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ABSTRACT

Solutions of the Dirac wave equation representing a free electron moving in a
uniform magnetic field are obtained. The functions are similar to those obtained by
Landau and by Uhlenbeck and Young as solutions of the Schrédinger equation. A
wave packet is constructed representing a beam of electrons passing through a slit.
The results agree with the classical predictions to terms of the order of the de Broglie
wave-length of the electron divided by the radius of curvature of its classical path.
For experimental cases this ratio is of the order 1078 to 10719, Hence it is concluded
that the difference between magnetic deflection measurements of ¢/m and other de-
terminations cannot be explained as a quantum effect.

NUMBER of papers!??*have recently appeared treating the motion on
an electron in a magnetic field on the basis of quantum mechanics. The
purpose of these investigations was to see if the difference in the values of the
specific charge of the electron® obtained by deflection and by spectroscopic
experiments could be explained as a quantum effect. Recent experimental
work on free electrons by Perry and Chaffee® and by Kirchner” give values
for the ratio e/m very close to the spectroscopic values. However, neither of
these experiments involved deflections in a magnetic field so that a quantum
mechanical effect might still be present in the magnetic measurements. In
fact, Kirchner suggests that Page’s investigation might explain the difference
between his own results and the older ones of Wolf.®
Page! obtains solutions of the Schriodinger equation representing a free
electron in a magnetic field. He shows that the mean radius of the electron’s
path for each of these solutions is less than the classical radius given by 7=
muc/eH, except that for one solution his mean radius is equal to the classical.
He concludes that if a beam of electrons passing through a slit is represented
by a combination of his solutions the average radius of curvature of the paths
of the electrons will be less than that calculated by the classical formula and
that the difference is of the right order of magnitude to explain the observed
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discrepancy in e¢/m. However, he does not show that a finite beam of electrons
can be represented by such a combination of his solutions and in particular
he ignores a whole set of solutions of this equation obtained by letting his
quantum number m take on negative values. For these solutions the mean
radius is greater than the classical radius. Hence, his work cannot be consid-
ered conclusive. Plesset® used a second order relativistic wave equation and
carried out calculations similar to those of Page. The above remarks apply to
his work as well.

Uhlenbeck and Young? used a different form of solution of the Schrod-
inger equation, which was first given by Landau.® They calculated the dis-
tance which a beam of electrons incident normally would penetrate into a
magnetic field and obtained the classical result.

Kennard* showed that in any electromagnetic field the center of gravity
of a wave packet obeying the Schriédinger equation would move according to
classical laws. From this he concluded that the classical expression could be
used whenever an experiment consisted in measuring a mean position of a
large number of electrons. He was not able to extend his results to the Dirac
wave equation.

In the present work the Dirac equation for the electron is used. Solutions
for a homogeneous magnetic field are obtained which are analagous to the
solutions used by Uhlenbeck and Young. From these solutions a wave packet
is constructed which represents a beam of electrons passing through a slit
into a magnetic field. The motion of this packet is studied.

SOLUTIONS IN THE MAGNETIC FIELD

We shall use the linear Hamiltonian for the electron in the form given in
Dirac’s quantum mechanics.

{W/c+ (¢/c) Ao+ pr[6- (0 + (¢/c)A)] + psmec}y = 0. ¢))
For a uniform magnetic field H in the z-direction we can write
Ao =0, 4, =0; A, = — §Hy; A, = $H..

Putting w=eH/2¢, Eq. (1) becomes
{(W/c+ piloa(pe — w3) + 0u(py + w3) + a:p.] + pome}y = 0.

