d¢) n Do 6< 72 sin fede/? Irdod > 0 (29)
_ —_—— 7 —_— | — 7 =
7o o\ VI = /R To oAVT = ke

the change in proper entropy being dependent solely on the change in proper
energy and proper volume and not being effected by change in number of
molecules, owing to the postulated equilibrium between the gas and radia-
tion.

This condition for reversibility, however, is evidently met by our system
since the purely mechanical Eq. (19) necessitates the truth of the condition
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given by Eq. (29). It should be emphasized, however, that this reversible
behaviour obtains only because of our assumption that the gas adjusts itself
as to concentration and temperature so as to remain always in equilibrium
with the radiation. If, for example, in an expanding universe the concentra-
tion of gas should be greater than that given by Eq. (27), the quantity
(0S/dN) occurring in Eq. (5) would be negative and the annihilation of mat-
ter would lead to an increase in entropy. It may also be pointed out, never-
theless, that the purely mechanical Eq. (19) would be sufficient to insure re-
versibility in any nonstatic universe, having the line element (15), provided
we assume complete equilibrium between the matter and radiation present.

¢. Changes in energy density and temperature with expansion or contrac-
tion of universe. We may next obtain expressions connecting the rates at
which the proper energy density and proper temperature are changing in our
model with the rate at which g(#) is changing with the time.

On the one hand, differentiating Eq. (26) with respect to the time we
obtain

I I I 3<2 ) ) 0
—_— — — —_ = — —| — ¢ —_—
" dat R? § 2 8¢ 2\R? £)¢

and on the other hand by adding Egs. (25) and (26) we obtain
2
8w (poo + po) = E e’ —§ (31)

Hence by combining (30) and (31) we can write

d 3
%"’ = — oo + o) (32)

which gives us a simple expression for the rate at which the proper energy
density will be decreasing in an expanding universe with ¢ positive, or in-
creasing in a contracting universe with g negative.

In addition, substituting for pg and po in terms of Ny and Ty with the
help of Eq. (27) we can easily obtain

5 4
Nome? + —NokTo + —aTs
1 dT, 3 2 3 , 33)
B mc? 15 §
Nomﬁz("*“_‘ + 3) + "“NokTU + 4(1T04
kT, 4

Ty di

and since the factors on the right hand side are physically necessarily posi-
tive, we note that the proper temperature will be dropping in an expanding
universe and rising in a contracting universe.

d. Relation of annihilation of matter to expansion of universe. Further-
more, we can now use this expression for the rate at which the proper tem-
perature is changing with the time to obtain an expression for the rate of an-
nihilation of matter. In accordance with Eqgs. (22) and (27) we can write for
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the number of molecules IV in any given coordinate range drdfd¢ the expres-
sion
72 sin fe30/2

Vi- R

and since the molecules are at rest on the average with respect to the co-
ordinates 7, 0, ¢, changes in this quantity with the time must be due to the
annihilation or synthesis of matter.

Taking a logarithmic differentiation of Eq. (34) with respect to the time,
we thus obtain for the fractional rate of change in the number of molecules
in the universe

N = NodVo = bTy " e=merliTy drdode (34)

N dt

— — 35
IeTO+2 +—¢ (35)

1 dN <mc2 3>1 dT 3
Ty di 2

And on substituting Eq. (33), changing signs, and simplifying, this gives for
the fractional rate of annihilation of the matter in our model
Nome? -+ T“( t me 2>
Mc aTol — — —
’ \'3 &7, .
— - 2 NS
m

