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ABSTRACT

Part I: A strict theory of the absorption of x-rays is developed on the basis of
relativistic quantum electrodynamics. The theory is applied to the absorption of
x-rays by a Dirac electron in the field of a nucleus. Corrections to the non-relativistic
theory are appreciable only for heavy elements, where the present calculations give
a K-discontinuity twenty percent smaller than the earlier ones. The agreement with
experiment is not improved.

Part II: The theory is applied to the calculation of the absorption of quanta
whose energy is larger than the proper energy mc? of the electron. The cross section
for absorption is here given approximately by

o 2 X 107225\,

This result is applied to account for the excess absorption over that predicted by the
Klein-Nishina formula found experimentally for the gamma-rays of ThC’’ by Chao
and Tarrant. The theory is in fairly good agreement with experiment for Cu, but
disagrees violently with it for Pb. An examination of the approximations made in de-
riving and applying the theoretical result shows that they cannot have introduced this
discrepancy. There is thus a definite conflict between electrodynamical theory and
experiment.

INTRODUCTION

HE photoelectric cross section for absorption, o, is connected with the
mass absorption coefficient u, by the relation u=0/p. Various quantum
theoretic derivations of ¢ have been given;in addition to these the literature
contains interesting and graphic solutions treating such problems as distribu-
tion in angle of the photoelectrons, group velocity of the waves representing
the photoelectric current, and besides these the theory has been applied to
shells higher than the K-shell. We refer to a few of these papers collectivelyl—
due to the difference of treatment, or to the difference in the problem treated
we shall make few explicit references.
The problem under discussion may be considered that of a hydrogenic

1 Wentzel, Zeits. f. Physik 40, 574; 41, 828 (1926); Oppenheimer, Zeits. f. Physik 41, 268
(1926); Phys. Rev. 31, 349 (1928); Beck, Zeits. {. Physik 41, 443 (1926) ; Suguira, J. de Physique
8, 113 (0000); Sommerfeld and Schur, Ann. d. Physik 4, 413 (1930); Schur, Ann. d. Physik 4,
433 (0000); Froehlich, Ann. d. Physik 7, 109 (4930); Stobbe, Ann. d. Physik 7, 661 (1939):
Szczeniowski, Phys. Rev. 35, 347 (1930); Bethe, Ann. d. Physik 4, (1930); T. Muto, I.P.C.R.,
Tokyo (1931).
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58 HARVEY HALL AND J. R. OPPENHEIMER

atom in its normal state, interacting with a light-quantum field which induces
transitions to hyperbolic orbits. This problem, strictly speaking, has one an-
swer—the complete relativistic solution; but for convenience the problem is
divided into two parts. If the region of interest does not involve photo-elec-
tron velocities that are too great, it is justifiable to assume that the non-rela-
tivistic model will suffice. '

This is the model employed by Nishina and Rabi,? and involves simply
the solution of the Schroedinger equation. This result could be expected to
hold for those elements for which the binding in the K-shell is not great
enough to necessitate bombardment by quanta whose wave-length are short
compared to the size of the K-shell, but it should be added that neither this
nor the relativistic result should be expected to hold for very light elements,
since here the assumption that the effects of the more external electrons are
negligible is invalid. We mention that except for very light elements the
Nishina-Rabi result is in accord with experience.

To obtain a formula theoretically more general than that of Nishina and
Rabi necessitates a complete solution of the relativistic problem. This in the
present state of the theory means describing the atom with Dirac’s linear
Hamiltonian, using retarded potentials and the relativistic theory of the light-
quantum field.

Attempts in this direction have not been numerous. It is not difficult to
include retardation and evaluate the integrals if a Schroedinger wave equa-
tion describes the atom, and this has been done by at least two writers. Al-
though it presents an analytic problem of some interest such a discussion is
of course incomplete. An additional contribution has recently been made? in
which the author employs Dirac wave functions but neglects retardation in
discussing transitions for wave-lengths between A, for the K-limit, and \y/2.

In the case of obtaining a solution of the more difficult relativistic problem,
we should be interested in comparing it with two sets of experimental data.
(1) Although agreement between the Nishina-Rabi result and experiment is
qualitatively pretty good there are discrepancies which make a better quanti-
tative check desirable. Consequently we should concern ourselves in seeing
whether relativitity properly corrects the non-relativistic theory, and to this
end we should compare our result with empirical data for the K-limit and the
region immediately adjoining it.* (2) Recent data from the region of gamma
and cosmic rays have made it appear not impossible that our previous as-
sumption, that the cross section for absorption is too small to be observable
for light as hard as gamma rays, may be unjustified, and that in reality the
photoelectric absorption is comparable with the scattering in this region.

2 Nishina and Rabi, Verh. d. Deut. Phys. Ges. 9, 6 (1928).

3 Roess, Phys. Rev. 37, 533 (1931).

* Such a comparison has been made by Roess (Ref. 3). Since, as will appear in this paper,
including the retarded potentials does not improve the accuracy over his model at the K-ab-
sorption limit we have not considered it valuable to make the further calculations away from
the limit.
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Work contributing along these lines has been done by Chao,* Tarrant,® Gray?®
and Meitner and Hupfeld. In particular the experiments of Chao could be
accounted for if the ratio of o for lead, to the Klein Nishina cross section
for scattering” were about 0.5 for A=4.7X.U. In the course of the discussion
considerably more will be said concerning the latter problem. For the present
let us develop the general integrals and dispose of the discussion of the K-
limit.
PART I. THEORY OF THE K-ABSORPTION OF X-RAYS

The cross section for absorption.

The Hamiltonian for our problem consists of three terms. The term for the

atom

Hom = (s'"p) — ep + mc™Ty
we take from Weyl.® s’ is a matrix (analogous to Dirac’s @ matrix) and will be
given later. ¢ is the hydrogenic scalar potential Ze/r. T’y is a matrix?; it will
not be needed explicitly.