We shall find solutions of this equation which are much like those used
by Uhlenbeck and Young.?® To do this put

Y = i@/t bug(y) (2)
k is Planck’s constant divided by 27. Assuming that ¢ is independent of z.
The equation for ¢ is

w
{-;— + piloaps + oy(2wx + )] + psmc}¢ = 0. 3)

9 L. Landau, Zeits. {. Physik 64, 629 (1930).
10 P, A. M. Dirac, Quantum Mechanics, Oxford University Press (1930).
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We see that the solution for any value of 9 can be obtained from that for
7 =0 by replacing x by (x+7/2w). That is

$a(2) = ¢n=o<x + %)

Writing out the component equations for the case n =0

w k dos |
<~ —}—mc)dn + — — — 2wxg, = 0
¢ i d

X

w k dos .
(—— +mc>¢>z +— —— + 2wrg; = 0
¢ 1 dx

4)
w k 8¢y |
(———mc ¢z +— — — 2wxg, = 0
c 1 dx
w k dor |
(— — mc>¢4 + — — 4 2wxp, = 0.
c 1 dx
Eliminating ¢;, between the first and last of the above gives
d2p, 1
— 4 ——( (W2/c?) — m2? + 2wk — 4wk? ) ¢4 = 0.
dx? k?
Or putting £=2x(w/k)'/? and
1
= ——(W?/c? — m2c?) = 2
VS gV T ) = b
where p is the total momentum, we obtain
d%
S Gt = 0
dg?
(5)
a*1 1 1y — ()
o + @ —3— 194 =0.

We recognize the first of these as the equation for D, given in Whittaker
and Watson, Modern Analysis.!! The second is the equation for D,_;. Com-
paring the first of Egs. (4) with the second recurrence formula for the D,’s
given in Whittaker and Watson

D)’ (§) + 3¢D,(§) — vD,1(§) = 0
we find that if

¢4(x) = aD,(§) 6)

It Whittaker and Watson, Modern Analysis , Cambridge University Press, Fourth Edition
(1927).
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then

dDy_1(£) .

It can be shown in a similar manner that

b2 = iC((W/c) —mc)ps
¢s = iC((W/¢c) + mc)or.
The condition that the 3- component of the current be zero at ¥ =0 makes

Creal, and if Cis real S,=0 for any value of x.
We can write the solutions

(™

Il

Y1 = e«;(w/Ic):cyei(n/k):1/(;[)1 (:XI =+ —n~—>
) 2w
. i3 . W "7
Yy = i/ DzugiaIMuC [ — — e ) gl ¥ + —
c 2w
)
) ) w n
Y3 = eitw/Revgitl DviC <~— + mc>¢1< x+ —>
¢ 2w
. s n
\[/4 — ez(w/k)xyez(vlk)y¢4 <x + —)
2w

where the ¢’s are given by (6). We might point out that if N\=54/p is the de
Broglie wave-length and 7=cp/eH is the radius of the classical circle then

T = VA,

Hence v is the number of de Broglie wave-lengths in a classical half circle.
Uhlenbeck and Young found that w7 = (v+3%)\ when Schrédinger’s equation
is used instead of Dirac’s.

THE SOLUTIONS IN FREE SPACE
Put p?=p2+ p.2 = W2/c* —m2c? where p, and p. are the momenta in the
% and y-directions. The monentum in the z-direction is considered zero. Then
for field free space we expect solutions of the form ei/e(rn=+nv, The following
set of solutions was found:

— 1
Uy = _gi_h_p}.__Awilk(mx+pw)
(W/e) + me
Yy = A2ei/k(p1x+:ﬂzy) ,
{9)
— 1
Yy = _ T e A il F(piztpv)
(W/¢) — me
¢4 = A4ei/k(mx+pzu)

where A, and 44 are arbitrary constants.
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If we consider the functions (9) as representing a beam moving in the
+x and 4 y-directions, we can find the representation of a similar beam mov-
ing in the —x and +y-directions by using different constants B, and B, and

by replacing p;1 by — 1.

MATCHING SOLUTIONS

Let us suppose that we have a uniform magnetic field of strength H in
the z-direction for all positive values of x, and that for x negative the field is
zero. We wish to match solutions of the type (8) with those of type (9) for
x=0. We see first that p, =1 in order that the solutions be equal for all values
of y. We suppose that in the free space there is both an incident beam (p;
positive) and an emergent beam (p; negative). Setting the sum of these solu-
tions equal to the functions in the field with x =0 gives

— p1(ds — By + ipe(Ads+ By)

(W/e) + me = ¢1(p»/2w)
Az + By = iC((W/c) — mc)pa(ps/2w) (10)
— p1(ds — Bs) + ipa(ds + By) .

