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It is shown that an x-ray which comes from a point source and is reflected from a
fixed and a moving crystal must pass through a focal point 6xed ln space and also
through a second focal point moving with the crystal. These focal points are the best
positions for the location of an ionization chamber window or slit. A universal type
of crystal mounting is described which permits the study of wave-lengths from 0 to SA
without readjustment of the crystals, This style of spectrometer can also be used to
measure absolute reflection angles. By using a thin glass window in the x-ray tube and
a hydrogen atmosphere around the crystals, wave-lengths of SA may be studied.
Graphical methods have been developed which show the effect of the crystal curve and
the vertical height of the slits on. the shape of the wave-length curve. This method can
also be used in other types of spectroscopy to study the effect of the spectrometer on
the curve.
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HE double x-ray spectrometer was used by Davis and Stempel' with the
crystals in the parallel position to study the reHecting properties of the

crystals. The two-crystal spectrometer has high resolving power when the
crystals are used in the antiparallel position. The development of this type
of spectrometer was made simultaneously by Bergen Davis and Purks, '
Ehrenberg and Mark' and Ehrenberg and Susich4 who applied it to the study
of the natural breadth of spectral lines. This type of spectrometer has been
described in detail by Williams and Allison. ' M. M. Schwarzchild' has given
a mathematical theory of the instrument. The design has been modi6ed by
Richtrnyer' and by DuMond and Hoyt. '

The following discusses some further points of geometry of the double
x-ray spectrometer in which the source and one of the crystals remains 6xed,
and describes a "universal" type of mounting which is simpler and covers a
wider range of angles than the previous types. This type of mounting has been
used. for over a year by the author

The reHection of x-rays from crystals may be treated exactly as the reHec-

tion of light from plane mirrors except that there is the added condition

~ Davis and Stempel, Phys. Rev. 1'7, 608 (1921).
~ Davis and Purks, Proc. Nat. Acad. Sci. 13,419 (1927).
3 Ehrenberg and Mark, Zeits. f. Physik 42, 807 (1927).
' Ehrenberg and Susich, Zeits. f. Physik 42, 823 (1927).
~ williams and Allison, J.O.S.A. and R.S.I. 18, 473 (1929).
' M. M. Schwarzchild, Phys. Rev. 32, 162 (1928).
7 Richtmyer, Barnes and Ramberg, Phys. Rev. 35, 1428A (1930).
~ DuMond and Hoyt, Phys. Rev. 35, 1702 (1930).



where n is the order of reHection and d is the grating constant of the crystal.
The ray SABF is shown in Fig. 1 reHected from crystal A at second order and
from crystal 8 at third order. In general, the orders of.reHection will be n&
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Fig.i. Path of an x-ray rejected from two crystals. 5 and 5' are the real and virtual. sources.
A and 8 are the points of incidence at the crystals. If the plane containing crystal 8 and the
points I" and F' is rotated about 0' as an axis, then I"' becomes a virtual focus and Il a veal
focus for any ray from S which is rejected from both crystals.

and n2. The wave-length may be eliminated from two equations of the type
of Eq. (1) resulting in

1$g/Ne = sin 8y/S1Q 8g (2)

0 is the intersection of the two crystal planes. An application of the sine law
to triangle ORB shows that

From Eqs. (2) and (3)
OB/0/i = sin 8&/sin 82.

OB/0/f = Ng/n2,
For various wave-lengths the position of the source 5 may be so adjusted

that the ray is incident at the same point A on crystal A. If crystal 8 is
rotated about 0 as an axis, OA is then constant and OB must also be constant
by Eq. (4). The ray will then be incident at the same point B on crystal B.
The points A and 8 are conjugate foci. This arrangement might be called a
"universal" spectrometer, for any wave-length from 0 to 2d/n may be studied
without readjustment of the crystals.

When the source is Fixed in position, the points of incidence A and 8 are
not 6xed in the crystals. In Fig. 1 5' is the image of the source S in the plane
of crystal A. Rays such as 5'AB radiate from 5' in all directions. For any
direction making an angle 0 with the crystal plane, only one wave-length
will be reflected according to Eq. (f). The other wave-lengths will be ab-
sorbed in the crystal. In order to simplify the theory, the axis of rotation of
crystal 8 has been moved to 0' which is any point along a line through 5'
parallel to crystal A. O' F' is drawn parallel to crystal 8 and intersects 5'8
in F'. F is a point such that F' is its image. From similar triangles and Eq. (4).

O'F'/O'S' = Ng/ng.