Let a wave function for the normal state of the atom given by this Hamil-
tonian be y,; let the corresponding energy be hvy. Further, let a complete set
of wave functions for the energy hv =/hv'+hvy >0, be Y ,,; we need the index m
because there are many states with the same energy, to which a photoelectric
transition is possible. Let the ¢, be normalized to dv. Then the cross section
for photoelectric absorption of a quantum of frequency », with vector of pro-
pagation parallel to z, and with the electric vector plane-polarized in the x-y
plane parallel to the unit vector e, is given by'?,*

o= %: - fx//'m(e-s’)ybo sin (kz + B)dr 2. (1)

4 Chao, P.N.A. 16, (1930).

5 Tarrant, Proc. Roy. Soc. A128, 345 (1930).

6 Gray, Proc. Roy. Soc. A130, 524 (1931).

7 Klein, Nishina, Zeits. f. Physik 52, 853 (1928).

8 Weyl, Gruppentheorie u. Quantenmechanik, p. 175.

9 Reference 8, p. 172.

10 See for instance J. R. Oppenheimer, Phys. Rev. 35, 461, par. 3, where the analogous
result is derived for series transitions from the Heisenberg-Pauli theory. The extension to
transitions in the continuous spectrum is trivial.

* The quantum which we are here considering is represented by a standing electromag-
netic wave. The physics of our problem would make it more desirable to work with a progressive
wave in which the momentum of the quantum was directed along the positive z-axis. In par-
ticular the use of such a wave would give an asymmetry in the direction of photoelectric emis-
sion about the x —y plane; whereas from formula (1) we obtain a symmetrical result (see Eq.
(17)). This may be interpreted as the photoelectric emission produced by a half unit intensity
of radiation propagated in the positive z-direction, plus that from a half unit intensity of radia-
tion propagated in the negative z-direction. The total value of the cross section integrated over
all the angles is of course correctly given by (1). It would be possible to work directly with a
relativistic extension of Dirac’s light quantum thecry (cf. e.g. I. Waller, Zeits. f. Physik 61,
1930). When we start, however, with Maxwell’s theory, and quantize according to the method
of Heisenberg and Pauli we are led directly to the use of standing waves. It is not hard to modify
the treatment of Heisenberg and Pauli; but it has seemed desirable to us to use the results of
the strict theory in their most accessible form.

4mrelc
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Here the coordinate z is to be measured from the center of mass of the atom;
the phase constant 8 is introduced to take account of the fact that this center
of mass may be anywhere between the crest and the trough of our electromag-
netic wave. In our results we are to average over 8. Further K=2mp/c. We
write for convenience

T =«x3+ 6.

We introduce two components of s’

(0 1 0 0 (0 =i 0 0
s 1 0 0 0 o i 0 0 0 @
? o 0o o —1] 7" o o o il

\o o0 -1 o) o 0 —i 0/

Let us define the integral in Eq. (1) to be I% And further as there are two
normal states we will identify one of them with the index «, and the other
with 8- 9" =TI, 4+ I;%. Then,

e 1e
L0 = (" + Ib) — —zl(m — LX)

_ €z — 16y I e, + ey .
2 2

where

I® = f Yu(s’ + isy)a? sin Tdr 3)

Ix

Il

f Yi(sa’ — isy/)Wa? sin Tdr.

Then multiplying I,° by its complex conjugate, the cross product term drops
out because the selection rules for the two integrals are different. Averaging
over all directions of ¢;, we obtain

Ioeoz = %(IQR2 + IaLZ)'

This equation may be interpreted as a verification of the fundamental no-
tion'? that out of circularly polarized light we may build up a non-polarized
beam, that has the same properties as a non-polarized beam built up from
plane-polarized light in which the electric vector may have all possible direc-
tions. An exactly similar relation holds for Iz° In addition it may be shown
by using the wave functions associated with s’, that Igl=1I.%, I,L=1I4%.
Consequently we may write

I = (IR + Iz®").
We have then from Eq. (1)

1 Reference 8, p. 172.
2 Dirac, The Principles of Quantum Mechanics, Ch. I.
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2 2
et o= 3 —’i—c[ra%(k) + I2(B) ).
k

The superscript R is to indicate one kind of polarization. Since we shall be
interested in only one kind, R will not be written in explicitly from now on.

. welc
o =300+ o) = —

Do(L2(R) + Is2(k)). @)

k
I, is defined by Eq. (3), and I by a similar equation.

The wave functions.
In the following Weyl’s wave functions and quantum numbers will be
used.”® The normal states « and § are specified by the quantum numbers 2 =1,
m=0; k=1, m= —1 respectively. Both I, and I will give rise to transitions
into states of positive and negative values of £, and in each case Am =1. The
meaning of the quantum numbers j and m can briefly be given as follows. The
total angular momentum of the electron in units of 4/2r is given by M?=k?
—1/4=3(j+1), where, in accordance with the customary meaning, j is the
coupled angular momentum of spin and orbit. k= + (j+1/2)50. k<0 corre-
sponds to states where spin and orbit are anti-parallel; while for £>0 spin
and orbit are parallel, except for 2 =1 when the orbital angular momentum is
zero. m is analogous to the magnetic quantum number, but is integral. The
z-component of the total angular momentum is A(m+1/2)/27.

The wave functions for the normal states may be obtained directly out of
Weyl.* Only their components necessary to express I, and Iz will be given
here.

a; k=1, m=0: %= — ¢, = {asin e

B;k=1,m= — 1:¢y° Y =14 py — dacos b

Il

} . Noe—rbym—l

a equals the fine structure constant times the atomic number = 2we’Z/hc
b equals the reciprocal of the first Bohr radius = 4w%me?Z/ h?

p1= (1 — a?)'2 [In general, p = (k* — a?)'?]
1/No = 4[x(1 + p)T(1 + 2p1)(20)~1=%p, |12,

Weyl’s solutions®® may be expressed in terms of better known functions
in their dependence on 6.

rpy = e"™(vg + iwp)
ry = eimte[y(p — g cos 0) — iw(g — p cos 0)] csc f

Y3 and Y4 are respectively ¥ and ¢, with the sign of 4w changed
g=sin""f times the sum of Weyl’s P and Q.
p =sin—™f times the difference of Weyl’s P and Q

13 For a more complete statement of the formal role of the quantum numbers than is
given in this paragraph one should consult par. 40 of reference 8.
- 14 Reference 8, pp. 177-178.
15 Reference 8, p. 184.
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Then it is not hard to find that p and ¢ are proportional to Ferrer’s!® P,™
(cos 8), and Py_;™ (cos 0) respectively, and then to show that

m
Prm(cos 0)]
k4 m

Wy = ¢ [ka_l’"(cos 0) + iw

et(mt+1)e
Wy = — ————[0Ps_1m+1(cos 6) + iwPm+(cos 6)].
k -+ m

v and w are the radial functions as in Weyl. Making the appropriate changes
they are identical with the solutions given by Gordon.” We take over Gor-
don’s solutions, and since we are interested in the continuum only, we make

the convention (1 —e€?)'2= +44{(e2— 1)1/2. The wave functions then become
wi(k) = cNeim [(k + m)(e + 1)1/2 Pk_lm(coé )

