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ABSTRACT

After reviewing the present status of the problem of line intensities in complex
spectra, and commenting on the relationship of the sum rule, the extended sum rule,
and the general sum rule, a new J-group sum rule is derived. A J-group is defined
as the totality of lines arising from transitions between all terms from one electron
configuration having a given value J& of the inner quantum number and all terms
from a second having a given value J2, it maintains its identity for all couplings. It is
proved that the total intensity of the lines in a J-group is independent of coupling,
provided a third configuration does not produce terms which perturb those con-
sidered; where such perturbation occurs an extension of the new sum rule to an en-

larged J-group is required. One can accordingly calculate the intensities of the in-

dividual lines for LS coupling, and the total intensities found for each J-group or
enlarged J-group should apply to jj and all intermediate couplings, Verification of
the rule is found in special cases which have been calculated theoretically, and,
after v4 and excitation corrections have been applied, in Dorgelo's measurements
in neon. Where only certain terms of a J-group perturb one another lines arising
from the remaining terms need not be considered in taking the sums; experimental
verification of this is given by measurements in the spectrum of Ti I. Bartlett's state-
ment that the extensions of the sum rule must be modified when configurations con-
taining equivalent electrons are involved is discussed, and a procedure for applying
them and the J-group sum rule in such cases is suggested. Finally, intensity data for a
number of cases in Ti I are given to illustrate the method used in assigning the causes
of intensity anomalies in lines to their originating terms, and qualitative results on

relationships between term separations and intensity perturbations are given.

)1. INTRODUCTION

w ITHIN recent years a considerable amount of quantitative experi-
mental data has been accumulated on line intensities in complex

spectra, ' much of which could not be given exact interpretation in terms of
the available theoretical formulas, applying as they do only to certain simple
types of electron configuration and vector coupling. In view of the complexity
of the general problem, and the great need for theoretical guidance in deter-
rnining which experimental data it is most important to obtain, we discuss in
this paper several points which appear to be of value in attempting the

* This paper was presented at the Washington Meeting of the American Physical Society,
May 1, 1931.

' J. B. van Milaan, Zeits. f. Physik 34, 921 (1925); 38, 427 (1926};R. Frerichs, Ann. d.
Physik 81, 807 (1926); G. R. Harrison, J.O.S.A. 17, 389 (1928); G. R. Harrison, and H. Eng-
wicht, J.O.S.A. 18, 287 (1929);C. E. Hesthal, thesis not yet published; R, S.Seward, Phys. Rev.
3'7, 344 (1931).
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piece-meal interpretation of intensity anomalies in spectra arising from elec-
tron configurations of any degree of complexity.

We summarize the intensity rules and formulas now available:

1. The original sum rule of Burger and Dorgelo, which applies to in-
tensities within a multiplet and which holds only for IS coupling.

2. The extension of this rule which was predicted by Kronig, ' experiment-
ally verified by Ornstein and Burger, 4 and theoretically established on the
basis of the new quantum mechanics by Houston, ' which we shall refer to as
the extended sum rule, which applies to the aggregate of lines arising from
transitions between two two-electron configurations of which one electron in
each case is in an s state. This rule holds for all couplings, and the triplet,
singlet, and intercombination lines in the array together form an enlarged
(erwe~terte) mu1tzp1et (sometimes called a generalized multiplet).

3. The multiplet intensity formulas derived from the vector model by
Kronig, ' by Sommerfeld and Honl, ' and by Russell, ~ for LS coupling, and by
Bartlett' for jj coupling. These in general serve only to determine the relative
intensities of lines in special cases.

4. Houston's derivation of the general intensity formulas for all lines aris-
ing from transitions between two two-electron configurations, one electron
in each case being in an s state.

5. Bartlett's' derivation of the general intensity formulas for all lines
arising from the transition sp —p'.

6. The results of Fermi" showing the eGects of perturbations arising be-
tween various configurations in one-electron systems.

7. The extension of the original sum rule which should apply to the gen-
eral case of all couplings, suggested by Lande, "derived from the vector model
by Kronig, ' and experimentally confirmed in a special case in neon by Dor-
gelo" (but see f3 below). This we shall call the general sum rule in the dis-
cussion which follows. In the most general case it would state that the total
intensity sum of all the lines in a spectrum from (or to) all levels having the
same d Priori probability 21+1will be proportional to that probability times
the number of levels involved. In cases where certain states are free from
perturbation by other states these can be considered alone, and the general
sum rule then reduces to a simple extension of the original sum rule.

8. The various formulas for intensities of lines in series, in hyperfine struc-

' H. C. Burger and H. B. Dorgelo, Zeits. f. Physik 23, 258 (1924).
' R. deL Kronig, Zeits. f. Physik 31, 885 (1925);33, 261 (1925).
4 L. S. Ornstein and H, C. Burger, Zeits. f. Physik 40„303 (1926).
' W. U. Houston, Phys. Rev. 33, 297 (1929).
' A. Sommerfeld and H. Honl, Sitz. Preuss. Akad. Wiss. 9, 141 (1925).
~ H. N. Russell, Proc. Nat. Acad. Sci. 11,314, 322 (1925).
8 J. H. Barlett, Jr., Phys. Rev. 34, 1247 (1929).
' J. H. Bartlett, Jr., Phys. Rev. 35, 229 (1930)."E. Fermi, Zeits. f. Physik 59, 680 (1930)."v. H. B.Dorgelo, Phys. Zeits. 20, 787 (1925)."H. B. Dorgelo, ibid. ; also Physica 5, 90 (1925).
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ture, and in the Zeeman and Stark effects, in which we are not at the moment
interested.

To these, all of which except the general sum rule have been quite com-
monly used by experimenters in interpreting their data, we add three, dis-
cussion of which form the basis of this paper:

1. A new J group s-unt rule derived theoretically in $2, which states that
the total intensity of all lines arising from transitions between all states J= J&
of one configuration and all states J=J~ of a second configuration is inde-
pendent of coupling, provided that none of the states are perturbed by those
of a third configuration. Where such perturbation exists the rule must be ex-
tended to include lines from the proper states in the perturbing configuration.
The general sum rule follows from this rule, but does not lead to it. As will
be seen from the discussion which follows, the array of lines which we have
tentatively called a J-group is a more fundamental concept than the multi-
plet, since it keeps its identity through all degrees of coupling.