The points S' and F' are imaginary conjugate foci by the same reasoning
that was applied to the points A and B.The points 5 and F are real conjugate
foci since any ray coming from 5 must pass through F.
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A mechanical model may easily be made in which a plane containing F,
F' and crystal 8 rotates about 0' with respect to the fixed plane containing S,
S' and crystal A. A string held taut between S' and F' gives the actual path
of the ray between the crystals. The points A and 8 are seen to slide to the
outer portions of the crystals as the angles of reHection increase. If S repre-
sents the source of the x-rays, then F might represent the small window of an
ionization chamber. This arrangement would eliminate any movement of the
beam across the chamber window and would allow the use of a window as
narrow as the source. Slits placed elsewhere along the beam would have to be
wider.
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Fig. 2. Usual type of double x-ray mounting with axis at center of crystal B at B1~

orders of reflection are the same at each crystal. Two positions of crystal B are shown. The
corresponding rays intersect at f which is a focus fixed in space in contrast to F which is a focus
moving with the crystal. The distance B&fis approximately one third of B&S'.

I

An interesting arrangement is the one in which crystal 8 is beyond F' at
8'. F and F' then coincide and the real focus is between the two crystals.
Should the axis of rotation be placed elsewhere, the focal point may degener-
ate into a caustic curve.

The discussion up to now has assumed a different order of reflection at
each crystal. The usual practice is to have both orders of reflection the same.
In this case OA equals OB which allows the axis 0' to lie anywhere in space.
Two such arrangements will be described.

The first is the usual type of mounting in which the axis of rotation is at
8&, the center of the second crystal. (See Fig. 2.) The notation is the same as
in Fig. 1. If the plane containing F&, Fj' and crystal 8 is rotated through an



angle 268 counter clockwise, then Ii» and Ii»' assume the new positions Pg and
F~'. The line 5'F2' now marks o8 A2 and 82 as the new points of incidence
and the reflected ray B2tq intersects the former ray Biti in f which will be
proved to be a real focal point "Axed in space. " Let the triangle B»B~S' be
imaged in the crystal plane BiBi,. Then 5" is the image of 5' and 8"Bifis a
straight line. An application of the sine law to triangle Bi fS" gives

Bif BgS"

sin 60 sin 368

Now B»S"=B»A»+A»S=L, , the distance of the source from the axis 8».
From Eq. (6)

sin 60 I.
Bif = I = —(approx. )

sin 368 3

when lM is not more than a few degrees. This proves that all rays from S
cross at a point f, fixed in space such that the distance from the axis tof is ap-
proximately one-third the optical distance from the source to the axis.

The second type of mounting is one used by the author (see Fig. 3). The
axis of rotation 0' is symmetrically placed with respect to the two crystals.

Fig. 3. Universal type of double x-ray mounting with axis at any point 0' which is sym-

metrical to the two crystals. The two crystals will remain symmetrical even though crystal 8
is rotated through large angles. This makes possible the study of x-rays incident on the crystals
at any angle. The instantaneous axis of rotation of crystal 8 is at I'. The focus 6xed in space
is at f.

Although crystal B rotates about 0', the instantaneous axis of rotation in its
own plane is at P, the foot of the perpendicular from O'. Using Eq. (7) the
distance Pf is approximately one third of 5'I'. The advantage of the universal

type of mounting is as'follows. The beam may at all times be reAected from
the same portions of both crystals no matter how large the angle, by simply
moving the source sidewise. In the usual type, however, if the beam is re-
Qected from the same portion of one crystal, it wi11 move off of the other crys-
tal.

The principle of reversibility can be applied to any double crystal ar-
rangement. The ionization chamber window can be placed at S. The source
can remain fixed at f or can move with the crystal when placed at F.



The universal type of mounting as just described can measure all angles
from 0 to as near 90' as desired.

In order to determine the reHection angle at say 6rst order, it is neces-
sary to measure the difference in angle @ between erst and second order. The
difference in circle positions is, of course 2P. A different eAective grating con-
stant must be used for each order' to correct for refraction. From Eq. (1)

But

Substituting (9) in (8)

X = 2d~ sin 8~ = d2 sin 82

sin Hi = sin (Hi + P)

sin Q

(2di/dp) —cos Q

Eq. (10) gives the absolute angle Hi at which first order reflection occurs.
Subtracting 28~ from the position on the circle at erst order gives the zero
of the circle, so that measurements of 28 for any other x-ray line may be read
directly.

The usual type of double x-ray spectrometer can also be used to measure
reHection angles by taking curves in the parallel and antiparallel positions.
The second crystal is turned through 180'—28.

In another paper a method is given by which x-rays up to the limit of
the calcite crystal can be studied using the double x-ray spectrometer.