+ i(k — m)(e — 1)12yP,™(cos 0) ] 5(a b)
(k) = — cNeitmHDé[(e 4 1)1/2 x Py i+l 4 (e — 1)12y P+ (cos 6) ] '

for positive k. The functions for negative k we distinguish by a prime, indicat-
ing that the sign of & has been changed in Egs. (5, a, b) and that the absolute
value of % is considered :

W (— k) = — cN'ei™[(k — m)(e + 1)V2 5 ' Pym
+ ik + m)(e — 1)12y'Py_ym] 5(c, d)
o (— k) = cN'eimtD9[(e 4 1)V2 5 'Ppmtt 4 (e — 1)1/2y' Py_ymH1],
In each case to obtain Y3 change the sign of 7y in ;. The same connection

holds between ¥4 and .
In the above expressions the quantities occurring are defined as follows:

f=2x+ iy =¢errreRF(p + 1+ in, 2p + 1, 2iker)
e = (p + in)/(k — ib/ ko)

fr=a'tiy = (= [ k]) = e ()
e = + (o + in)/(k + ib/ko)
2, T(a+ o)l'(B)

Il

Fla, 6, 2) = g@ TE + ol (@ol
e = E/mc?.

The following conservation law holds between the energy of the incident light,
the energy of the electron in the normal state, and the energy of the photo-
electron:
&+ p1 = €, where ' = hv/mc?
ko = 2wmc(e? — 1)1V2/}
n = be/k().

16 Whittaker and Watson, Modern Analysis, p. 323.
17 Gordon, Zeits. f. Physik 48, 11 (1928).

I
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The normalization is carried out by the Weyl-Hellinger method.
The asymptotic expression of f(k) for large 7 is

fN Zhleikurrin

where,

1 =

e (2p + 1)e=mn/2e—m0il2
2T (p + in) | 2ko| 7in
Therefore, using
1 = A + 1By
1 ~ Giettrrin - complex conjugate,
Gi=m(A4:+1B;), and A is the coefficient of x in the expression for 7 of

Eq. (6).
The normalization is now performed as follows. We use the above expres-

sion for ¥4, and find
lim g—bl{ f¢1du}r2d¢.
=0 Jg Av

The sum of these expressions for all four components of ¥ is then integrated
over the angles and set equal to unity.

One takes the asymptotic expression for ¢ since the contribution over any
finite part of the radial integration vanishes. This is the physical assertion
that the relative time an electron (in a hyperbolic orbit) spends near the
nucleus is negligible.

The normalization is further simplified by the smoothness of the inte-
grand in the integral over dv; all factors involving » except the exponential
may be considered constant, since we will go to the limit A»—0. One obtains

f’zk_&lj ‘Pldv}df’ = ﬁ— 7| Gi| 2+ 0(av).
U dko

On completing the normalization
, _ Smme(2ko)*~le | T(p + 1 4 in) | ?
hT?(2p + 1)
(k—m—1)1  2b+1
dre(k + m)! (4k + e + 1

72 =

Let Ny=cN, Ni’=cN’

As a guide in discussing the integrals, before actually expressing them, the
physical meaning of the transitions that I, and Iz of Eq. (3), and the analo-
gous equation, correspond to, can be mentioned here. I,(+ 1) will not exist as
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there are no states such that | k| —m —1<0, and for I, m changes from zero
to one. This will assert itself when 7, is seen to contain a factor (k—1). Iz(1),
since it gives the probability of a transition involving a final state of zero or-
bital angular momentum, one might expect to be small. It must certainly be a
term that approaches zero as the frequency of the incident light approaches
zero, for the transition could not occur without some correction not considered
in deriving the Schroedinger cross section. It turns out that this transition

does occur, and is induced by the retardation factor; its probability is small
of the order (x/b)2.

Expression of the integrals.

Using Egs. (2) and (3) we may write

La(k)

2 f@lk\#z"'“ — Y3kP,0%) sin Tdr (6)

Il

27 T 0
4riaNoN1(k + m)(e + 1)1/2f f f e —m) deyme=rby
0 0 0
sin P_1™(cos 0) sin T sin 0drdf.

This gives immediately m=1. We employ the following representation of a
wave.!8

sin ' = <(—27—;~3)1/2 cscd i(a + 3/2)P,11'(cos 8) sin (1—;5 -I-,B) ©
K7 =0

Jaraa(kr)

integrate over 0, and use the following relation between Bessel functions and
confluent hypergeometric functions

(K?’/Z) k—1/23-—-ixr

Ji—12(kr) = I‘(k-{——l)
3

F(k, 2k, 2ixr).
The result is

, k
— ArSN N ak (R — 1) (e + 1)1/2(x/2)*2 sin <% + 3>

L(8) = T(k + 3)

f et pykto—2. F(k, 2k, 2ikr)dr.
0

It will be convenient in discussing this and the remaining integrals to ex-
press x and y in the explicit forms that will now be given. Using the recursion
formula

O‘F(a+1;7+1;x)=(a_'Y)F(O‘:'Y_l'l)x)+7F(a,'y:x):

18 Reference 16, p. 383 (the expression in the reference should be multiplied by two).
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we may write
pe—iy’e—iko Ty
X =
(* + nt)1re

where the following definitions hold : ¥’ =tan=n/p —v,

1 e — 1\1/2 ol
=—1|k— +i< >:|—-+0<—> as ko — 0.
§ 2p|: P \e F 1 ap)

By finding the real and imaginary parts of e~ F(p+1+41in, 2p+1, 2:kor), y
may be found.

[F(o + in, 20, 2iker) + gF(p + in, 2p + 1, 2ikor) ]

1,p6~ikor . i . .
y = m[p]«‘(p + in, 2p, 2iker) + grF (o + 1 + in, 2p + 2, 2iker) ]
where,
1 a2€ 1/2 a? 1/2
= —(p? = pb + —— 0 — |, as ko> 0
[2(” P +e—1>] - [2@-1)] as o
1 e 172 1 e 12
be| — (o2 — ok kol —( 2 + ok
e[z(’) P +e—1>} +p”[z('oﬂ +e+1>:l
q =
p(2p + 1)
b2a2 1/2
~—>0|: ] , as ko—0
20%(2p + 1)2(e — 1)

’

vy = y(— k).