2. The observation by Bartlett" which is of great importance but which
appears neither to have been discussed nor applied previously, that none of
the extensions of the sum rule can be applied directly to line arrays arising
from configurations containing equivalent electrons. We discuss in CI4 the
modifications in the rules which must be made when Pauli's exclusion prin-
ciple has operated to eliminate certain terms from the array.

3. The general result of quantum mechanics that similar (odd or even)
terms of the same J value perturb one another, by amounts which depend
on the magnetic and electrostatic interactions, but which have not yet been
calculated in detail for configurations containing more than two electrons. It
appears desirable, therefore, to endeavor to establish empirical criteria from
experimental data, which may enable one to predict roughly from the energy
values of the terms and their quantum designations the intensity anomalies
to be expected from the perturbations in any given case. Ke make a be-
ginning at this in )S.

In addition to the terminology used above for the various sum rules, we
list here the designations for certain groups of lines and terms which we have
found convenient. We restrict the term supermgltip/ek to the meaning origi-
nally given it by Russell, '4 namely, the group of related multiplets of similar
multiplicity arising from configurations possessing a common parent term.
Two supermultiplets of high and low multiplicity, from a common parent
term, together with all intercombinations arising between their terms, form
by analogy an enlarged snpermultiplet. The entire group of spectral terms
arising from a given electron configuration will be termed a configuration ar
roy, and the totality of lines resulting from the transitions occurring between
two configurations then forms a transition array (sometimes erroneously
called a supermultiplet). Finally, since in the discussion which follows it fre-
quently becomes desirable to isolate those lines which arise from transitions
between all levels having a given value of J in one configuration and those

"J.H. Bartlett, Jr. , reference 9, p. 233."H. N. Russell and W. F. Meggers, Sci. Paper Bur. Stds. No. 558, and elsewhere.
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having a given value of J in another configuration, we refer to this as a
J-group. Where one or more configurations overlap we must consider also
the enlarged J-group. By adding together those enlarged J-groups which be-

long in a given row or column of the usual type of intensity diagram, we form
the array to which the general sum rule applies.

Where the word intensity is used, we refer always, of course, to the re-

duced intensity obtained after any necessary self-reversal, excitation, and v4

corrections have been applied.

f2. DERIVATION AND TIIEORETICAL DISCUSSION OF THE J-GROUP SUM RULE

Before discussing the intensities of lines in atomic spectra it is necessary
to consider brieHy the general problem of an isolated atomic system as it is

treated in the quantum theory. For this purpose we suppose the Hamiltonian
of the system to be

H = IIp + II& + H2

where Hp is the kinetic energy of the electrons moving around a fixed nucleus

plus a spherically symmetric potential energy, determined by a modified
Hartree method, "which is the same for each electron; IXi is the energyof
electrostatic repulsion between each pair of electrons minus the potential en-

ergy of Hp arising from the repulsion between pairs of electrons; and H2 is

the magnetic energy arising from the interaction of the magnetic moment of
each electron with the field in which it moves. The precise form of the Hamil-

tonian need not concern us here.
The first question that must be answered concerns the characteristic

energy levels of this system. Slater" has shown how to find the characteristic
values of Hp+H& by application of the first order perturbation theory. He
starts from the well-known solutions for Hp from which he constructs proper
antisymmetric wave functions. Then treating H& as a perturbing potential he

shows that the partial removal of the degeneracy in the unperturbed problem
results in the classification of energy levels into multiplets. He is able to
calculate the separation between the multiplets arising from a given elec-
tronic configuration in terms of certain radial integrals. Recently Condon"
and Langer' have indicated how these results must be extended when two
configurations lie so near one another that they must be considered together.
It is expected that the inclusion of H2 in the perturbation problem will fur-

ther remove the degeneracy giving the separations within the multiplets.
Now the existence of certain integrals of the equations of motion greatly

reduces the complexity of the problem. Thus when the magnetic interaction
is omitted, the z components of the orbital and spin momenta, L„and S„are
such integrals. They therefore commute with Hp+H&. Furthermore we find

on computation that they are diagonal matrices in a representation with the
above wave functions as a basis. It follows that the matrix of Hp+Hi can
only have components between states for which I., and S, are the same. Then

' J. C. Slater, Phys. Rev. 34, 1293 (1929)."E.U. Condon, Phys. Rev. 36, 1121 (1930).
~7 R. M. Langer, Phys. Rev. 3S, 649 (1930).
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the perturbation problem breaks up into a number of simpler problems, one
for each value of L„and S,. If the magnetic interaction is included, I., and S,
are not separately constants of motion, although the sum J,=L,+S, is.
Then the perturbation problem reduces to separate problems for each value
of J.which are not quite as simple as before.

We ask ourselves if there are any other integrals which we may use to
simplify further the problem. A well-known constant of motion which should
be useful is J', the square of the total angular momentum. But on computa-
tion we find that it is not a diagonal matrix in the representation for which
Slater's determinant wave-functions are used as a basis. However it has quite
a simple form, all its components being pure numbers except for a common
factor h'. Moreover it has no components between states from diferent con-
figurations. Furthermore we know that J, commutes with J'. lt is then pos-
sible to find a transformation R to a new representation in which J' is a
diagonal matrix, ~ the components of R being pure numbers. This transforma-
tion will leave J, invariant. In our new representation with J and J, diagonal
matrices, Ho+Hi can only have components between states with the same
value of J' and J,. Consequently the perturbation problem reduces to sepa-
rate problems for each value of J' and J,. It is the possibility of the trans-
formation R which enables us to say that only levels of the same J value
perturb one another. It is essential for our later discussion to notice that this
transformation is entirely independent of the electrostatic and the magnetic
interaction.