W/c) — me = iC((W/¢c) + me)pi(ps/2w)

As+ By = ¢u(ps/20).
Solving for the B’s in terms of the A’s gives

By = v4,4

(11)
By, = v4,
where
(W/c) + me ¢1(pa/2w)
1 — ips/p1 +
pr dalpe/2w) 12)

rE (W/c) + mec $1(ps/2w)

P ¢4(P2/2w)

U+ ipo/pr —

Since the ratio ¢1/¢s is pure imaginary from Egs. (6) we see that v is a
number divided by its complex conjugate and hence l'y ] =1. Also since D is
even or odd according as v is even or odd, one of the functions ¢, ¢4 is odd,
the other even. Hence, their ratio is odd. Hence, if we change the sign of ps,
v becomes 1/v. That is

= 'Y*(Pl’ P2) (13)

v(p1, — p2) =
’ v(p1, p2)
Having obtained these solutions we will use them in several ways. We
will first consider an infinite beam incident normally and later will construct
a wave packet.
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DisTRIBUTION OF CURRENT IN THE FIELD
FOR AN INFINITE INCIDENT BEAM

Let us find the current densities inside the field for the case ps=0. From
Dirac:
=S =Va = ¥1" + ¥y + Y'Y + ¥
= (1 4+ C?p) (1704 + ¢a*¢1) = 0.
Since the product ¢4¥¢; is pure imaginary from (6) and hence ¢ s = — ¢ ¢1.
Similarly, —S,=y*a = —i(1+C??) @ b1—¢1"ps).

If we use our expressions for the &’s in terms of the D’s we have
(W/c) — me

Sy = (14 C%? )i

aa*D,D,_;. (14)

Since D,_; and D, are successive solutions of the Weber equation (5),
they have a different number of zeros between x =0 and x =0. (There are no
zeros for x>r.) Therefore, .S, is negative for some values of x. In fact, the
distance between successive regions of negative .S, is of the order of \, the de
Broglie wave-length. This is apparently an effect of spin since Uhlenback
and Young found an expression for .S, which is always positive.

Let us find the average x-coordinate of the current, defined by

0

Classically S, =2I/(r2—x2)1/2 and  =wv/4.
In evaluating Z using the quantum mechanical expressions we shall need
the integrals

nyDy_ldE and fD,.D,,..]EdE.
0 0

We shall evaluate these integrals for » even. The methods are much the
same for » odd and the final value of Z is exactly the same.

By multiplying the first of Egs. (5) by D,_s, the second by D, and sub-
tracting and then integrating we find

fo " DD, adt = [DUO)? =< ra)z” )2. (15)

I'(z — )

Using the recurrence formulae we find

f £D,D,_,dE}= %fw[p,]mg = 1(2m)1%]. (16)
0 0
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Putting into our expression for &

5 = (g)'@ 2(2m)11.

By using Stirling’s formula
n n
nl = (27rn)”2<—>
€

_ ™
T=—r
4

we obtain

the classical value. Hence the result agrees with the classical value to the ex-
tent that Stirling’s formula holds. The error in Stirling’s formula is of the
order 1/» and since » is of the order 108 to 10! this deviation is entirely
negligible. The same results is obtained if we use Uhlenbeck and Young’s so-
lutions of the Schrédinger equation.

By using a Wentzel-Brillouin-Kramers?!? approximation near x =7 (See
Uhlenbeck and Young) ¢4 and ¢; can be expressed in the form:

frlis ) ol

The plus sign being used for ¢4 and the minus for ¢; we find that the last
maximum of .S, is between

x=7r(1 4+ 323 4+ Y1) (maximum of ¢,)
and
2 =714+ 323 — Y1) (maximum of ¢;)

and the current will fall to 0.001 times its maximum value in going a distance
of the order 3/27(v)~2/5,

We have found that if an experiment consists of measuring the average x
coordinate of the current the difference between classical and quantum me-
chanical results will be of the order of 1 part in » while if the maximum x co-
ordinate is used the difference will be of the order 1 part in »2/3. In either case
it is too small to observe.