To obtain &’ we use the relation 2x =f-+f, and the formula
x
F(a+1)71 x) —F(OL,’Y, x) =—F(a+1;7+1; .’X/‘)
Y

and thus obtain

kor

2p+ 1

o = —e”'”f'r"e““‘ﬂ’[ Flp+ 1+ in,20+2,2ikor) + jF (o + in, 20 + 1, Zikor)]

NG
p_k+ia(e+1>

2i(p + in)

where,

j=

We may now write out the integrals arising from the two normal states
o and f. Before doing so, in order to save writing, we call attention to the
factor sin (wk/248) that will occur in front of each term. Each term will ul-
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timately have its absolute value squared, when we must average over the
phases 8. In each case the average value of sin?(rk/2+83) will be 1/2, and to
indicate this we now write 1/2 for each of these factors.

Then,
L = (2m)3/25aN 1 Nok (k2 — 1) (e + 1)12(k/2) =2—7'p
e Lk + 3)(p* + n2)17 s
a
S —2,%0a,20) + ¢Sk — 2,k 0,20+ 1)]
e w - T 43120 N Nok(k2 — 1) (e + 1)1/2(k/2) 1
o T(k + 3/2
. (k+3/2) 8(b)
[ S S k+1a+1,204+2)+jSu—1,k+1,a 2p+1)]
2 + 1
— (2m)%%aN 1 Nok(k/2) 2 ( kale + 1)Y2%2e '
Is(k) = S(u,k+1,a,2
(&) T(k + 3)(p* + n?)1/2 { 482 — 1 [5G k+1,0,20)
+ ¢S, B+ 1,a,2p + 1)] — ae~ ' (e + 1)2(k — 1)
[Sw—2,k—1,a,20) + ¢S —2,k— 1,82 +1)] 8()
(1 + p)(e — 1122
Su, k+ 1, a, 2
2% +1 [? (:u} + a P)
+gSu+ 1, k+ 1,0+ 1,2p+2>]}
e B =T 202m)¥ 5NN R(/2) M | (P n?) a(e+ 1) VA (k4o
? TG+ HE | 2k + 122k + 3)
k
-[;J}lswz, k42,041, 204+2)+S(ut1, k42, a, 20+1)
p
8(d)
(0% + %) 2ka(e + 1)“26”'[ ko
S(u, b, a+ 1,20 + 2
-+ Y 2p+1(u a+1,2p+2)
+]S<P‘ — 1,k a,20 + 1)]
- (1 + p1)(€ - 1)1/2[15/5(” - 17 k; a, 2P)
+ (]’S<M: kya+1,2p + 2)]}
where,

S, k, a, 2p) = f ¢ iskit AR (k) 2k, 2ikn)F(a, 2, 2ike)dr  (9)

0

and, p=p+p1+k, a=p+in
The other quantities S are obtained from this by appropriate changes in the
parameters.
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By expanding both of the confluent functions in this integral in powers of
7, integrating over 7, and then summing first over powers of 27k, one obtains
an infinite series, each term of which contains a hypergeometric function. To
the latter apply the formula

— X
F(“; ﬁ: Y x) = (1 - x>~ﬂF (7 -, 6; e '1—“—->
—
and then use the definition
1
Floy 8,7, 9) = B8, v = 8) [ 741 = )10 — wa)odu,
0
We now define
21k 24k
S=———, t= - —
b+ ik -+ ik b+ i+ ko

It is then seen by summing under the sign of integration in the expression
obtained as just indicated, that

(S/28k)* 1T (u — 1)
(1 — s)*B(k, k)

! sy \#2kl tsu
f (v — u®)=1{ 14 Fla,u—1,2p,t+ du.
0 1 -3 1 —s

To the hypergeometric function in the integrand we apply

F(a> 16) Y 5") = (1 - x)’y—a—ﬂp(.y —a,Y — ﬁ: Y x)

S(u — 2,k a, 2p) =

SO

tsu
F(a,,u—-l,Zp,t—f—l >
- s

Su 2p—p—atl Su
=|:1-t<1+ >] F<d,2p-—u+1,2p,r(1+-—-———>).
1 -3 1 -3

It follows that

(S/2ik)s 10 (u — 1)(1 — ¢)2ew—atl
(1 — ) B(k, ) '

1 sy \r2h1 stu 2p—ti—at 1
—_ 2\ k—1 1 1 PO -
fo = <+1—s) [ (1——s)(1—15)]

SU
F(d, 2 — u+ 1,2, t(l + 1——)) du.
— S

All of the remaining integrals .S may again be obtained from this one by
making suitable changes in the parameters.
We shall now treat explicitly the problem at the K-limit.

S(/J' -2 k) a, 2P) =

(10)
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Let us introduce the following quantities
6=2k+1—pu

§ =2 —p+ 1.
Rewriting Eq. (10)

_ (5/200+ 0 = (1 = ¥ ,
S= 28020 = (1 — s)*B(k, k) ’ (109

Jrwmom () (og=iima)

SU
F(d,é’, 2p,l<1—|—1—-———>>du, for| s| ~ 0(x).
- §

This integral is now evaluated by taking the factors (1+4su/1—s)~% and F(a,
8, 2p, t(1+su/1—s)) outside of the sign of integration and giving # its aver-
age value 1/2.1 It is then immediate that

(s/2i)*'T(p —1)(1 — £)P=e
(1 —s)*

(11_“3;2)%(@, g 2""<11_—sﬁ_2>>r <" o St E)%’—“B) (107)

It would be possible now to discuss this .S as a function of «, to determine
its contribution to the wave-length law, et cetera. However, this paper is con-
cerned with a discussion of ¢ at the K-absorption limit, and we propose at this
point to reduce our expressions so they will apply only for ke=0. (The K-
limit).

Letting ko approach zero we see after making a simple confluence in each
hypergeometric function of Eq. (10) that

(s/2dk)* T (u — 1)e#
(1 — 9 1 —3/2)°

F(k, 2k, BS)F (a', 20, B (1 - —‘;—))

where 8 is defined as 8=2b/(b+ik). The remaining integrals are evaluated in
exactly the same way (see appendix). In this case, however, where ko =0 the
work may be shortened by going to the limit in Eq. (10"). Corresponding to
the factors (1 —su),”% and F(8’, 2p) in the integral just discussed, other fac-
tors will occur where § and 6’ will be increased or decreased by one or two.
In all cases it will be legitimate for our purposes to proceed in the same way,
putting u average equal 1/2.