We now turn to the question of intensities. We consider first transitions
between the states of two configurations, A and 8, which are sufficiently
isolated so that a solution of the perturbation problem for each of these con-
figurations taken by itself may be expected to yield a close approximation
to an exact solution. To obtain the transition probabilities, neglecting quad-
rupole and other higher-pole radiation, we need the components of the elec-
tric moment matrix, P, between the states of A and B.**We find that in the
initial representation these components are simple numerical terms except
for a common radial factor which may be disregarded if we are only interested
in relative intensities. We also find that in order to have some nonvanishing
components A can differ from 8 in just one individual set of electron quan-
tum numbers and that in this set / must change by + 1. The first condition
means that "two electron jumps" are not permitted. They can only occur
when the configuration A (say) is strongly perturbed by another configura-
tion which differs from 8 in only one set of individual electron quantum num-
bers. The second condition gives just the selection principle for the azimuthal
quantum number.

Having obtained the matrix of the electric moment in the initial repre-
sentation we must next pass to the representation in which J' is diagonal. Let

* A detailed consideration of transformations that carry J' to a diagonal form wi11 be
presented in a later paper.

**It is only necessary to consider the s component of P because for an isolated atom there
is no preferred direction in space.
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Rg be the transformation that carries the portion of J' associated with the
states of A, to a diagonal form and let R~ be the transformation that carries
the part of J' associated with 8, to a diagonal form. Then the components of
I' in which we are interested will be transformed to

Inasmuch as the components of E. are pure numbers, the relative magnitude
of the transformed components of I' will not involve the electrostatic or the
magnetic interaction in any way. Now let Sg be the transformation that car-
ries the energy matrix associated with the states of A to a diagonal form and
let S& perform a similar function for the part of the energy matrix associated
with the states of B.As the energy matrix in the representation in which J' is
diagonal only has components between states with the same J value, the
same will also be true of the transformation S. The electric moment matrix
now becomes I"= S,r'S;&.
The squares of the magnitudes of the components of 2"' give directly the
relative transition probabilities between the states of A and 8 for all elec-
trostatic and magnetic interactions. Let us consider in detail the transition
probability between a state n of A and a state m of 8 for some particular
value of J,. It is given by

}2

QS.(~k)P'(ki)S.-'(l~)

(4)
QSx(rrk)S~*(rrk')Sa '(lns)Sn" '(l'rn) P'(kl) P'*(kV)

kk'll'

where the summations k and k' are over all states of A with the same J value
as n and the summations l and l' are over all states of 8 with the same Jvalue
as m. If we now sum over n and m, where n and m have the same range of
values as k and E respectively, we obtain

g I
P"(rrrn)

I

' = g S~(fsk)S*(ek')Sa '(lrN)Sa* '(l'rN)P'(kl)P*'(kV) (5)
nmkk'l l'

But from the general transformation theory we know that S is unitary so
that

QSg(rrk)Sx*(rsk') = 8(kk')

QSn '(lm)Sa* '(l'nz) = 5(ll')

Hence our sum reduces to

g I

P"(Nm)
I

s = g I
P'(kl)

I

' (&)
nm kl

We have already seen that the components of P' are independent of all inter-
actions. This equation therefore means that the sum of the transition proba-

" Van Vleck has given a proof of the invariance of an expression of the type Ps& IP'(kl) I'
to a unitary transformation of both the initial and final states {Phys. Rev. 29, 727 {1927)).
We repeat the proof because of differences in notation.
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bilities between states of A with J equal to J& and states of 8 with J equal to
J2 is independent of the electrostatic and the magnetic interaction for all
values of J~ and J2. This we have shown to be true for a particular value of J,.
But the total transition probability is simply the sum of the transition proba-
bilities over all values of J,. Hence the above statement holds for the total
transition probabilities.

This J-group sum rule can be tested in a number of cases where the in-
tensities have been worked out theoretically for both 1.5 and jj coupling.
As an example we consider the transition dp —+ds for which the intensities in

jj coupling have been given by Bartlett" and in I5 coupling can be obtained
from Kronig's formulas. " Tables Ia and Ib give the intensities in the two

TABLE Ia. Line intensities for the transition dP —dsin LS couPling,
as calculated from Xronig's formulas.

dp

1 36 0 27 81 0

108 0 0 180 0

1.8 27

0 81 27 0 27 125.1 27.9 0 27.9 224. 1

x 0 151.2 27.9 0.9 0 224. 1 27.9 324

TATE Ib, Line intensities for the transition dp —ds injj coupling,
as calculated by Bartlett. *

dp

36 18 90 0 90 90 0 0

90 18 0 90 90 0 0 252 0 0

0 0 40 140 0 140 112

0 0 140 40 0 112 140 324

* Ke do not attempt to correlate the levels in jj coupling with those in IS coupling, as
this correlation will depend on circumstances and we are only interested in the invariant in-
tensity sums.

limiting types of coupling. Comparison of the two tables shows the sums of
the lines in any given rectangle to be the same in each. This, in essence, is
the J-group sum rule, except that in addition it predicts that the same will be
true for all intermediate types of coupling.

A simple special case of this rule is worth noting. Suppose there are two
levels in the con6guration A which are the only ones having their particular J
values, and suppose there is one level in 8 which is the only one with its par-
ticular J value. Then the J-group sum rule levels tells us that the intensities
of the two lines arising from these levels are independent of the magnetic
interaction, Thus their intensity ratio should be normal no matter how

'9 J. H. Bartlett, Jr., reference 8.
R, deL. Kronig, Zeits. f. Physik 33, 261 (1925).
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anomalous the rest of the lines may be. In the example given in Tables Ia—Ib
two such levels occur in dP for J equal to 0 and 4. In ds the levels for J equal
to 1 and 3 are also isolated. Of the four possible lines, * two are forbidden by
the selection rules for J and hence will always be of zero intensity (repre-
sented in the tables by x). The remaining two lines will have a constant ratio
of 9 to j. for all possible coupling schemes. *

Now we consider the relation of the J-group sum rule to other sum rules
that have been proposed. It is evident that the original sum rule cannot be
expected to hold in intermediate coupling because of the perturbations be-
tween terms from different multiplets. We might expect, however, that a rule
similar to the extended sum rule will hold in the general case for intermediate
coupling. If we sum over m in the expression which we have given for the
transition probability in Eq. (4), and use (6) we find that

g ~

P"(em) ' = QS~(ek)5~*(nk')P'(kl)P*'(k'I). (8)