Two INCIDENT BEAMS

We shall combine two incident beams such as those found above Egs.
(9), with momenta pi, p» and p1— ps. The constants 4, and 44 will be the
same for both beams. This is the first step in the construction of a wave
packet. It will be simpler to make a wave packet from these solutions than
from the original solutions (9).
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We find for the combined beams

— 24 seirzlE
Yir = Ya(py, p2) + ¥(p1, — p2) = . {jh €08 if? t sin—’i}:—}i}.
— -+ mc
c

Put tan €= py/p1. Then

— 2A4]§eimxlk ?23’
Yjpg=——""—""—""—"¢C0S|— — ¢
w k
— 4 mc
c

yl/@'g = 2A2eimx/k COs ‘?273;

— 24ypeiel® cos (M - ‘)
W/e) — me

Vi = 244e"7#!* cos 117_22 .

(18)
Vi =

Now let us find the functions representing the emergent beams. Put
v=¢". Then
By(py, po) = vds = Aye®
By(p1, — p2) = yds = Ae™

and similar expressions for B;. We obtain

— wﬂ_— '—‘imx/k <P2y
Vo = GV /0) + e € cos ; +6+e>

\beiz 2A23_ip1x/k CcOoSs (2;;31 + 5)

245p ) P2y
5 = — e p—imzlk i )
Yo (W/c) —me e eos ( k o e)

Il

(19)

Yoo = 244e7P2* cos (%2 + 6).

For p, small compared to p; the emergent beam is displaced along the
y-axis a distance k8/p.. Hence, we wish to find 8.
Using Eqgs. (6) we find

(W/) + me ¢u(po/2w) . Dya[(po/p)2012]
P da(p2/ 2w) ) ?/?1 D,[(ps/ p)2012]

To evaluate § we must make some approximations.' Two independent ap-
proximations are involved. We assume that p, is small compared to p;, and

(20)
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the » is large compared to 1. Let us consider the differential Eq. (5) for the
D,. If v is large compared to 1 and £ is small compared "to 2(»)? we see that
an approximate solution can be obtained in the form

D = acos (% + o).

Let us again consider the case v even, then D, is an even function and
D,_jan odd one and we can write

D, = a cos (v)1/2%

. (21)
D_y = bsin (v)1/2.
Using Whittaker and Watson’s expressions for D, we can show that
. Dua(®)
lm —— = —
g0 ED,(§)
Hence for small £
1/2DV__
WDAD o oy, (22)

DV (E)

A better approximation can be obtained by using the Wentzel-Brillouin-
Kramer’s method?

—a

Dua(®) = ———— sin i{é(Z(Zy — 1) — )
[1 B 2(2V$iT)J |

N
200 = it o %))1/2}

and
D,(§) = 1 ; o cos %15(2(21; + 1) — g
510
. £
—I— 2(21/ + 1) sin~! Zy_—-l——%)_l/;} .

These hold for considerably larger values of £ than do Eqgs. (21). If we as-
sume » is large compared to 1, but do not restrict £ we obtain

(»)2D,1(£) L N1 ., &
X0 = — tan Z{E(LLV — £)12 + 4y sin Z(Vj;/;}- (23)

Put this expression equal to —tan ¢ when &= (p5/$)2(»)!/2%. We see that if we
expand the argument in terms of £ and neglect terms of higher order than the
1st, Eq. (23) reduces to (22). This expansion will be considered later.

2 G, Wentzel, Zeits. f. Physik 38, 518 (1926); L. Brillouin, C. R. Juli, (1926); H. A.
Kramers, Zeits. f. Physik 39, 828 (1926).
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Using Eq. (23) we obtain
45 = 1 — i(tan e + sece tan o) .
1 4 i(tan e 4 sece tan o)

Hence
sinecoso + sino

)
— tan— = tane 4 secetano =
2 COS € COS @

Now tan e=p,/p; and if p, is very small compared to py, € is a very small
angle. If we neglect € altogether we obtain too small a value for —tan /2
since we decrease the numerator and increase the denominator of the fraction.
On the other hand, if we decrease the denominator by subtracting sin € sin o
and decrease the numerator only by a second order term in by multiplying
the last term by cos € we obtain

b sine cos ¢ + cosesin g
— tan — = ———— = tan (¢ + ¢).
2 COS € COS ¢ — Sin e sin o

Neglecting e altogether gives

— tan— = tano.
2

Hence, we can say

)
<T<-—-—2~<<7-I-e. (24)

All the above arguments hold for cos ¢ negative if we interchange the words
decrease and increase.
Now let us evaluate o.