N dt 2 ¢ 15 ‘
Nom02<—— + 3 + —NokTo + 4dT04
kT 4

In interpreting this equation it should be noted that mc? will presumably
be very large compared with 2T, under those circumstances which are likely
to interest us, since even if we take the mass m as small as that of the electron
it would take a temperature of more than 10° degrees absolute to make the
two quantities equal. Hence for all reasonable temperatures, we may assume

me2 > kT, 37

and rewrite our expression for annihilation in the approximate form

4
NokTo + ‘3—0T04
_—— = g. (38)

kT

]\707%62 + 4a T04<‘—;>

mc

Since a positive value of § means an expanding universe, we may now
state the important conclusion, true for all reasonable temperatures, that the
reversible transformation of matter into radiation in this model of the uni-
verse is necessarily connected with an expansion. It is perhaps well to em-
phasize this conclusion since in earlier articles I have called special attention
to the fact that the conversion of matter into radiation would in any case
lead to a nonstatic universe in which there would be either a red or a violet
shift in the light from distant objects, and the present model is of special in-
terest in giving an example in which the annihilation of matter is necessarily
connected with the kind of behaviour which appears to be associated in our
actual universe with the red-shift in the light from distant objects.
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e. Consideration of the possibility of a periodic solution. Before leaving
the general behaviour of the model that we are treating it will be interesting
to investigate the possibilities for a solution in which the properties of the
universe would change periodically with the time, owing to a periodic change
in the time variable g(#). We can do this without obtaining an actual solution
of the complicated equations which are involved, and easily show that no
periodic solution would be found. In order to have such a solution the quant-
ity g(¢) would have to pass periodically through its minimum and maximum
values. The condition for the minimum would require

§=0 §iz0 (39)
and the condition for a maximum

§=0 §<0. (40)

On the other hand, combining Eqs. (25) and (26), solving for #, and setting
¢ =0, we easily obtain '
2 8

E= A f (00 + 3p0) (41)

as the value of § when g is an extremum, and since in accordance with Egs.
(25), (26), (27) and (33), poo and p, are both quantities which decrease as g
increases, Eq. (41) is not compatible with the conditions placed by (39) and
(40) on the values of § when g has its minimum and maximum values.

Hence no periodic solution would occur in the case of our model. It should
be specially emphasized, however, that the failure of this model to exhibit
any periodic solutions is not due to any thermodynamic irreversibility in the
behaviour of the system, and does not exclude the possibility of some form of
periodic solution in the case of the actual universe.

§8. INTERPRETATION BY AN ORDINARY OBSERVER
oF PHENOMENA IN THE MODEL

Turning our attention now in particular to the case of expansion, with the
radius Re?/? increasing with the time, we can show that the special model of a
universe, filled with an equilibrium mixture of radiation and perfect gas and
expanding reversibly without increase in entropy, would nevertheless exhibit
important phenomena which would be interpreted by an ordinary observer
from the classical point of view as evidence that the entropy of the universe
was increasing with the time.

To obtain a description of these phenomena, let us consider that the ob-
server in our idealized model of the universe is located for convenience at
the origin of the 7, 8, ¢ system of coordinates and is provided with a rigid
scale of proper length dl,. With the help of this scale we may suppose him to
mark out a small sphere of proper radius /o around the origin, which gives him
a small region of the universe in his immediate vicinity to serve as the sub-
ject of his studies.

For the relation between the constant proper radius of this sphere and the
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coordinate 7 of its boundary we may evidently write in accordance with Eq.
(20)

f e?2dy 2R sip-1 r (42)
= ¢ s —
VI = 2R R

and for the case in hand of a small sphere, with 7 very small compared with
R, this gives us the approximate relation

r o Lol (43)

Since the proper radius of the sphere [, is purposely taken constant by the
observer, we note that the coordinate 7 of its boundary is a quantity which is
decreasing with the time owing to the increase of g with the time in an ex-
panding universe.

For the proper volume of the sphere, contained within the constant proper
radius ly, we can evidently write in accordance with Eq. (22)

T 4riedl?

o V1 — rt/R? !

R?
- —\/R“’ - —I— — sin~!—

V() =
(44)

' r

4red?/2R

0

and developing this in the form of a series in #/R and neglecting higher terms,
we obtain

3 5

V0=47re30/2R3<__i1._+i_1_’_3_+i7_

2 R 4 R¥ 16 RS
+1r+lr3+3 r5+ > (43)

2 R 12 R® 80 R®

~ — pded9l2

And substituting the value of r given by Eq. (43), we can write as a close
approximation the result, which might be expected for the proper volume of
the sphere in terms of its proper radius /,,

4
Vo =~ “3"* 7rlo3 {4:6)

which is a constant independent of the time.