Now to have such a rule hold, the components of the matrix Sg which involve
the magnetic interaction must disappear from the sum. Of course we have
only summed over a row of one J-group but it is certain that when we extend
the sum over different J-groups to obtain the sum over a row of a transition
array, the components of S~ will not in general disappear from the result.
The special cases in which they do can only be determined by a more detailed
consideration of the components of Sq and I".We may mention one case
in which the above sum is independent of the magnetic interaction. If we set

P'(kl)P*'(k'I) =
~

P'(kl)
~

'&(kk') (9)

and if pi~ P'(kl)
~

' is independent of k, then it immediately follows from the
unitary character of S~ that

Hence if in each column of a J-group there is only one nonvanishing transition
probability in LS coupling, and if the sum of the transition probabilities in

LS coupling over each row of the J-group has the same value for every row,
then this sum over each row is independent of the magnetic interaction. f It
is easily verified from Kronig's formulas that these conditions are satisfied
if A is a two-electron configuration which contains one s electron and 8 is

any other configuration. $f From these sums it follows therefore that a rule

* In so far as dipole radiation is concerned the selection rule for J is rigorous for an isolated
atomic system. This follows immediately from the facts that it holds in LS coupling and that
only levels of the same J value can perturb one another.

**This conclusion must be modified if either dp or ds is perturbed by a third configuration
in a manner which will be obvious after the discussion on page 765.

$ It is assumed the transformation R is appropriate for LS coupling. This may be accom-
plished by making the transformation R such that it carried L', S' and L S to a diagonal form

simultaneously, a process made possible by the fact that these matrices all commute with one
another.

ff An exception to this is the transition array p' —+sp. The second condition above is not
satisfied due to the exclusion of some of the terms from p p.
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similar to the extended sum rule holds in the general case of two electron
systems in the direction of the sums for lines to or from a level in the configura-
tion containing an s electron. We note that the sums over a row of a J-group
give us considerably more detailed information than does this modification
of the extended sum rule. In Tables Ia—Ib we see that for the J-group with
J= 1 for the levels of ds, the sums over each row of any of these J-groups has
the same value in I-S and jj coupling.

The J-group sum rule enables us to prove immediately the general sum
rule. We observe that the sum contemplated in the general sum ru1e has the
proper value in LS coupling. Since this sum is made up of a number of J-
group sums it follows that the general sum rule holds in intermediate coup-
ling. We note that it can never tell us more than the J-group sum rule, and
in general the relations among the J-group sums which are given by this rule
are insufficient to determine them completely.

It is interesting to note that the proof of the J-group sum rule does not de-
pend on any specific characteristics of the components of P'. It is therefore
valid when multipole radiation of all kinds is taken into account as well as
dipole radiation.

We next inquire what modification must be introduced if the two con-
figurations A and 8 are not su%ciently isolated, so that a solution of the
perturbation problem for these two configurations taken by themselves can-
not be expected to yield accurate results. * Let us suppose the levels of A are
perturbed by the levels of a third configuration C. If A and C were well sepa-
rated we could solve the problem for each configuration separately thus ob-
taining two transformations Sz and S& which would carry the energy for the
states of A and C respectively to a diagonal form. The transformations would
not have any rows or columns in common. But now if A and C perturb one
another, there will be matrix components between states of A and C so that
the transformation Sqq that carries the energy to a diagonal form will in-
volve states of 2 and C mixed together. It will only factor into the product
Sq'S~ in the limit when A and C are far apart and the intercombination ma-
trix components are small. Now if we examine the proof of our sum rule, we
see that Eq. (7) will still be true if we extend the summations n and k over
all levels of A and C with the same J value, i.e. an enlarged J-group. But now
the result is not independent of the electrostatic interaction for we remember
that the components of P' associated with the states of A are multiplied by
one radial integral whereas those associated with the states of C will be multi-
plied by a different radial integral. The sum will, however, be independent
of the magnetic interaction. If we knew the radial part of the wave functions
involved, we could. calculate the ratio of these integrals which enters in the
relative values of the sums we are trying to obtain. In general a great deal
of labor is involved in finding these functions so that it is much easier to
follow the less satisfactory method of introducing a parameter for this ratio
which is adjusted to fit the experimental data.

* We assume that the transformation 8 which carries J' to a diagonal form has already
been made.
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As an example of the way in which the J-group sum rule can be applied,
let us study the configuration transition A —&8 throughout an isoelectronic
sequence. If no other configuration overlaps either A or 8 throughout the se-
quence, we should expect the J-group sums to have the same relative values
for each member of the sequence. If however, another configuration overlaps
A and 8 for some members of the sequence, we have to consider the enlarged
J-groups. A parameter would have to be introduced to take care of the ratio
of the radial integrals which would have different values for different members
of the sequence. The way in which this parameter changes as we pass along
the sequence could be approximately predicted by a study of the radial part
of the wave functions involved for different members of the sequence.

To test this rule experimentally probably the best procedure is to calcu-
late the intensities for LS coupling with Kronig's formulae. Then the sums
can easily be calculated and may be compared with the experimental values.
It should only be necessary to include in the sum, levels of the same J value
which lie fairly close together as the usual perturbation theory expansions
show. Unfortunately the theory gives no real criterion of just how neighborly
levels must be before they begin to exert an appreciable influence on one
another.