. §
o = %<f(4v - 22)1/2 + 4y sin 1—26)_17;>

Expanding in powers of £/2(»)'/? gives

7T 2”{2(51/2 - %(2(V£)1/2>3+ o }

Putting £=(p./$)2(»)112 gives

¢ = 2%{1 - %(%)2-# E } (25)

If p; is so small compared to p that the square of p,/p may be neglected
we have
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Now sin e=p,/p. Hence € is small compared to ¢ in the same way that 1 is
small compared to ». Since we have already neglected terms of the order 1/»
we shall neglect € compared to . This gives

8= — 20 = — 4dvp,/p. (26)

Neglecting the € in expressions (18) and (19) we see that the wave func-
tions are the same for the incident and emergent beams except for (1) the
negative signs on ¢; and ¥; and in the exponent which make the currents be
in opposite directions and (2) the phase angle 6 in the cosines. Hence, if vy; is
the maximum of the incident beam and y, the maximum of the emergent
beam then

k 8
Yo yi= ——4.
P2
Putting in the value of from (26) gives
dvk 20\
Yo— yi = o = 20 2y @7
P T

We have neglected terms of the order 1/» hence this result may be in error
by a term of order A. Hence to within distances of the order of a de Broglie
wave-length the maximum of the emergent beam will be displaced just twice
the radius of the classical circle from the maximum of the incident beam.

CONSTRUCTION OF A WAVE PACKET

The functions we have been considering had a cosine dependence on y and
hence extending an infinite distance in both directions. However, by using
a Fourier integral over such solutions we can find functions which are negli-
gibly small except in the region: —Ay <y =<Ay. These will be of the form:

P2 — 24
240 121k Cos P2y dfs (28)
Jo W/e) + me k

Where P, is the maximum value of p,

With similar expressions for W;q, ¥y3, Wiy A4 is considered a function of
p2. Since each component here will give an emergent beam of the form (17)
we can write the functions for the total emergent beam

7 244(pa)p : pay )
Vo= | 2P aeir cos (222 1 5 )ap,. 29
' j; (W/¢) + mc ‘ o < k + o )i (29)

\Iji[ -

We have shown that for p. sufficiently small 6/, is independent of p..
Hence the incident beam is reproduced at a distance vy, —vy;= —k8/ps above
the point of incidence. This means that if we pass electrons through a slit
into a magnetic field they will come out at a distance 27 away, the uncertainty
being of the order of a de Broglie wave-length.
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The functions in the field will be of the form

D2
V= e“”“’“‘f e""”’qul(x +—n*>dn (30)
P2 2w
and similar expressions for ¥y, V3, ¥4, where the A's and ¢’s are connected by
the relations (10).

We can now dispense with the device of a field ending abruptly at x=0
since the functions (30) will represent a packet of the same form even though
the field extends beyond the slits at x =0 and hence the functions will have
the same form at this point. The use of such a discontinuous field is merely a
convenient way of studying the solutions at x =0.

We must now examine how small we can make Ay. We want P,/p to be
small compared to unity. At the same time we can conclude either from the
theory of Fourier integrals or from Heisenberg’s uncertainty relation that:

P,

Ay— = 1.
yk

Hence Ayp/k must be large compared to one or Ay is large compared to A.
Ay > i A
y>— =\
?

This is usually true since a slit 0.1 mm wide would be a very narrow one
while \ is of the order of 1A. Hence Ay/\ =105, This means also that the un-
certainties introduced by the approximations used will be small compared
to the uncertainties coming from a finite slit width. Hence, when applied to
the motion of an electron in a magnetic field quantum mechanics will give the
same results as classical for the value of the ratio e¢/m.

In conclusion, the author wishes to thank Dr. W. V. Houston, who di-
rected this research, for continued advice and encouragement during its
development.