Thus the equations analogous to Eq. (11) may be written down. These
expressions are substituted into Egs. (8; a, b, ¢, d) and the square of the ab-

S(p— 2, k, a, 2P) =

S(M - 2, k; a, Zp) =

(11)

19 See appendix Part I.
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solute value of each I(+ %) is taken. Then on multiplying by the proper nor-
malizing factor in each case, one obtains the following expressions:

L2(k) = H(k)(k* — 1) | F(k, 2k, 85) | {F(a', 20)
(12, a)

P

2
F(1+&,20 + 1):\
2p

32(k/2)20%2(u — 1)k + 1)

I(— k) = H(k)
2k 4+ 1)*(2p + 1)%(20)*(0* + «)?

e , (12, b)
[F(ﬁ’, 20+ 2) + —2-F(5’, 2p + 1)}
4
(b* + )2
k—op
2p
ku(p — 1) (| 0)%F (k + 1)
- 4k —1

12(k) = H() {(k—l) [Fos', 20)

+

F(1 46,20 + 1):|F(k —1)

[F(a’ -2, 2) (12, ¢)

(1 + py)u(u — 1) (k/b)*F (& + 1)
202k + 1)
F' — 1,20 +2) ) 2
p(2p + 1)(1 + aW)]}
H (k) (26) %2 (p — 1)%0° {(k + D+ D+ 2)(K/b)2F(k+2)
(2p + 1)%(29)(0% + «*)* (2k + 1)%(2k + 3) (12, d)

k—op

+ 2R =124 1) | -

2p

[F(a' — 2,20 +

Ig?(— k) =

P TTIPSY M) T s 20 + 2)
'[F(ﬁ, p+2)+ <3_0>]_2k+1{ , 2p
+(k—P)(29+1)(1+02K2)F
2u
+(1+P1)F(_@
2p

+ p(2p + 1)1 + asz)F((S' _, Zp)}}z
u

¢, 20 + 1))

[F(ﬁ', 20 + 2)

where,
8TiN 2 km(20) 21?2 (u — 1)(x/2)2%¢

BT2(k + %)I‘g(Zp) (2 + Kz) n—1=8 28 o 4/+a?k?

H(k) =

a=1/b, F(k+m) is an abbreviation for F(k-+m, 2k+2m, Bs). Also, the argu-
ment of the F’s in the brackets has been left out. This argument is 8(1—35/2)



70 HARVEY HALL AND J. R. OPPENHEIMER

in all cases. e; is the base of the natural logarithms. We now rewrite Eq. (4),
where » is now the frequency of the K-absorption limit. » = (1 — py)mc%/h.

o= I S lew 41— B] + ZAw + 1= Bl 19

(1 - PI)MG k=1

By going to the limit c—% one easily sees that I.2(k) =3I5(k) =0 unless
k=2; and I*(—k) =(2/3)1,2(2) if k=1. In this way it becomes obvious that
in the absence of spin forces the contributions from the two normal states are
equal, and any asymmetry between them vanishes, as it must. Furthermore,
for ¢ infinite we have

As given by Eq. (13) and Eqgs. (12), ¢, according to our approximations,
is correct to within 3 percent for Z<68. For Z>68 the error may increase,
but due to the nature of these approximations we should obtain a fair esti-
mate at least, for all Z.

Results.

Calculations using Egs. (12) and (13) yield the results of Table I at the
K-limit.2° As indicated, these values of ¢ are less than those given by the
Schroedinger theory, and, with one exception, grow more discrepant with
increasing Z. The Schroedinger theory gave fairly good results but was itself
slightly low.

TaBLE 1.
Z 1 11 19 37 55 79
Z2c1018 6.3 6.3 6.2 5.9 6.0 5.2

10822y 6.3 — — — — —

From data in Roess’ paper his 7, at the K-limit is from 0.3 percent to 14.6
percent less than the Schroedinger result, for effective Z roughly from 11 to 80.
In approximately the same range our result is lower than the Schroedinger
result from about 0.3 to 20 percent.

We may say that in this case the more precise model which includes the
retarded potentials (Roess does not include the retardation factor in his
integrals) does not improve the comparison with experiment, and if anything
makes it slightly worse.*{ This discrepancy between theory and experiment
must be attributed to the inaccuracy of a model which neglects all electro-
static interactions.

20 Tt is unfortunate in comparing our results with those of Roess (reference 4) that these
calculations are for different values of Z than those he has used. However, due to the obvious
inaccuracy of the theory even in this case where retardation is included, and as shown by our
results, it does not seem necessary to make a further comparison between our results than can
be done qualitatively.
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PaArT II. PHOTOELECTRIC ABSORPTION OF ULTRAGAMMA RADIATION
Introduction.

In order to discuss the problem mentioned in the introduction to this
paper under (2), we should now be obliged to consider the quantities S defined
by Eq. (9), for large k. That such a consideration leads.to a grave difficulty it
is the purpose of the present section to point out. The nature of this difficulty
can be elucidated in a considerably simplified case. Let us in Eq. (9) set
a=0and n=0. Eq. (9) can then be written, after a simple substitution,

Kko —k+1/2 0
Sk — 1, b, k, 26) = (—4~> v+ 3) [T (ko
0

The integral in this equation can now be evaluated?® with the result

(kko)~/? €
fE"bek_ug(K7)Jk-1/2(k07>d1’ = —— Qk—-l (—) (14:)

™ kol
In order to evaluate ¢ it is necessary to find 2472 This sum does not converge
uniformly in k; that is the value of % for which the contribution of the terms
is a maximum, increases as k increases. We are thus faced with one of two
problems: (a) That of finding the expansion of Qx(x) about x =1, necessarily
uniform in &, or, (b) That of finding an asymptotic expansion for Qx(x), for &

large, which is uniform as x—1-0.

Either of these problems, after considerable study of the contour integral,
and of the differential equation, we believe to form a major analytical diffi-
culty; and that the answer to (b) is probably not to be found by the method
of steepest descents. It should further be remarked that even in the case
problem (a) or (b) is resolved, that, due to the non-uniformity of the function
1.2, it is not unlikely that the function I, will be such as to make the sum
over k difficult, if not impossible.