Finally we discuss the departures from normal intensities when the mag-
netic interaction is small. For this purpose we suppose that the transforma-
tion R is such that the diaganal terms of the transformed energy matrix give
the energy levels in LS coupling. *Then for each value of J' and J, the energy
level problem is completely nondegenerate. We write

BA = BA'+ XIJA

where H~ is a diagonal matrix whose terms Zq „8(nm) give the I.S coupling
energies for the states of the configuration A and ) IIA' is a matrix whose
diagonal elements are all zero and whose non-diagonal elements depend only
on the magnetic interaction. Now if the magnetic interaction is really small,
we expect that a first order calculation will yield good results. From well-
known formulae for the energy and the corresponding transformation' we
have in the first order

all, '(~m)
S~(sm) = b(nm) + I1 —6(em) ]+0 QO

An Am

Under this transformation the components of the electric moment matrix be-
came

XHg'(ek)
P'(Nm) = P'(rsnz) + Q' — P'(km)

jVO
An AA:

* See footnote ff p. 764.
J. H. Van Vleck Phys. Rev. 29, 727 (1927).
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where ~P'(mn) ~' is the normal intensity in IS coupling. The summation k

extends over all states of A with the same J values as n. Carrying out a pre-
cisely similar calculation for the states of 8 and keeping only terms of the
first order, we find

XHs'(ml)
P'(~l)

Eo Eo
Btn, Bl

XFI~'(n k) XHs'(ml)= P'(n m)+ g' P'(km) + g' —P'(nl)E' —E' E' —Eo
Ak Bm Bl

where the summation l is over all states of 8 with the same J value as m.
Hence we obtain for the required intensities in the first order

)I,HA'(mk)
~

P"(sm)
~

= P'(e m) P'(rsm) + 2 g' P'(km)
An Ak

XHs' ml
+ 2 Q' P'(Nl)

EB~ —EB,

We see that there is a departure from normal intensity which is linear in the
magnetic interaction. There is no such departure for the energy levels, for
the normal energy level is defined so as to take account of the linear terms
in the magnetic interaction. For energies the departures from normal energy
begin with terms quadratic in the magnetic interaction. It therefore follows
that for a weak magnetic interaction, intensities will. be more sensitive to
anomalies than energies. We note from our formula that in general we may
expect the percentage departure to be greater for the weaker lines.

i3. EXPERIMENTAL TESTS OF THE SUM RULES

As the original sum rule was discovered experimentally and has been
amply confirmed by later measurements on many multiplets, departures
from it are considered to be due to departures from LS coupling. The ex-
tended sum rule has better theoretical than experimental confirmation, since
the only measurements which have been used to test it are those of Ornstein
and Burger" in a very small number of cases. The general sum rule would of
course be extremely difficult to test except in very simple transition arrays.
The measurements of Dorgelo" on the intensities of the neon lines arising
from the transition 2P'3s —2p'3p form the only case that we have been able
to find in which its use has been invoked. This intensity array is shown in
Table IIa, the tabular entries having been taken from Pauling and Goudsmit~
and checked with Dorgelo's original paper. '4

Inspection of Table IIa reveals that whereas the horizontal sums for J= 2

and J=0 are proportional to 2J+1, as is to be expected since these states
~' L. S. Ornstein and H. C. Burger, Zeits. f. Physik 46, 303 (1926)."H. B.Dorgelo, Phys. Zeits. 26, 787 (1925)."L. Pauling and S. Goudsmit, Structure of Line Spectra p. 142.
'4 H. B. Dorgelo, Physica 5, 90 (1925).
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are alone and hence unperturbed, the two horizontal sums for J=1 must be
taken together, their average value being proportional to 2J+1.The vertical
sums for J=2 and J=O can similarly be taken independently; although two
of the latter are present they perturb each other but little. But the vertical
sums for J= 2 and J= 1 must be averaged together due to the mutual pertur-
bations of these states.

TABLE IIa. Test of general sum rule by use of Dorgelo's original measurements on neon I.
p''p

8p 10p 1y 4& 6& 9& 3& 5& 72 23 Sum Quotient

P ]P 0.1 14

3Po x x

3P2 x x

'P) 15 1

45.5

x x 425

20 10 3 9 34 34 17.5 100 227. 5

20 325 01 4 395 10 205 x 1426
2 X43.3

2 2 19.5 17 5 26 31.5 x 117.1

1 15 16 10.5 x x 42.5

Sum 15.1 15 .0 43.0 59.5 38.6 40.5 78.5 70.0 69.5 100
Quotient 15.1 15.0 14.3 19.8 12.9 13.5 15.7 14.0 13.9

2X15 0 4X15.1 3 X14.5

14.3

1 X14.3

TABLE IIb. Test of J-group sum rule with same values as given in Table Ia. Upper values,
J-group sums as calculated from Table Ia. Lower values, J-grouP sums calculated for LS couPling
from Kroni g's formulas.

3P
lp

3Po

8p 10p

30.1
28.6

42.0
42. 8

97.1
85.6

42. 5
42.8

85.5
71.4

132.5
142.8

23

100
100

In Table I Ib we use the same data to test the J-group sum rule, the agree-
ment being satisfactory, (ave. dev. 5 percent) but not so good as for the
general sum rule, (ave. dev. 2.5 percent). We have some cause to be sus-
picious of the data, however, since from our discussion of this point in f2, one
expects all the horizontal sums to split up no matter what the coupling, due
to the fact that the horizontal configuration is equivalent to sp. We note that
Dorgelo makes no mention of having applied a v' correction to his results, and
the fact that he used his data directly to calculate the luminous e%ciency
of his neon lamp source substantiates our belief that this correction was
omitted, especially since the necessity for always introducing it was by no
means so widely admitted in 1925 as it is at present. That no excitation cor-
rection was applied is certain since Dorgelo mentions that with slightly dif-
ferent conditions of excitation the relative intensities of many of the neon
lines are greatly altered, and specifies that the general sum rule holds only
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for the conditions used. That such a correction is needed appears at once
when we apply the v4 correction to Dorgelo's data, which has been done in
Table I I Ia.

TABLE IIIa. Test of general sum rule with data of Table Ia, but with v' correction applied.
O''P

8p 10p 1g 43 6y 9] 3g 52 72 23 Sum Quotient

'Pg x x 293 895 2 26 64 32 6 29 13

'Px 122 051330 322 008 324 423 95 168
'P 0.12 9.8 5.1 2.88 23.8 19.3 8.0 36.0 37,8

PS .s.
1

3Pp x x 1.84 16.3 14.8 9.02 x x x

100 221.5 44.3

x 149.8 49.8

x 142.8 47.5

x 42.0 42.0

Sum 123 103 692 603 409 380 829 745 676 100
Quotient 12 3 103 230 201 136 127 166 149 135 143

TABLE IIIb. Test of J-group sun' rule with data of Table IIa. Upper,
measured; lower, calculated for LS case.