PART II. DIsToRTIoN oF X-RAY LINEs BY VERTIcAI DIvERGENcE
AND CRYSTAI WIDTH

Shape of monochromatic line due to vertical divergence

The axis of the spectrometer and the crystal planes were made vertical
by methods which will be given in a later paper. Eq. (19) of Schwarzchild
could then be simplified to

8 = P' tan 8 = P/C'

where P is the angle between the ray and the horizontal plane, called the
angle of vertical divergence, and 6 is the angular deviation of the position
of the second crystal from the position it would have if P were zero. The en-
ergy reflected from the second crystal is some function IQ) which depends
on the energy distribution across the target and on the slits limiting the ver-
tical angle.

(12)

Since I(f)di/i =I(8)d8 the distribution of energy with 8 may be found by a
change of variable using Eq. (11)

9 Siegbaha, Spectroscopy of X-rays, p. 21.
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(13)

The simplest case is that of a beam diverging from a point source and
limited by a slit of height II, level with the source, but at a distance I. from it.
I(f) is a constant X for

~ P~ (II/2I.
CE

I(~) =
gl/2

(14)

The curve of Eq. (14) is shown in Fig. 4. This differs from the curve given by
Schwarzchild' but the equation is in agreement with that given by DuMond

h
1

Fig. 4. Distortion of monochromatic line by vertical divergence for the case of a beam
diverging from a point source and limited by a slit of height H distant L from the source. The
maximum angle of vertical divergence P is II/2L. The maximum deviation 6 in the position
of crystal 8 is P tan 8. The center of gravity of the curve is shifted 5 /3 from the position of
the monochromatic line at O. The three pillars give the position and relative intensity of three
components whose first four moments are equal respectively to the first four moments of the
curve.

and Hoyt' for the same conditions (see their Fig. 3). The two axes of their
figure have apparently been interchanged since their curve approximates
more closely E/2P.

The next simplest case is that of a beam diverging from a broad uniform
source and limited by two slits of equal height, H, separated by distance I..
The maximum value of f is H/I. . A curve of the intensity with P is an isosceles
triangle
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where 5 is the maximum value of 8. The shape of this curve (see Fig. 5) is
the same as Fig. 4 except that the 5-axis has been raised. The curve of in-
tensity with%" caused by two unequal slits is an isoscles trapezoid. "This is
the difference of two triangles. Hence the curve of intensity with 5 is the
difference of two curves of the type of Eq. (15).

t
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0 6m/8

Fig. S. Same as Fig. 4 but for the case of a beam diverging from a broad uniform source
and limited by two equal slits of height II distant L from each other. p =II/L. The center of
gravity is shifted 8 /6 from the origin.

As pointed out by DuMond and Hoyt the area of Fig. 4 is 6nite, although
the intensity at the origin is inhnite. The centers of gravity of Figs. 4 and
5 are distant 8 /3 and 8„/6 respectively from the origin. This is very im-
portant as it shifts the center of gravity of any x-ray line by the same amount.
The equivalent shift in wave-length may be obtained by differentiating Eq.
(1), Hence
for Fig. 4

for Fig. 5

The fractional change of wave-length is, therefore, independent of angle. For
precise wave-length measurements this should be made small by narrowing
the slits or making L, large. If the intensity across the target were uniform
(which never occurs), the shift could be calculated.

In photographic measurements the position of the line may be measured

o Richtmyer, Phys. Rev. 26, '?24 (j.925).
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at the center. However, the central point receives rays from various parts of
the target of height H. If I. is the distance of the photographic plate, then
Eq. (16) gives the correction.

Methods of analyzimg syectrometer curves
The author erst became interested in this subject while associated with

F. K. Richtmyer" in a study of the single crystal spectrometer. The effect of
any spectrometer is to transform a monochromatic line of in6nitesimal width
into a curve F(8). In general it will transform a curve $(8) into a curve G(8).

Ehrenberg and Mark' and Ehrenberg and Susich4 were the erst to attempt
to correct for the width of the crystal. They assumed that all three curves
were Gaussian 1n shape 1n which CRsc thc I clRtlon of the %1dths Rt hRlf
maxlIDUm 1s

8"g2 = W@'+ 8'p2. (18)

Allison Rnd WilliaIns" used the above formula to correct for the crystal
width O'J. The author believes that their method of correcting for vertical
divergence, however, is in error. In the first place they assume that the width
at half maximum of the curve I(5) is related to the width at half maximum
of I(P) by Eq. (11). This is incorrect since the width at half maximum of
I(5) is zero. In the second place they subtract this width from the measured
width of the line, whereas Eq. (18) would have been more correct. Valasek"
has also subtracted his crystal and slit widths from the measured width of the
line, In practice the wave-length and crystal curves are not Gaussian in
shape, so it is necessary to develop the theory more carefully.