We may now consider the nature of the observations which would be
found by our observer in studying the portion of the universe lying inside this
sphere of constant measured radius and volume.

First of all it should be specially emphasized that he will observe the
amount of matter inside his sphere to be continually decreasing with the
time, and this he will find to be due to two causes,—partly owing to the net
escape of matter through the boundary of his sphere, and partly owing to the
annihilation of matter within his sphere, i.e., its transformation into radiation.
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To separate these two effects, we may evidently write for the number of
molecules of gas N, inside his sphere in terms of the total number of mole-

cules IV in the universe
4 3
—‘-7I"lo

Ny=N—7-" 47
T2 R3¢30/2

where the numerator of the fraction is the constant proper volume of the
sphere as given by Eq. (46) and the denominator is the total proper volume of
the universe as given by Eq. (24). And carrying out a logarithmic differentia-
tion of this with respect to the time coordinate ¢, which in accordance with
the form of the line element (15) is also the proper time for our observer, we
obtain, after changing signs,

1 4w, 1 dN 3 )

N, dt N. dt + 2 §
where the first term is evidently the fractional rate of annihilation of matter
in the universe as a whole and hence also within the sphere, and the second
term gives the fractional rate of loss by escape through the boundary. Sub-
stituting for the rate of annihilation the value given by Eq. (38), this can also
be rewritten in the form

4
3 ]V()kTo + —3‘(ZT04 ‘ 3 .
b £+ —¢ (49)

kT 2
]\701%62 + 4.-dT04 <——2>

mc

1 dN,
N, di

and since g will be positive in an expanding universe, we see that our observer
will find the number of molecules within his sphere decreasing both because of
annihilation and because of recession through the boundary.

Attention may next be called to the fact that the observer will find the
energy density inside his sphere decreasing at the rate given by the previous
Eq. (32)

dpoo
dt

And since the proper volume of his sphere is not changing with the time he
will find its energy content decreasing at the rate

dE,

o 3t (4 18 )¢ 51)
PG pO)?W°>g' (

Furthermore, in accordance with Eq. (33) he will find the temperature
of the contents of his sphere dropping at the fractional rate

3
= — ”2*(000 + po)g. (50)

5 4
]Vo’WLCz + ’—NokT() + —(ZT04
_ 3 2 3 . (52)
o2 1 3) + B+ s
e —— —
0 RTs N 0 0 alyo

1 dT,
Ty dt
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Attention must also be turned to the conclusions that will be obtained by
our observer as a result of his observations on the radiation inside his sphere.
Owing to the continuous drop in proper temperature given by the last Eq.
(52), it is evident that he will find the amount of radiation in his sphere con-
tinually decreasing with the time. This, however, will be a net result which
will contain the factors, increase in radiation arising from the annihilation
of matter and decrease in radiation arising from escape through the boundary.
The latter of these factors, which will be of special interest to us, is due to the
fact that the constant proper volume of his sphere 4wl®/3 becomes a prog-
ressively smaller and smaller fraction of the total proper volume of the uni-
verse m2R3¢39/2 as g increases with the expansion of the universe, so that his
sphere contains a progressively decreasing fraction of the total uniformly dis-
tributed radiation in the universe.

It should be noted that this escape of radiation could be directly de-
tected and measured, if our observer should station one of his assistants on
the boundary of his sphere at the fixed distance /, from the origin as measured
with rigid meter sticks. This assistant would not be at rest in the coordinate
system 7, 0, ¢, but in accordance with Eq. (43) would have the coordinate
velocity

dr N 1 55
— = = — e — = — —f,
i 2" 2 '

Hence, since a proper observer at rest in the coordinate system would find no
net flow of radiation, it is evident that this assistant would find a net flow of
radiation outward, in the case of an expanding universe with g positive.

It should also be noted that this motion of the assistant on the boundary
of the sphere relative to a proper observer at rest in the fluid, would evidently
introduce a Doppler effect into the observations of the assistant in such a
way that he would find the average frequency of the radiation entering the
sphere from the outside less than that of the radiation escaping from the
sphere into the surroundings.