22.6
28.6

46.9
42. 8

119.6
85.6

42.0
42.8

74.6
71.4

150.4
142.8

100
100

Inspection of this table reveals that the horizontal sums have now split
apart, as was expected, while the vertical sums have not. These, however,
show a marked correlation in intensity with the energy values of the upper
states, those lying highest in the atom being weakest (the main numbers in
the term designations indicate their order in the energy level diagram, 100
lying highest and 1& lowest). It is apparent that the higher lying levels are not
being 611ed properly, and an excitation correction must be applied. For com-
pleteness, however, we have given in Table IIIb the test of the J-group sum
rule, with the data of Table IIIa; it now holds quite as well as the general
sum rule, although the agreement of neither is so good as formerly.

The types of excitation involved in the production of light in the neon
lamp are undoubtedly very complicated; we are justified, however, in seeing
if the assumption of any equivalent temperature of excitation will improve
the results. In Fig. 1 we plot the energy separations between the various
upper terms and the upper term 23 against the common logarithm of the fac-
tor required to bring the intensity sum/27+1 closest to a constant value,
since we can reduce the Boltzmann excitation factor to the form 60.=1.6T
log~p R", where Do. is the term separation, T is the equivalent excitation tem-

"G.R. Harrison and H. Kngwicht, J.O.S.A. 18, 287 (1929); G. R. Harrison, J.O.S.A. 19,
109 (1929).
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TABLE IVa. Test of the general sum rule with the data of Tawe IIa, but with both s4 correction
and excitation correction for 13,600' equivalent temperature applied.

8p 100 iy 4g 6j 9y 32 Sg 72 23 Sum Quotient

x' x 25.8 9.4 2.5 7.4 33.2 31 14.7 100 224

13.9 0.7 29 33.8 0.1 3.76 43.2 10.2 19 x 153.7

3P0

0 .1 14 .2 4 .5 3 .0 16 .7 22 .4

x x 1 6 17 1 16 6i105

8.2 38,6 42.5 x 150.2

x x x x 458

50.1

Sum 14.0 14.9 60.9 63.3 35.9 44. 1 84.6 79.8 76.2 100
Quotient 14.0 14.9 20.3 21, 1 12.0 14.7 16.9 16.0 15.2 14.3

2X14.4 4X17 3 3 X16.0 1 X 14.3

TAar. E IVb. Test of the J-group sum rule with the data of Table IVa, the upper ffgures being
the J-group sums as measured and corrected, and the lover lfgures being the sums calculated for I.S
coupling. The total intensify of the array has been made roughly the same for the two cases.

J 0 1 2 3

26.3
28.6

41.0
42.8

41.6
42.8

71.6
71.4

147
142.8

90.7
100

J-group sum rule; one of these contains but a single strong line, and hence is
subject to the greatest experimental error. The other anomalous group (J= 1

to 7'=1) contains the lines which are obviously most responsible for the
deviations from the other sum rules, so that whatever may be the cause of
the anomaly it affects new and old rules alike.

%e have been able to find no other data which could be used for a general
test of the new rules, since we are restricted to two-electron configurations
where the intensities of all lines can be calculated for LS coupling by Kronig's
formulas. On the theoretical side there would be much use for an extension
of the correspondence principle formulas to the general case of multiplets not
having a common parent term, while experimental data on line intensities in
two-electron configuration transitions is badly needed.

)4. MODIFICATIONS IN USE OF THE GENERAL AND J-GROUP SUM RULES FOR

CONFIGURATIONS CONTAINING EQUIVALENT ELECTRONS

It has been commonly assummed that all the intensity formulas and sum-
mation rules apply equally well to ordinary configuration arrays and to those
in which Pauli's exclusion principle has operated to eliminate certain terms.
Bartlett' has pointed out, however, that when one is dealing with the transi-
tion array from sp —p' the sums corresponding to the J's for sp cannot be

'8 J.H. Bartlett, Jr, , Phys. Rev. 35, 229 I'1930).
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proportional to 2J+1,even for I.S coupling, since some of the terms are miss-

ing due to the equivalence of the two p electrons. Indeed it appears that this
must be true for any transition array arising from configurations either or
both of which contain two or more equivalent electrons. For since many of

TAM, E VA. Calculated intensities for LS coupling for the transition array pd —d ' d and (pd —d'). *
pd

sp4

(3Gz) (264)

Spa 3Dz 1pa 3pz

g g g g

3Dz
,
3pz 1Dz 3D) 3pi 1Pj, 3Po Sum

x x x 264

d d, d2

('G4)
SF4
1G4

(13) (202) (0) (0) $
67 4 144 0 x
0 0 0 216

x x 216
x x 216
x x 216

0
216
216

('Gz)
3pz

(3Dz)
('Fz)

(1)

(10)
0

(13) (0) (0) (154)
46 13 0 4
(1) (87) (0) (1)
o (o) (56) (o)

0 0 0 x
100 0 0
(11) (59) 0
(0) (0) (112) x

x x x 168
x x x 168
x x x 168
x x x 168

0
168

0
0

3p,
(D)
apz
~Dz

(D)
3pz

('Sz)
(1P,)

4
(7)
0
0

1 0 35
(11) (0) (1)
25 0 0
0 8 0

x x (5)
0

$ x (0)
x x (0)

13 0 0 67
(49) (10) (0) (11)

5 67 0 1
0 0 70 0

(11) (0) (0) (31)
13 23 0 5
(0) (40) (0) (0)
(0) (0) (18) (0)

0 0 $120
(31) 0 x 120
23 0 $120
0 42 x 120

(10) (0) (14) 72
13 0 18 72
(24) (0) (8) 72
(0) (54) (0)

120
0

120
120

0
72
0
0

3pp

Sum d'd 360
Sum d2 72

280
54

280 280 200
181 224 39

200 200
127 90

6
x 0

200 120
70 79

18 0 x 24
0 24 $24

120 120 40
54 66 18

24
24

~ The individual intensity values are not quite exact in many cases due to the adjustments required to keep small
integral numbers.