It is observed that the intensity at any point of G(8) is the sum of con-
tributions of the original curve on either side. If the areas under $(8) and
F(8) are each unity, the equation for G(8) can be put in either of the following
foi IQS.

G(8) = J" 4(8 —P)F(P)dP

G(8) =
Jl 4(P)F(8 —P)~P (2o)

Eqs. (19) and (20) are integral equations. A solution for $(8) is impractical
to use, so we will assume p(8) and study the quantity G(8) —$(8) by which
P(8) is elevated at any point. &(8) is usually wider and smoother than F(8)
and so in Eq. (19) can be expanded by Taylor's theorem in powers of I8

~'(8) ~"(8) ~"'(8)
G(8) = d(8) — xi+ — is — u3+ (21)

21 3I

where the eth moment of F(P) is

u. =
Jt fl"F(P)~P

If the center of gravity of F(P) is taken as the origin, then p~
——0.

~ Allison and Wi}liams, Phys. Rev. 35, 1476 (1930}.
~' Valasek, Phys. Rev. 36, 1523 (1930).
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Equivalent triplet

It will be shown later that any curve F(P) may be replaced by a triplet, so
arranged that the first four moments of the triplet are equal respectively to
the first four moments of F(P). See Figs. 4 and 5. The central component is
placed at the center of gravity. The other two components are placed at
distances h and —nh from the central component and comprise a fraction P
of the total weight. The fraction P is not to be confused with the P of F(P).
The nth moment is given by

y (1 + n) = Ph"(n + n") (22)

the —sign being used when n is even. This triplet can now be used in a
simple graphical solution which corrects for the first five terms of Eq. (21).

Fig. 6 shows three vertical lines separated by the same distances as were

v 4(e&

A.~
P

-uh-

Fig. 6. Graphical solution for the effect of the vertical divergence in Fig. 5 on the shape
of an x-ray line @(8).Three vertical lines whose separations are those of the triplet solution cut
p(8) in points A, B and C. The line 2 C cuts the central line at P. The value of rt (0) at B is
lowered to G(8) such that G(0) —B=PBP. The value of P is given in Table I. There is also a
lateral displacement equal to the position of the center of gravity of Fig. 5. For the inverse
solution see text.

the triplet components, which cut the curve $(0) in $(0—nh), $(0) and
p(8+h) indicated by points A, 8 and C. The chord AC cuts OB in F, the
position being determined by .

(1 + n) F = y(0 —nh) + ng(8 + h)

G(0) is defined as a point such that

p is a fraction less than 1. If F(8) is expanded in a Taylor's series, then G(0)
will reduce to the form of Eq. (21) in which p„ is given by Eq. (22). In the
case that p = 1, the triplet reduces to a doublet in which the ratio of intensity
of the two components is o.. The conditions for the equivalent triplet by use
of Eq. (22) are
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PI = 0

p~g = h Ap

p3
——h'op(1 —0.)

p4 ——h4nP(1 —n + n').

Equations derived from these are

(1 —~)'

(1 —~ + ~') v~~4

p, 4
h' = (1 —n + n')—

P2

p4= n(1 —n+ n')—
Pm

P3
h(1 —n) = —.

@2

(28)

(24)

(25)

(26)

(28)

(29)

(30)

The value of n was found from Eq. (27) which is a quadratic in n. With this
value h and P were obtained from Eqs. (28) and (29). A numerical check was
made by substituting ln Eq. (30) or Eq. (25).

In the case F(P) is symmetrical p~ =0 and n is unity by Eq. (27). From
Eqs. (28) and (29)

p4h2=-
P2

1 p4

P2'
(32)

The ratio p4/Is22 is what is known in statistical theory as the "flatness. " The
fatness of' a Gaussian curve is 3.

TABLE I. 3&ments and equivalent trip/ets of various curves.

Type

I

III
IV
V

p4

d4

0 0.333333 0 0.200000 0
0 0.166667 0 0.066667 0
0 0.721348 0 1.561029 0
0 0.088889 0.016931 0.016931 0. 19047
0 0.038889 0.011640 0.007209 0.48333

g4

P2

0.1250
2.4000
3.0000
2. 1429
4.7668

1 0.7746 0.5556
1 0.6325 0.4167
1 1.4711 0 ' 3333

0.6185 0.4993 0.5763
0.3934 0.4934 0.4060

Type I Rectangle, width 2d.
Type II Isosceles triangle, maximum width 2d.
Type III Gaussian curve, half maximum width 2d.
Type IV and V See Figs. 4 and 5, Moments taken about center of gravity. 6 =d.
Types I or II are found in optical and x-ray spectrometers in which the angular width of

the beam is restricted in the horizontal plane by slits, also in densitometer curves. The grouping
of statistical data into equal intervals is another example of type I.