Just this difficulty persists if # and « are retained in Eq. (9), and, although
the analysis is more complicated, the answer would be forthcoming if this
simpler case could be treated. In the face of this we have been forced to leave
the solution in this form.

~ This difficulty, and in fact most of the complication encountered in this
physically simple problem, can be regarded as having been introduced by the

* Roess explains that his 74, which is assertedly computed for a one-electron atom, does
not need to be doubled to give the total absorption of the two K-electrons. A closer examination
of Roess’ work, shows, however, that his 7; gives the absorption of an atom in which both nor-
mal states are filled, whereas our o gives the absorption for an atom with one electron, which is
with equal probability to be found in either of the two normal states.

t As remarked in the footnote of page 2, no treatment of the wave-length dependence is to
be given in this paper. However, it has been verified that retardation does not change the de-
pendence on wave-length in any critical way, and that as nearly as the curve may be described
at all by assigning a specific exponent to X this exponent is never much different from 3. Roess
found that the relativistic theory, when retardation was not included, gave something closer
to a A* law than was given by the previous less exact theories applied to the K-shell.

2 G. N. Watson, Theory of Bessel Functions, p. 389.
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resolution of the waves representing states in the continuum into spherical
harmonics, in order to obtain a solution of Dirac’s equation. In the relativistic
theory the problem of the hydrogen atom is no longer separable in parabolic
coordinates, so that wave functions representing hyperbolic orbits, which take
the relativistic change of mass with velocity into account, and which are other-
wise analogous to Gordon’s wave functions,?? are not known. We see graphical-
ly that the trouble arises from the fact that for very hard radiation there is a
strong directional selection for the photoelectrons, while due to the non-
separability of the wave equation in any coordinate system that allows this
condition to be useful, we are forced to recompose waves resolved into spheri-
cal harmonics by solving the above stated problem.

Now for 5/k< <1 the translational energy of the photoelectrons becomes
very large, and we should not expect in the limit of /k~0 that the effect of
binding on the photoelectrons would play a very great role. We thus feel
tempted to neglect altogether the binding of the photoelectrons, and to apply
for their wave functions in the continuum relativistic plane waves.

In neglecting the binding of the photoelectrons we are setting the two
quantities # and b/« equal to zero; the neglect of b/ will always be justified
for sufficiently hard radiation, but for the application to the gamma rays of
ThC’’ the effect of terms 1/k’ is appreciable, as we shall see in our formulas
(18) and (19). The neglect of # does not become justified as k’'—o and we
have taken particular care to verify that this effect is inappreciable for light
elements, and can introduce even for lead at the very most a factor of three.
To do this we have inter alia so modified the wave functions that they have
the correct asymptotic behavior for an electron moving in the field of the nu-
cleus. This modification introduces a term in the exponent of the wave func-
tions, in addition to the k¢ term of the plane waves, of the form in-log kor.
The result of this investigation is given in the footnote to Eq. (17), and justi-
fies the approximation involved in neglecting the binding entirely.

It would appear impossible to improve substantially this calculation ex-
cept by a strict evaluation of the cross section by the method outlined in the
first paragraph of this section.

Derivation.of the results.

We distinguish the two sets of wave functions in the continuum by the

labels o’ and B8’; each set corresponds to a different orientation of spin.

P =1+ e+ ko
Yot = ko, -+ ikoy
¥ =14 ¢— ko’
¥ = — (ko + ko))
Y1 = P, U = Y, U = — P, U =

@ ¢7) =0

€ as before is the energy in units mc?. ko’ is the momentum in units mc.

. Nei(ko-T)

22 Gordon, Zeits. f. Physik 48, 180 (1928).
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There will be four integrals I corresponding to transitions between the

two initial and the two final states. They are I**', [’ Jf«’' I# and are de-
fined as in Eq. (6) by the equation

Joee! = 2 f (Y1¥ a0 — Y32 P,0%) sin T'dr. (15)

By use of the wave equations for the normal states already given, and those
adopted for the final states, we have from Eq. (15)

Ie?" = 4iaNoN(1 + ¢) fe”“kﬂr) sin ferr—le~7 sin T'dr

I# =0
If = 4N0Nf {koz’(l + p1) — ta(1 4+ €) cos 0}6—”’7"1—1 sin Te—i&d) dr
IPE = — 4N N (ko + ko) (1 + p1) fe—i(kﬂ’)e—“’rpl—l sin I'dr.

By the same method of normalization given previously we obtain, nor-
malizing to dvd(cos w)d ¢,
mko

T 2+ e

2

Consider 7=, Writing sinI' in the exponential form,

I« = 2aNoN(1 + €)[e®I, — e#1,]
where,

I

Il

f (xi+ iy)erore2e=F Kemn gy

Iz = Il('—‘ K).

Next multiplying I*® up by its complex conjugate and averaging over the
phases 3, we find that

| 15| 2 = 4a2N@N2(1 + €2[| 11| 2 + | I 2].

Let us now evaluate the expression I,. To do this it is convenient to transform
to coordinates whose z-axis has the direction of the vector ko+«. We define
the angle w and the quantity p by the following relations

(ko + k)2 = ko? + k2 — 2kok cOS w
= p2.

We transform the integrand according to the scheme

(16)

xl yl ZI
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and obtain

I, = (I3 + ims) f yrrtlg—rb—irp cos ¥ cos @ sin Odrdide .

Integrating first over the angles we soon find that*
_ 7%l + img)T(p1 4 3) 4 <91+3 1—p1 5 P >
2 I‘(S/Z) (PZ T b2)P1+3/2 .

The remaining integrals are obtained similarly, and after a few easy calcula-
tions, and using the relation

3 M b
2 2 2 prp

welc

o(w) = ——={[ 1| 24| 1

S| o 1)

one finds thatt
( 4n%*ZaT?(py + 2) (26) 2 mko
o(w) = .
hsl’ (1 + pl)F(l + 2p1) 1 + €
14€)%(p:+ 2)?
{ 1+ p1)%k*(fo12 + f5-2) + Li(gl)l ) (p+fss2+ p-2f5:2) } 17
A1 +3 1L —p M Pi2> . p1+ 3
= J ) T N b2 i
Ju ( 2 2 2 peyn) T T

where p, is the p defined by Eq. (16); p_=p (7 —w).