TAsLE VB. J-group sums for pd —d d and pd —d'.
pd

lS
3P

'Po 'PI 'PI 'DI 'D2 'P'2 'Do 'F2 'Fs D3 'F3

48
48

'F4

('PI)
( SI)
3P
(D')

ID„
d d 'P2
(d') ('D )

'F2

(F)
(D.)
'F3
(G)
'G4
3F4

('G4)

('Gg)

40
18

138
18

175
133

109
36

250
190

438
111

56
38

218
60

564
364

81
67

264
0

Sumd d
Sum d'

40
18

360
199

800
327

840
462

360
72
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the confirmatory measurements of the multiplet intensity formulas have been
made on multiplets arising from systems containing equivalent electrons, we
know that the internal multiplet intensities are the same, but certain multi-
plets are obviously completely omitted. We illustrate this in Table Va, where
the intensities in LS coupling for the transition array arising from pd —d d
are given as computed from Kronig's formulas. We have placed in parenthe-
sis those lines which fall out when the two d-electrons are equivalent, and the
new sums arising when the transition is pd —d' are similarly marked. Appar-
ently, then, when one is applying the general sum rule to lines arising from
configurations containing any number of equivalent electrons, the correct
procedure is to calculate the proper sums for the suitable nonequivalent case,
and then subtract the theoretical values of the lines arising from terms which
have been ruled out, these being obtainable in the general case by calculating
them for LS coupling and applying the J-group sum rule. The configurations
p', d', etc. should not require modification, since they have the same term
content as p, d, etc.

The J-group sum rule will presumably still hold when equivalent electrons
are present, but the sums used will be different, as seen in Table Vb, on ac-
count of-the different term content of the J-groups.

It should be emphasized that while this suggested method of procedure
appears perfectly straightforward and is given weight by the calculations of
Bartlett, it lacks direct experimental testing and may lead to results which
contradict our previous ideas of the role of the statistical weight in intensity
determinations.

f5. EMPIRICAL STUDY OF PERTURBATION EFFECTS WHICH PRODUCE

INTENSITY ANOMALIES IN COMPLEX SPECTRA

If we wish to cling to the useful fiction that each spectral term can be
described by a single set of quantum numbers we must, as is well known, give
up the ordinary selection principles which state that the azimuthal quantum
number L can change only by + 1 or 0, and that combinations occur only be-
tween states of the same multiplicity. We also find it very convenient to re-
tain the formal nomenclature of LS coupling in cases where the multiplet
structures are not entirely broken down, and to explain the anomalies which
arise as due to perturbation effects produced by near-lying terms. We turn now
to a detailed examination of certain terms in a typical complex spectrum.

Elements of the first long period give rise to many multiplets which obey
the ordinary (LS) multiplet intensity formulas almost exactly, and to others
which are entirely anomalous, while in between lie multiplets containing vari-
ous percentages of normal and anomalous lines. In particular titanium (Ti I
and Ti II)" gives rise to many lines of both types, while vanadium(' chro-
mium, " manganese, " iron, " cobalt, " and nickel" show increasing per-

"G. R. Harrison, J.O.S.A. 17', 389 (1928)."G. R. Harrison, unpublished material ~"C. E. Hesthal, thesis not yet published.
3' R. S. Seward, Phys. Rev. 3'T, 344 (1931).
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centages of anomalous lines. This is to be expected, since the internal multi-
@let separations become greater as one passes from left to right across the
table, so that the tendency of multiplet levels to overlap with a resulting de-
parture from I5 coupling increases.

In Ti I we consider the triads d'D', c'F, c'G; and c'D', b'F, b'G', arising
from the configuration (3d)'4p". The relative positions of these terms in the
energy level diagram are shown in Fig. 2. We note that b F is comparatively
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Fig. 2.

isolated, while in particular c'G3' and d'D3' practically coincide. In addition
c'D'43» lie very close to the 'G' and 'D' terms. To make the relationships more
clear we plot the same energy levels, together with all others lying near them,
jn Fig. 3, where the terms have been arranged according to their J values,

» J. B. van Milaan, Zeits. f. Physik 34' 921 (1925) 38' 427 (1926) R Frerjchs, Ann. d,
Physik 81, 807 (1926).

34 L. S. Qrnstein and T. Bouma, Phys. Rev. 36, 679 (1930).
» H. N. Russell, Astrophys. J. 06, 335 (1927), but modified later, see J.O.S.A. 18, 296

(1929).



which have been marked across the top of the diagram. We are led to expect
from this figure that c'G~' and c'Do' will be unperturbed, as will O'G56' and all
of the O'Il terms.

In Table VI are given the relative intensities of the lines in various sets of
multiplets arising between c'G', c'D', and d'D' and the terms marked in the
left hand column. The values are relative only within a group pertaining to a
given set of lower terms, and while quantitative measurements were made
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800
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200

F8000

800

)3Qi

800

200

27000

BOO

600
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c'D'

c' t=
— b'6'

Flg. 3.

they are in many cases not much better than estimates, due to overlapping
lines, to the comparative weakness of certain lines, and to the presence of
bands. The accuracy is sufficient, however, to indicate qualitatively the valid-
ity of the J-group sum rule as applied to partial J-groups, where only those
lines are considered which arise from terms which mutually perturb one an-
other. The measured. intensities are written in two parts in the case of unfor-
bidden lines; thus if a line is predicted to be of intensity 56 in I.S coupling,
and is found actually to be 48, it is written as 56—8. To test the sums it is
then only necessary to add the three (or fewer) numbers in any row of any
rectangle in Table VI; the excess or deficiency values of the allowed lines plus
the intensities of the forbidden lines, marked O, should totai zero. We note
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TABLE VL Intensities in typical partial J-groups of Ti I with perturbing levels.

Upper c6G' 5
states-+c6D'

d6D'

Lower
states

a6P I

a'P'

(-)
4 ( )g

(—) 220
(—) 30

3 x (—) ~2

4 1230 63 — ( &3)
?

3 x 940 (—)
2 x x

( &2) 150—
30

( —) 42—
9

(—) lap

1+ (50 «
54 150)
63 (20)

720 — (2)
?