This completes the statement of a considerable number of phenomena
which would appear to our ordinary observer as evidences for a continual
degradation in the state of his universe. As we have shown, this observer
would find that the matter within his sphere of observation was gradually be-
ing annihilated by transformation into radiation; would find the energy den-
sity, and energy content of his sphere decreasing with the time; would find
the temperature in his neighborhood continually dropping; and would find a
net flow of radiation outward through the boundary of his sphere into sur-
rounding space which he would assume to be at a lower temperature than the
material in his sphere, not only because of the direction of this flow, but also
because the average frequency of radiation entering the sphere from outside
would be found to be less than that of the radiation escaping from the sphere
into the surroundings.

It is evident that our ordinary unsophisticated observer would be in-
clined to interpret these findings from the classical point of view as evidence
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that the entropy of the universe was continually increasing, in spite of the
fact that we have shown from the more legitimate point of view of relativistic
thermodynamics that all the processes in the system are taking place reversi-
bly without increase in entropy. It should be specially noted, moreover, that
the phenomena observed in our simplified hypothetical model of the universe
are very similar to phenomena in the actual universe which have hitherto
been interpreted as unmistakable evidence for increasing entropy.

§9. ConcrLusioN AND CRITIQUE

It is evident that the simplified model which we have treated might pro-
vide considerable insight into the problem of the entropy of the actual uni-
verse, since it has been demonstrated in accordance with the principles of
relativistic thermodynamics that many processes would take place in the
model without increase in entropy, which would be quite similar to processes
apparently taking place in the actual universe and ordinarily interpreted as
leading to increases in entropy. There are, however, a number of unsatisfac-
tory features of the model, which must be emphasized in order that we do not
overestimate the progress that has been made.

In the first place it should be specially emphasized, as already pointed out
in §7b, that the reversible behaviour of the model is definitely dependent on
the assumption that the matter present immediately adjusts itself as to con-
centration and temperature so as to remain always in equilibrium with the
radiation. Thus in the case of an expanding universe we assume that the mat-
ter disappears rapidly enough to maintain the equilibrium concentration, and
then show that the expansion of the universe and its accompanying annihila-
tion of matter would be reversible. We have not, however, in any sense proved
that the annihilation would necessarily be reversible in the actual universe,
nor investigated how great the increases in entropy might be if there were a
tendency for the annihilation to lag behind the expansion. The model is thus
in some ways more arbitrary than that of a nonstatic universe filled solely
with radiation as discussed in the previous article, in which the expansion is
necessarily reversible.

In the second place it should be pointed out that the simplified model of
the universe which was used assumes the matter in the universe to be a uni-
formly distributed perfect monatomic gas, and thus neglects the actual pres-
ence of various different kinds of matter in the universe and the concentration
of matter into stars and stellar systems which are characteristic features of
the real universe. It should also be noted that the actual concentration of gas
in equilibrium with black-body radiation at any reasonable temperature
would be exceedingly low, if the constant b in Eq. (12) has the magnitude
which Stern obtained for it by his method of introducing the third law of
thermodynamics. Indeed its value would have to be enormous to overcome
the great effect of the negative exponent mc%/kT sufficiently to give appreci-
able concentrations at reasonable temperatures. Nevertheless, as I have
pointed out in previous publications, the correct method of applying the third
law of thermodynamics to processes, involving the transformation of matter
into radiation, is perhaps still to be regarded as an open question.
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Finally, it should again be remarked as shown in §7e that, although the
model which has been used changes its properties at a finite rate reversibly
without increase in entropy and hence encounters no thermodynamic ob-
stacle which would prevent its return to an earlier condition, nevertheless the
equations of motion governing it do not actually exhibit a periodic solution.
However, this of course does not mean that there may not be some type of
periodic solution in the actual universe.

In spite of these difficulties, however, it seems safe to assert in conclusion
that the work has in any case illustrated the necessity of using relativistic
rather than classical thermodynamics in analyzing the problem of the entropy
of the universe as a whole.



