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ABSTRACT

van der Waals forces between atoms without permanent poles may be described
as resulting from the interactions of multipoles associated with quantum transitions
of the atoms. When the atoms are far apart, the dipole interaction is the only appre-
ciable one. But at distances of the order of the kinetic theory radius, higher poles,
usually neglected, must be considered. This paper examines and evaluates three terms
of the series of interactions: the dipole-dipole, the dipole-quadrupole, and the quadru-
pole-quadrupole term, instead of the customary first term alone. The last appears to
be in general small, but the dipole-quadrupole term requires consideration, Its effect
is illustrated by plotting the potential energy curve for two helium atoms (a) neglect-
ing the term, and (b) including it. The method outlined permits an easy estimate of
dipole and quadrupole forces for all substances for which the wave function of only
the normal state is known.

I. INTRoDUcTIQN
' 'N DEALING with the interaction between nonpolar, unexcited atoms ac-
- - count has to be taken of two kinds of forces: repulsive forces due to the
exchange of electrons, and attractive polarization forces. The former fall off
exponentially near the gas-kinetic boundary of the atom, while the latter
have a much larger range and predominate in the region where the wave func-
tion of the atom is small. To calculate both types of forces by means of a
coherent process of approximations is in general a difficult task which has
been carried through only for hydrogen. ' For helium the repulsive forces are
known with good precision, ' while for more complex substances rough ap-
proximations have to be resorted to. Polarization forces have been calculated
in the following manner: The classical mutual energy of the two atoms is
written down as a power series in R ', R being the distance between nuclei.
Of this series only the first term (proportional to R ' and corresponding to
dipole-dipole interaction) is retained as the perturbing potential from which
the wave mechanical energies are computed. The result is then usually added
to the potential function representing the exchange forces and the sum is
considered to yield the potential curve for the two atoms in question. The
use of such a potential curve is certainly permissible in discussing phenomena
which do not depend very critically on the exact position and depth of the
potential minimum; it may well describe in a general way even the pressure-
volume relations and other thermodynamical properties. But when accurate
numerical agreement of theoretical and experimental data is desired, or when

' R. Eisenschitz and F. London, Zeits, f. Physik 60, 491 (1930).
' J.C. Slater, Phys. Rev. 32, 349 (1928).
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dissociation potentials of polarization molecules are to be determined this
procedure requires somewhat closer inspection. For the polarization forces,
obtained as indicated, are definitely only asymptotically correct. Discarding
those terms in the classical energy expression which arise from multipole in-
teractions, if permissible at all, calls for justification. It is indeed to be ex-
pected that they are not all negligible in the region of the potential mini-
mum. ' This paper has the purpose of showing that, while higher poles may
be neglected, the interaction between dipoles and quadrupoles furnishes an
appreciable contribution to the van der Waals forces. This will be illustrated
by an application to helium.

II. THE PERTURBING FIELD

The classical perturbation function which we are seeking is the mutual
potential energy of two neutral molecules with nuclei separated by a distance
R, and it is desired to express this energy conveniently as a series of inverse
powers of R. For simplicity, we shall first consider two H-atoms. The poten-
tial $& at a point P(r) produced by a proton at 0 and an electron at r, is

Q++Q and may, if we suppose r&r1, be developed in a Taylor series as
follows:

O'I' = +e X1 + y1 +~1

+ 2y1s1 —+ 2xjs1 — +

If we are not interested in interactions due to poles of higher order than quad-
rupoles we need not consider more terms than those written down; this limita-
tion will be justified later. Using for the present the convention of summing
over like indices and putting x', x', x' for x, y, s we may write

82 1= e x1i ——x1ix1' (&)
x 2 t9x Bx~ 1'

Placing now another H-atom with its proton at I' and its electron at r2 rela-
tive to I' the mutual potential of the two becomes, again by a Taylor expan-
sion in which the first three terms are retained,

8
V = eP~ —eP~ —e x2 —+ —x2 "x2'

Bx@ 2 Bx t9x

8 1 ()
2 iXl X2 . Xl X1 X2 , , Xl X2 X2i j Is i k l

Bx Bx 2 Bx Ox~Ox

1 8' 1
Xl Xl X2 X2

Bx'Bx&Bx'Bx' r
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The possible significance of quadrupole forces was pointed out to the writer in a discus-
sion with Professor J.Frenkel, as a result of which the present computations were made.
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on account of (1).The first term in I ] describes the dipole-dipole action, the
second dipole-quadrupole action, the third quadrupole-quadrupole action.
Carrying out the differentiations, putting r =R and then placing the x-axis
along E.we obtain

2 .—if x=k=1,
R3

1 .——ifi=k=2or3
R3

0 otherwise.