The above expression for o(w) gives the distribution in angle about the
direction of k. The range of w is 0 —. The hypergeometric function with A
=35 varies slowly, as can be seen from a continuation of the function about
1 —x. Similarly in the other case, M = 3. (See appendix, Part I1.)

The angular dependence is then seen to be given, nearly, by the factor

1 1/2 —4
%+m>‘MQ

and the steepness of the curve when kg, and « are nearly parallel is apparent.
For « infinite it is therefore justified to give both hypergeometric functions
their values when &y and k are parallel, in the angular integration. Even for
k'=5, as it is for ThC’’ gamma rays, it may be shown that the error intro-
duced by this procedure is completely negligible (less than 2 percent). With
this understanding we may proceed with the integration over the angles; to
do so it is necessary to find

¢ = fa(w)d cos wde.

* These integrals may be evaluated in terms of elementary functions but we prefer to ex-
press them as is here done.

t If the modification due to binding be carried through, its effect can be seen, approxi-
mately, by substituting pi1+4# for p1 in this formula (excepting of course No).
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The result of this integration is

_ Taglag? T2(p; + 2) 1 |: 2ag? ]prl»Z
T Te U H 0T+ 200 1 4 eld(e— o)
(1 4 po)ko 34+p1 1 —p1 3 2

AT 2 F ; y —; 18
{(p1+ >[(p1+2);< ( 2 2 2 xﬂ (18)

(p14+2)(14¢) <3—i—p1 1—p1 S ]2( 2 )}

1 F ) < —, 1 — a2} b,

+ (b1 + )l:S(pl—'—l)Kl 2 y 2 X 3a

For « infinite, this result becomes
x=(ko —k")2/2k'(e—ky")
magt T%(py + 2) (2a0)?e:t0 2720 {<1+m>2rz(1 —p 3+p 3 )
1 5 -_Q

. ) )y =,
16 (1 4 p)T(1 + 2p1) € 2+ p 2 2
2 2 1 - 3 4+ 5 2
) F2< o, ~, ~;1—a2>(1——a2>}. (19)
9(1 + py) 2 2 2 3
For light elements we may set a =0 and obtain
887 ao2a®Z®
g N_—:;e—— * (20)

This formula is radically different from that we should obtain by an extra-
polation of the experimental law for softer x-rays, or the earlier non-relativis-
tic calculations. These agree in giving for ¢, more or less roughly, it is true,

s = 10-2Z4\3 (21)
whereas we find
o~ 1.9 X 10-2225\, (22)

For the gamma-rays of ThC’’ our result gives a much larger absorption than
the extrapolated value (21).2* In contrast with the extrapolated formula,(22)
gives a photoelectric absorption which falls off almost as slowly with decreas-
ing wave-length as the scattering from a free electron,

(6)xw ~ 10715\ log €.

This result and (18) and (19) are what we must compare with experiment.
For sufficiently hard radiation we may use (19) with complete confidence; for
the gamma-rays of ThC’’, (18) and (19) give appreciably different results,
and we shall use the strict result (18).

22 One may understand this result physically; the reason for the rapid decrease in o with
M(\?) in the theory of absorption of ordinary x-rays is that the nucleus has to take up more and
more momentum as the frequency of the quantum increases. For very hard light the electrons
which are ejected in the direction of the y-ray beam acquire a momentum which differs from
that of the quantum by a constant amount: the momentum which the nucleus has to take up
does not increase indefinitely with the energy of the quantum. For this reason we should expect
the true value of ¢ to lie, for hard radiation, higher than the value extrapolated from (21),
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Comparison with experiment.

The formulas just given apply only to the K-electrons of a naked nucleus.
In using them to obtain the total photoelectric absorption from an atom we
shall apply the customary procedure, which may be justified only qualita-
tively, of supposing each electron in the atom to move in the field of an appro-
priately screened nucleus. We take the screening constants directly from the
spectroscopic values given by Ruark and Urey.* There appears to be no more
satisfactory treatment of the problem which does not involve a complicated
study of the wave functions for all the electrons. It is in this connection of
extreme importance to note that the discrepancy between theory and experi-
ment which we find for the absorption of the gamma-rays of ThC’’ by Pb,
persists even if we neglect entirely the absorption of all but the two K-elec-
trons.

We take therefore the total photoelectric cross section of the atom

g4 = Zma(Z - Si) (23)

where o(Z-s) is the absorption given by (18) for an electron bound to a nu-
cleus of charge e(Z—s), where further n; is the number of electrons in the
atom with screening constant s;, and where the summation is to be taken over
all the electrons of the atom.

The simplest way to compare o4 with experiment is to find its ratio to the
cross section for scattering given by the Klein-Nishina formula. We therefore
compute the ratio R per electron of the photoelectric cross section to the Klein-
Nishina® cross section for scattering, (¢) K.N. For ThC’’ gamma-rays, this
ratio is

® = (04/Z)

(op)kN

y for A =4.7TX.U. (24)

Chao? and Tarrant?” have observed the total absorption of these gamma-
rays of ThC’/ in a number of elements, and agree in finding it greater than the
value predicted by the Klein-Nishina formula. From their data the quantity
R may be directly found. There are of course several possible explanations of
the excess absorption which Chao and Tarrant find, an excess absorption
which is more marked for the heavier elements. On the other hand the bind-
ing of the electrons will surely modify the scattering; it will also give rise to a
photoelectric absorption; further, the electrons of the nucleus may absorb or
scatter appreciably such hard radiation. (The increase, and according to Chao
it is a regular increase, with Z would on this view be hard to understand.) It
is here our purpose to discover what part of the effect observed by Chao and
Tarrant can be ascribed to photoelectric absorption.

24 Ruark and Urey, Atoms, Molecules and Quanta, (McGraw-Hill), p. 259.
2 Reference 7, or see reference 5.

2 Reference 5.

27 Reference 5.
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Carrying out this comparison, we find from (18), (23), and (24) for Cu
R—-1=0.08

Chao finds for Cu 0.11, and Tarrant 0.12. A set of typical results is given in
Table II.

TasLE I1.
Z Obs. Chao Obs. Tarrant R—1
13 0.06 0.12 0.002
29 1 .12 .08
30 1 .006 .08
50 .21 .21 1.3
82 .42 .34 14.