(35—
lap)

( &15)

700—
110
lap

2+
19

96—
1

40—
1
4

(50)
(2)

(&2)

(&2)

lap
61

56 (&1)

28 ( &1) 28

(15) 328

4 5

b6J' 3 x

a&P' 1
0

(3)

(10)

(15)

41—
15?
4
1

84—
20

(&2) 28+
lap

4

15

lap

(—) 19+
lap

(—) ~l x

(-) » (-)
(—) lap

*Although Russell lists a line with this designation, it is an exact lap with a strong line, and lies 7 wave-numbers from
the proper position, so that its existence is very doubtful.—indicates line too weak to observe.

(—) indicates line forbidden by L or R selection principles which is too weak to observe.
( ) enclose observed intensities of lines forbidden by L or R selection principles.

x indicates transition forbidden by J selection principle.

that where forbidden lines exist their intensities are taken from some allowed
line which is made abnormally weak; that perturbations may produce in-
creased as well as decreased intensities in allowed lines; that the perturba-
tions are here greatest in the columns with J=3, and that all lines in the
columns with J=5 or 0 appear normal.

We may evaluate somewhat more closely the amount of perturbation
existing between two levels by observing the ratio of intensity of a forbidden
line to that of the allowed line or lines from which its intensity has obviously
been abstracted. This ratio multiplied by 100 we call I'; while we do not ex-
pect I' to be a constant for all of the lines arising from any two mutually per-
turbing upper states, it appears to remain fairly constant in order of magni-
tude. For example, between d'D3' and c'D3' we get the following values of I'
from Table VI: 19.3; 21.6; 8.0; 24; 25; 18. We use the average value 19.3

TABLE VII. 3feasurements of perturbations between states from the data of Table VI.

Perturbed states Separation

c'G'6
c'G'4
c'G'6
c'G'3

d'D'3
d3D'2
d'D'g

c'D'4
c'D'

&

d'D'2
c6D',
c'D'2
c'D'g
c'D'6

89
72
2.4

74
139
194

0
&1
&1

5
19 ~ 3
2.5

&2
0
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as a rough intensity indication of the degree of perturbation between these
two terms. In Table VII we give the values of P obtained for various mutually
perturbing upper terms as computed from the date of Table VI.

We note in particular the much greater perturbations between the d'D'
and c'D' terms than between either and c'G'. If we are correct in assuming
that all three come from the same configuration, the close coupling between
the triplet and quintet D terms can probably be traced to the fact that they
differ only in spin orientation.

We note also from Table VII that the mutual perturbations between two
given sets of multiple terms increase rapidly as the energy differences between
the perturbing states decrease, as is to be expected.

We may brieHy summarize the available intensity measurements dealing
with some of the other upper states shown in Figs. 2 and 3 as follows: O' F,
comparatively isolated, gives the practically normal mnltiplet ($172)
a'F —O' F. The only forbidden lines to which O'F gives rise are extremely
weak, with the exception of a few which can be traced to perturbations of the
other states giving rise to them. c'F, on the other hand, shows many inten-
sity anomalies, which can be traced to perturbations with O'G'.

A great deal of useful information can of course be obtained without
quantitative intensity measurements by observing the estimated intensities
of lines forbidden by the J. and R selection principles. One first seeks to de-
termine whether they arise from perturbations of the upper or lower states,
or both. This is usually easiest to do in the case of lines forbidden by both
selection principles; consider for example lines of the type a'D& —'G3', of
which there are several in Ti I. We observe that such a combination can only
be produced by perturbation of the lower term by one of the type 'F&', or of
the upper term by one of the type 'F3. But the terms a'F&' and O' F&' are re-
spectively 7250 and 4280 wave numbers from u'D&, and experience with other
terms in Ti I indicates that ordinarily perturbations are not noticeable be-
tween terms more than 2000 wave numbers apart in this element. We may
check this conclusion, however, by listing the estimated intensities of all lines
of type a'F&' —'G' and a'D& —'G', as in Table VIII.

TABz.H VIII.

g'F'g —u'G'3

—C—d—e
f3G /

30
100
80

100
20
10

a'D, —e'G'3
b
C

e
f'G'3

(—)
( —)
(—)
(1)
(10)
(3)

From the absence of the first three forbidden lines in Table VIII, we see
that the presence of the last three is probably due to perturbations of the
upper states by 'F3 terms. In Table IX we list the various 'G' upper states
of Table VIII, the nearest 'F3 terms to them, when within 2000 wave-num-
bers, the wave-number separations between 'G3' and 'F3, the estimated in-
tensities of the forbidden a'D~ —'G3 lines, the estimated intensities of the
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corresponding 0,'D2 —'F3 lines, and the approximate ratios of the two latter,
obtained by squaring the estimated ratios. "We note that where perturba-
tions exist they increase greatly as the term separation decreases.

TAm, E IX.

b
C

e

930

1480
68

415

( —)
(—)
( —)
(1)
(10)
(3)

12

40
20
40

1/1600
1/4
1/170

The intensity anomalies produced by terms a given distance apart will
of course depend on the magnetic separations within the multiplet terms, on
the relationship of the perturbing terms, and on the quantum numbers in-
volved. Detailed investigation of these factors is beyond the scope of the
present paper; a large amount of interesting data of this type is being ac-
cumulated in the spectra of Ca, Ti, Zr, V, Cr, Mn and Ni, which will be pub-
lished at a later date. Where the internal multiplet separations become rela-
tively great, as in Zr I, while the general character of LS coupling is roughly
preserved, we can obtain much information on perturbations not only from
the intensity anomalies within multiplets and the presence of forbidden lines,
but from the anomalous g values and departures from Lande's interval rule,
as has been mentioned recently by Kiess and Kiess. '7 While there are a num-
ber of such departures in Ti I their specific causes are usually more diAicult
to determine than in Zr I.

We wish to acknowledge the able criticism and advice we have received
from a number of our colleagues in preparing this paper, particularly from
Drs. J. C. Slater, E. C. Kemble, and L. A. Young.

"H. N. Russell, Proc. Nat. Acad. Sci. 11, 314, 322 (1,925)."C. C. and H. K. Kiess, Bur. Stds. Jour. Research 6, 621 (1931).