8 1

8x'8x&8x' r

6——if i= j= k=1,
R4

3 .—if j = k / 1, i = 1,
R4

0 otherwise.

24
1f

R'

9
1f

R'

z=j=k

l=2 or 3,
84 1

8$ X2$ S
12 .——ifi=j/k
R'

3 .—ifi=j/k
R'

1=2, or 3,

0 otherwise.

If we now perform the summation, the desired classical energy expression is
obtained:

g2

V = ——[2xix2 —yiys —s,s, ]R3

3 8+ ——[ri'x2 —x,rs' + (2yiy2 + 2sisg —3x&xs)(xi —x2) ]
2 R4

3 8
+ ——[r& r&' —Srs xi Sr& x&' —1Sxi'x2'+ 2(4xix2+ yiy2+ sis2)']

4 R'

(3)

The first term of (3) represents the familiar dipole energy. This expression
may be generalized to refer to any pair of arbitrary atoms containing n elec-
trons, each, by attaching to every quantity in (3) carrying a subscript 1 or 2
another subscript p or v respectively, and summing over both p and v from
1 ton.
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I II. WAVE MECHANICAL MUTUAL ENERGY

We return to the consideration of 2 H-atoms and assume both of them
to be in the ground state, which will be characterized by a subscript 0. Neg-
lecting exchange degeneracy and spins the wave function for the unperturbed
system may be written Pp(1)gp(2) where each Pp is the H-wave function for
the lowest state and the arguments are electron coordinates referred to the
separate nuclei as origins. The first order perturbation energy is the average
of V over the space of the two electrons, taken with the weighting function
fo'(1)gp'(2). This clearly vanishes on account of the spherical symmetry of
the latter. (Terms in (3) which do not vanish on integration add up to zero. )

The unperturbed wave function for any state of our combined system is

(1) fo(2), where n and p stand for triples of quantum numbers n, 1, rn.

The second order perturbation e'nergy here required is

~a= g— (4)

where E is the energy of one H-atom in the state n. Terms with vanishing
denominators are excluded from the summation ('), and Upp, p is defined by

JfPp(1)go(2) U(1, 2)P (1)gjp(2)drydro.

The products f Po satisfy the conditions of completeness and orthogonality,
as do the P-functions singly. Moreover, one can convince himself that U is
of such character as to make the V p, p

's obey the ordinary matrix rules.
Hence, if it were not for the dependence of the denominator on n and P, (4)
could easily be evaluated by the relation

P ~
Uoo, ~p

~

' = (U )oo.oo

the being omitted because Vop op =0. For our purposes it is permissible to
omit E and Zo in (4). This simplification seems violent at present, since
from the form of (4) no direct estimate of the magnitude of the error com-
mitted may be derived. The justification arises only from a more detailed
consideration which we relegate to the appendix.

Eq. (4) now reduces to

(U')oo, oo
628 =

2EO

and the right hand side can be computed very simply if we remember that
all odd powers of the coordinates in the square of (3) vanish on integration
and no cross terms between the brackets appear. The result is

1 e4 3 21
(r )oo + (r )oo(r )oo + (r )oo

3 EpR' R2 5R4
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For hydrogen, go=e "(', where a is the smallest Bohr radius=0. 528X10 '
cm, and (r')oo ——3ap, (r4)oo ——22.5 (z'. Hence, putting

P

= P)
8

i 2EO,
"

22 .5 236
a,E = —i+ — +

P6 P2
(9)

where use has been made of the relation Zp ———ep/2(z.

Eq. (9), while not exact, shows clearly the relative magnitudes of the dif-
ferent types of interaction. At the minimum of the potential energy curve,
where p = 6.5, the dipole-quadrupole term (2"s in brackets) contributes about
—'„ the quadrupole-quadrupole term (3"s in brackets) less than ")2 as much as
the dipole-dipole term. Comparison with the work of Eisenschitz and London
shows this term in (9) to be in error by 8 percent as a consequence of replac-
ing the excited energy states appearing in (4) by the ionization energy; the
uncertainty in the other terms is smaller (see appendix). '

A main advantage of Eq. (8) lies in its applicability to other atoms or
molecules for which the wave functions for the normal state are known. It
may be shown to be valid, except for the inclusion of a constant factor not
much different from one and determinable from an exact knowledge of the
dipole energy, if e(rz) pp and e(r') pp are interpreted as the sum of similar quan-
tities formed for the individual electrons. Eo then refers, of course, to the
ionization energy of the atom or molecule.