The agreement of this computed value for the photoelectric absorption in
Cu with the excess absorption over that given by the Klein-Nishina formula
experimentally found by Chao and Tarrant, is in some ways satisfactory, and
suggests that the experimental absorption can, even for this very hard radia-
tion, be explained by the photoelectric absorption and scattering of extra-
nuclear electrons. There are, however, very serious difficulties with this inter-
pretation which arise from the following circumstance. Our computed photo-
electric absorption increases very much more rapidly (Z%) with atomic
number than that found by Tarrant and Chao. Chao finds roughly a linear
dependence on Z; Tarrant, whose values do not agree at all well with those of
Chao, finds no regular dependence on Z at all for the excess absorption. (This
is what we should expect if the absorption were primarily nuclear.) Our
theoretical values for the photoelectric effect give therefore, a smaller a cor-
rection for the light elements (e.g. A1) than is needed to explain the empirical
values; whereas for heavier elements, like Pb, the theoretical correction is
over 25 times too large. It must be emphasized that the empirical values are
by no means certain; only in the case of lead, where both Tarrant and Chao
find a value very much smaller than the theoretical, can we be sure of a
definite discrepancy between theory and experiment.

An examination of the error introduced into our calculations by a partial
neglect of the binding of the photoelectrons has convinced us that correction
for this error could hardly bring our results into accord with experiment. Only
in the case of lead could this correction be appreciable, and even there it
should not change our result by more than a factor of three. We believe that a
precise calculation based on the strict formula, Eq. (9), would also lead to
results that could not be reconciled with the experiments. They would fail to
agree with Chao’s measurements because of too fast an increase with atomic
number; and they would disagree with Tarrant’s not only in this, but in giv-
ing a quite regular dependence on Z. For if the dependence on Z is really as
irregular as that found by Tarrant, the effects can hardly be of extra-nuclear
origin, and the photoelectric effect computed by us should be only a small
part of the excess absorption observed ; whereas for large Z it is in fact greater.
We believe, therefore, that the application of the present electrodynamical
theory to the absorption of very hard light does not give correct results,
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There are of course grounds for distrusting the theory in this application, be-
cause the energy of the light involved is many times the proper energy of the
electron. It is because we seem to have here another breakdown of present
electrodynamical theory that we have insisted so much on this comparison
with experimental results by no means unambiguous. It is to be hoped that a
more complete and rigorous solution of the theoretical problem will be found
in the future, and it is very much to be desired that the experiments be re-
peated and improved.

APPENDIX

5 a2<1+1>
T2 k
a? 1

a'=—-<1——>.
2 %

Since the error involved in this procedure will be of interest to us only for the
case k=0, we shall justify the approximation only for this case. It is clear,
however, that a similar process will be possible in other restricted parts of the
range of k.

From Egs. (12) one sees that the largest contribution to ¢ comes from the
first term of I, for £ =2. For k=2, F(§', 2p, B(1 —5u)) of Eq. (10") converges
to within 0.007 of its value in two terms (a<1/2); this value is practically
independent of s~ia. Therefore, in a heuristic way we take this factor out-
side the integral. Now expanding the other factor of interest,

61+ 6
(1 — 5u)= =1+5§u+(—;—)(§u)2+

Part 1.

To the first order in a2

we integrate term by term. In the resulting series
B(k1k)F (k12k, B3) + 6B(k + 1, B)F(k + 1, 2k + 1,85) + - - -

the ratio of the first two terms gives u average. We find ]ﬁ] slightly greater
than 1/2 (the imaginary part of # average can be neglected), but for our pur-
poses putting average »=1/2 in the factors that have been removed is con-
venient, and should entail an error of less than 1/2 percent, since the series
for the second factor converges to within 0.01 of its value in three terms for
|| =3/4, and the same upper limit on a.

In the remaining integrals the approximation is not always such a good
one in the integral itself. Fortunately, however, when in place of the factors
above we have the factors F(8’ +1), or (1 —3u)*'%, or similar ones with 2 in
place of 1, then, either the approximation just happens to be right to a fair
accuracy, or else the integral being considered belongs to a term of ¢ which is
already small because of a factor (k/b)?% or (e/2)%. For example: the other
large terms in ¢, by Egs. (12), come from Ig(+2), Is(—1). The largest term
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in Ig(+2) comes from S(u—2, k—1, a,2p). The F(§’) factor in this integral is
again the same as the one we have just discussed, but the other factor is
(1—3u)*=?%. The series obtained by expanding this expression converges in
four terms to 0.15 of its value, if ]u| average is near 1/2. Again integrating
term by term, and finding the necessary ratios of the confluent functions in
the succeeding terms, we find that putting ldl =g?= - - - =1/2 introduces
an error <0.02 in this integral.

The remaining large term arises from Ig(—1). S(u, k, a+1, 2p+2) and
S(u—1, &, a, 2p) contribute to this term. The question involved in the first of
these is the same as in the term just discussed. The latter involves (1 —5u)'7?,
and F(—1, 2p,B3(1 —5u)), since 6’ =0 for £=1. In this case it is better to ex-
pand both of these factors under the sign of integration, and obtain

Co+ et + con® + - - - .

Then in a similar way one finds %, 42, - - - . The F in this case vanishes as
a—0.

Now in the contribution to o, Iz*(+2) has roughly the weight 1/6, and
I2(—1) the weight 1/3. On squaring we must double the estimated errors.
We find that for ky=0, «<1/2 the error in ¢ should be less than 3 percent.
The error for small Z should be almost entirely negligible—in general all of
our errors vanish with a.

PartII.

The formula for continuation gives in this case,

F(Pl—|‘3 1—p1 5 P? >

) ) T
2 2 2 prpe
1 5
r(—)r(—=
2 2 <p1+3 1—p 1 b? >
= F ) )y T
2 2 2 prp

"5 (57
'G)rG)

>1/2 (2"‘/01 44+p1 3 b? )
2 F ’ y — .
F<p1+3>r<1 —-p1>\;b2+ b 2 2 2 prt

2 2

The difference of this F from unity is seen to be negligible except for the
heaviest elements (e.g. Pb), even when ko and x are parallel. It is to be noted,
however, that the correction is in the direction to decrease F, but the de-
crease in F?is not more than 8 percent for lead.

The continuation of F(p1+3/2, 1—p,/2, 3/2; p*/p*+b?) shows that again
in this case F changes slowly, and exceeds the value unity about 10 percent for
Pb when kq and « are parallel.