Types IV and V are found in spectroscopic apparatus in which the energy distribution of
the beam in the vertical plane is of type I or II. Types IV and V are also found in the Dempster
mass spectrograph.
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The moments of most of the curves in Table I were easily calculated. How-
ever, the moments of types IV and V about the center of gravity were more
difficult. They were obtained by

(33)

where PD is the center of gravity. An easier method would have been to use
the following formulae to obtain the moments directly from the moments
about the origin, which are indicated by primes.

Pl=0
P2 = P2 —Pl

p3 = p3 3pl p2 + 2pl

p4 p4 4pl p3 + 6pl p2 3pl ~

(34)

The solution of the constants h and P in the case of the crystal curve was
arbitrary. Some energy was detected at a distance of 20 times the half width
at half maximum. A base line was drawn at this point. The value of k was
twelve times the half width at half maximum. P was 0.05 compared with one
third for a Gaussian curve. This solution could not be applied since h was
greater than the width of P(0) and the series in Eq. (21) would not converge
rapidly enough. The next method was to resolve the crystal curve F(8) into
the sum of two curves F~(0)+F2(0) which consisted of the narrow part and
the broad base. F~(8) gave a reasonable solution. The broad base F~(0) was
broader than P(8) at half maximum. This meant that it was but slightly
smoothed over by P(8) and could be added directly to the solution G&(0)

to give G(8).

The combined effect of vertical divergence and crysta1 width on the shape of
x-ray lines.

If the curve G(8) given by Eq. (19) is smoothed over by a second factor
F2(8) into a curve H(0), it can be shown by a double Taylor's series expansion
that H(8) is of the same form as Eq. (21) except that the single moment, say
p4, is replaced by the following group of moments and cross moments. The
primed moments are those of F2(0).

P4 + 4P3P1 + 6P2P2 + 4P1P3 + P4 ~ (33)

Since the first moments are zero there remains

P4 + 6P2P2 + P4 . (36)

For the lower moments the cross moments vanish. Therefore, approximately
the depression of the curve $(8) due to two or more instrumental factors is

equal to the sum of the depressions due to each factor.
In the case in which all the curves are Gaussian in shape, the change in

width at half maximum is also approximately equal to the sum of the changes
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due to each eAect taken separately, except for a cross product in the fourth
order.

Wlr = (Wp'+ WP + WP)'"
(Wg'+ Wg')

8'~ = 8'@ +
2Wp

(Wg'+ 2WPWP + Wg')

88'p'

Method of solving for the original curve

If the graphical solution were applied to the original curve $(0), it should
give the experimental curve G(0). If it is applied to the experimental curve
G(0), it gives a new curve H(0). With Eq. (36) H(0) may be written as

If(0) = G(0) + [G(0) —~(0)] + ~'"(0)"'/4
whence

0 (0) = G(0) + [G(0) —&(0) j + &"»'/4
In the last term P' (0) may be replaced by G' (0). The interpretation is
simple. The depression, say at the peak, found by the graphical method is
G(0) II(0).Th—is is added directly to the experimental curve G(0) and gives a
fair approximation to the original curve Q(0) neglecting fourth order terms.
If to this is also added the remaining term, then the fourth order terms are
accounted for.

This last term was neglected in all calculations made by the author.
The precision of the electrometer measurements did not warrant the extra
term.

An attempt was made to modify the constants of the graphical solution
so as to eliminate the last term. This was impossible as the value of h became
lmaglnary.

AyyHcation of theory to x-ray lines

The effect of' vertical divergence in shifting the center of gravity of a line
has already been fully discussed. In order to calculate the effect of vertical
divergence or crystal width on the width of an x-ray line the depression at the
peak of the x-ray line was erst estimated graphically by drawing in the three
vertical lines described above, allowing the central line to pass through the
vertex. See Fig. 6. Half the depression at the peak was the depression of the
half maximum height. The graphical solution was then applied to each side
at half maximum to 6nd the elevation of the curve, This resulted in an ad-
ditional broadening.

It is interesting to note that the broadening due to the crystal increases
with the flatness of the crystal curve and with the sharpness at the peak of
the x-ray line. For these reasons the correction in. any actual case is larger
than that given by'„:Eq. (18).