Let us apply the equation to helium, for which the dipole energy has re-
cently been calculated. Since we are primarily interested in the relative mag-
nitudes of the three terms in brackets, we shall use a simple wave function of
the type

Then the normalizing factor becomes

f I'(2pz + 1)
4'OPdP =

(
2(Z —*))'""

'I
and

(r )oo =

00

(2n + 2)(222+ 1)

(2(Z
— ))'

(222 + 4) (222 + 3) (2rz + 2) (222 + 1)

(2(Z
— ))'

' The coefficient of the dipole-dipole term in (8) agrees, as it should, with that of 1/p'
in Eisenschitz and London's expression (54) for the second order perturbation energy, if this is
expanded in powers of 1/p.

' J.C. Slater and J.G. Kirkwood, Phys. Rev. 37, 682 (1931).
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The effect on the minimum is seen to be rather appreciable. Moreover, the
use of the simple wave function here chosen places the lower curve almost
certainly too high. We estimate the error in the absolute depth of the mini-
mum of curve 5 which is due to the uncertainty of the polarization forces to
be less than 2 && 10 "ergs. '

APPENDIX

1. Hydrogen. It appears desirable to go through the calculation of (4) in

greater detail and to justify some previous statements. The summation may
be carried out over the three quantum numbers m, I, n, successively, and
difficulties are not encountered until the sums over n, i.e. the radial part of
the matrices, are to be evaluated.

Recalling the definition of Uoo p in (5) we observe that the integrations
involved can be performed over the coordinates of electrons 1 and 2 sepa-
rately, so that Vpo, p decomposes into a sum of products of coordinate ma-
trices go gop, each referring to the wave function of only one atom, e.g.

go =
JI

Wolfed

.

Hence using (3)

where

3 3
Uoo, p

————3 p+ (Bp —Bp)+ CpR' 2R 4R'

Amp = 2xoaxop yo~yop —soasop

8 p
= (t' )o xop + 2(xy)o yop + 2(xs)o~sop 3(x )o~xop

C p
= (r')o (r')op —5(x')o (r')op —5(r')o, (x')op + 17(x')o (x')op

+ 2(ys)o~(y')op + 2(s')o~(ss)op + 16(xy)o (xy)op

+ 16(«)o.(») op + 4(ys) o.(ys) op.

(13)

In forming the square of Voo, .p we see at once that the sum over differences
like A pB p

—A pBp and 8 pC p
—Bp C p is zero, since A p =A p, C p

= Cp,
and we may interchange at liberty indices of summation in each term. The
calculation is further simplified by another consideration. The energies ap-
pearing in the denominator of (4) do not depend on the magnetic quantum
number m, and the summation over m and mp, which amounts to averaging

' In a recent paper, J. G. Kirkwood and F. G. Keyes, [Phys. Rev. 37, 832 (1931)],calcu-
lated the second virial coeScient for He and found good agreement with experience despite
their neglect of quadrupole forces. This agreement can have been only accidental and resulted
from a second approximative feature in their calculation. As was pointed out by London,
[Zeits. f. Physik 63, 245 (1930)] in connection with He, the second virial coefBcient can not be
obtained accurately by an evaluation of its classical representative on account of the existence
of an excluded region of phase space. A later approximate calculation of virial coefficients for a
number of gases, made by the present author, [Phys. Rev. 36, 1782 (1930)] has again shown the
necessity of modifying the classical procedure for He and H&. This modification involves the
determination of vibrational states of structures of the type (He) 2 and (H2) 2. As was also dis-
cussed previously, these two inaccuracies introduce errors of opposite signs, which may ac-
count for the agreement obtained by Kirkwood and Keyes.
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over the angular orientations of the two atoms, may therefore be carried out
treating the denominator as constant. Now every wave function occurring
here may be written

P meimrtp

and a matrix such as for instance (x') o, has the form

(x')o„= j)R~ o(r)r' cos' 8R„,~P~ e'~r' sin 8drdgdg,

where the normalization is, of course, to be properly carried out. It is well
known that, if such expressions are summed over all possible m-values, they
reduce to simple terms. We write down the significant results of this pro-
cedure.

g x,„o
ma

Z (x')o.'
ma

Q (*')o.(X')o.
ma

P(xy) o.'
ma

1 Pa & Oa

yoa = ~boa = ~aroN
ma ma

Z(y).- = Z(").. =G.(")..
g(x )o (s )o = g(X )o (s )o« = L (r )o
ma ma

Q (xe)o.' = g(ys)o. ' = 24.(r')o.'
ma ma

Z(r')o (7')o = Z(r')0. (s')0 = & (r')0 '.

(14)

All other terms which appear on squaring U00 p, if summed over m and m p,

reduce to zero. The symbols used here are defined as follows:

1 4
Ga ~oa+ $o a)

9 45

2I = g4 g4
9 45

1 1
M = —82', E = —50',15'' 3

''
The 5's are the usual Kronecker symbols.

Eq. (4) now becomes

e' 1
a,z = —g'

R'
p 2EO —E —Ep

1
Q = —hg'.

3
'

9 9

2R'Z ".~' +,(o.e' —o.p~.) +
16R4

n and P now include only n, f, and ep, 7p. Moreover, because of (14),

Q-4-p' = 6Q.Qpro. 'rop'
m~ )mp

Q(B p
—8 pBp ) = (8o' + 8M + 9G —61V )Qp(r )o rop

gC p
= [8o~8oP+ 2SG 8oP+ 25Gp8o~+ 297GGp

+ 5283II 3fp —10Ã Sp'& —10Ãp8()'a + 92K Ãp

—170G Ep —170$ Gp —40L Np —40K Lp+ 144L Lpj.
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The first of these expressions becomes, on substitution of (15),(1/9) 8, ' 5, ((), the
second (4/9) 5 o( 5)'c and the third reduces to 0 5p(~So 'o —0 8

p(~So�

'(o 0—5 o
( 5p(()

+(224/45) f)o( 5o((o Th. e dipole-dipole energy arises from transitions in which
the 1 for each atom changes from 0 to 1.The dipole-quadrupole part is due to
transitions in which one l changes from 0 to 2 and the other from 0 to 1,
while the quadrupole-quadrupole interaction is caused only by jumps of both
atoms from / = 0 to 1 = 2, as might have been expected.

Writing now for convenience n =n, np = v, the expression for the second
order perturbation energy may be put in the form

(dipole-dipole) (a)

2 2
e 2 ~10,n 1

' 'r 10,p 1
f).oE =—

3 „,„2E0 —E„—E„

2 2
2 (r'))p, ~o r(o,.)+
E o,„2E —

p E„—E„

(a)

(b) (16)

(dipole-quadrupole) (b)

2 2("); ("),.
I+ 5Ro,„2Ep —E„—E„

(c)

(quadrupole-quadrupole) (c)
The second subscript of the radial matrices denotes the value of /, upon

which the energies do not depend. The r)p, ) are known, and the (ro))p, „o may
be computed. It must be considered, however, that the sum includes an in-
tegration over the continuous spectrum which is not easily performed for the
second and third term of (16). Our knowledge of the result of the first sum-
mation, together with a computation of a limited succession of the (r ))p, „o
from which their manner of convergence is ascertained, may guide us in esti-
mating the sums. It is found that the r2-matrices converge less rapidly than
the r-matrices, which shifts the weight of (16b) and (16c) to higher I's and
) 's. The absolute value of the denominator in all three sums is(2 ~Ep

~

for
the discrete spectrum and )2 ihip

~

for the continuous. The "mean" denomi-
nator of (16a) is 0.93 X2Ep. While in (16a) the denominator of the first term
is 0.75 X 2Ep, (b) and (c) start with terms having denominators 0.82 X 2Ep and
0.89&(2Zp. All the circumstances mentioned combine to make the "mean"
denominators of (16b) and (c) more nearly equal to 2Ep.

Taking then this quantity in front of the summation and using the rela-
tion~

there results Eq. (8).

10,n l ~ 10,10

" That this is true for any value of l may be shown as follows: Let S & be the radial part of
the wave function. Then fS„)S.')rodr= 5 "'. Expanding roS)o=Z c S (, we must have c
=(ro)(oo) But Z~(r")o(o, o) = Z c fS(or"S~(rodr =fS)prod c $, )rodr= fS)ororoS(or'dr= (r'&) (o(o
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2. Helium. Instead of carrying through the calculation for helium it will
suKce here to illustrate the procedure with reference to the dipole-dipole in-
teraction only. The other terms introduce nothing new, and it would absorb
too much space to write them down. The classical interaction energy is

e2
U = ——g(2x&;x» —y»y» —s»z») where i, j = 1, 2.

4 J1

Neglecting again spins and exchanges of particles, and denoting by f(12) the
wave function of electron 2 belonging to nucleus 1, the wave function of the
two atoms in states n and P respectively becomes

&. (11)&.o(12)A (21)Ao(22)

The normal state, designated by n& ——pro ——P~
——Po ——0, is again spherically sym-

metrical, and we find

e2

Uoo,.o
= ——[(»o., ~op, —yo. ,yop, so,sop, )&o '&o' (17)

+three similar nonidentical terms formed by permuting n&a&P&Po].
The summation in (4) is now to be carried over n&n&8&Po independently. Form-
ing the square of (17) and summing over all m by means of (14), many terms
drop out and we are left with

2 e 2P ~
Uoo o ~

' = ——[ro,roo,bo 'ho~'+ three similar terms]

if all l, lp appearing as matrix subscripts are 1, = 0 otherwise. Consequently,
if the electrons are equivalent,

2 2
2e fp~ fpp

ApE = 43E",p, 2Ep —E~, —Ep,

where the summation extends only over such n's and P's as have l = 1.


