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ABSTRZCT

The ordinary theory of hfs split ting is incomplete for two reasons in the case of
heavy elements. (1) When the electron is close to the nucleus its velocity is high. Non-
relativistic approximations to Dirac's equation become meaningless. (2) The proba-
bility of the electron being sufficiently close to the nucleus to interact with it at all

may be appreciably different for different components of the same multiplet. General
relativistic formulas (12), (12") are derived for single electron spectra. Quantitative
estimates are made for the specific case of the Tl lowest p term. The nonrelativistic
approximations with the same r ' for p~~, and p3~: are found to give values of (Av) p~~2/

(Av) p3/g which are too small by a factor of about 3.4 = 2 0& 1.7. The factor 2 is attribut-
able to relativistic corrections, The estimated factor 1.7 is due to the higher energy
of the p3/g level which decreases the chance of the electron to be close enough to the
nucleus to interact with it. Comparison with the observations of John Wulff on Tl
I shows that even the corrected value of (~v)p&i2/(Av)p&&2 is too small by a factor of
2. A qualitatively similar disagreement exists for Bi I. The observed hfs of these ele-
ments is therefore not accounted for by the theory of a nuclear magnetic moment.

CCORDING to the recent theoretical analysis of Goudsmit' the hyper-
fine structure of Bi and Tl is in disagreement with simple theoretical

expectations. The outstanding final result is that the hfs splitting of a P3~2

single electron state is anomalously small in comparison with the hfs splitting
of a p&~2 state. There are two omissions in the simple theory used by Gouds-
mit: (i.) the electron is treated nonrelativisticaliy, and (2) the difi'erence in

energy of the two p states is neglected i.e. the spin orbit coupling giving rise
to doublet structure is supposed to be small. For heavy atoms both omissions
may be expected to be of importance. The approximations involved in the
nonrelativistic treatment amount to a neglect of higher powers of nZ where n
is the fine structure constant and Z is the atomic number. For Tl nZ = 81/137.3
and is not small. As a result the p~~~ state is somewhat similar to an s state
and is subject to a large splitting. The difference in energy of p3/2 and pI~2 is
also large being of the order of 0.9 volt. The necessity of considering these
e8ects has been pointed out in a recent letter to the Physical Review. ' In
the present note a quantitative estimate of their inHuence is made for the
case of Tl.

The splitting ratio (Av) p&~z/(Av) p3/Q as given by the simple nonrelativistic
theory is found to be too small. The relativistic corrections close to the nu-
cleus increase the ratio by a factor of 2. In addition there is a further increase
of the ratio by a factor of approximately 1..7. This is due to the higher energy

S. Goudsmit Phys. Rev. 3'7, 663 (1931).
2 Breit, Phys. Rev. 37, 1182 (1931).
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of p3/2 which makes it easier for the valence electron to escape from the inner
shell. The proper function is depressed by approximately (1.7)'" in the region
of its first four half waves. Both effects owe their origin to the same cause:
the large value of O.Z. The first effect is due to an essential difference in the
radial distribution of "current density" of the two p states at distances of
the order of 0.02 to .005 of a Bohr radius (0.528A). The second is due to differ-
ences in radial distribution on the periphery of the atom, which affects the
magnitude of electron currents close to the nucleus without affecting their
distribution.

The simple nonrelativistic theory gives therefore a too small value of
(Av)P//r/(Av)P3/Q by a factor of about 3.4. A deliberately wrong way of treat-
ing the proper function in the neighborhood of its last and most important
maximum gives about 4.4 for the same factor. This deliberately wrong calcu-
lation affects the nuclear g factor by a factor of about 5. It is believed there-
fore that the results are fairly independent of possible inexactness in the com-
putation of the proper functions as long as one is primarily interested in the
comparison of the p&/& and p3/Q splittings.

The experiments of Wulff' indicate that the disagreement with the non-
relativistic formulas is by a factor of about 7. On making a correction for the
effects discussed here there remains a discrepancy between theory and experi-
ment by a factot of 7/3. 4 = 2. The splitting of the pu2 level is twice as large in
comparison with that of p3/9 as it should be according to the theory of a fi.xed
magnetic moment of the nucleus. In order to account for Wulff's results it
seems necessary to consider other types of interaction. Of the two states the
P&~2 is the more penetrating. Qualitatively the anomaly is such as though at
close distances from the nucleus the interaction between the nucleus and the
electron became greater than it should be on the hypothesis of a nuclear
magnetic moment.

GENERAL RELATIUISTIC TREATMENT

We suppose for the present purpose that the nucleus is a rigid point charge
of electrostatic charge Ze and magnetic moment

gppI

where po ——ek/4sme is the Bohr magneton. The angular momentum is I in
units k/27r. The factor g is a pure number which may be called the Lande
g-factor for the nucleus. The magnetic moment I may be represented by a
matrix. The maximum proper value of a component of I is denoted byi. The
interaction energy of the electron with the nucleus is

+ —n gvor '[r X Ij. —
C

Here n = (n~, n~, nq) is the vector composed of the first three of Dirac's n's.

' John Wulff, Zeits, f. Physik 69, 70 I', 1931).
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The charge of the electron is taken to be (—e). The angular momentum of nu-
cleus and electron together is

where J is the angular momentum of the electron alone. In the usual notation
the maximum proper values of components of F and J' are written f, j. The
interaction energy (I) is of the form

with A involving only the electron variables. The first order perturbation in
the energy is

Here (AJ); is the value of any diagonal element in the matrix AJ in that part
of it which belongs to the quantum number j.We have

In order that (3) should hold it is sufficient that the commutation relations

IJ„A,] = 0, [J„,, A„] = iA, etc.

be satisfied. This is the case. The substitution of Land~"s cosine into the
classical precession formula made in (3) is therefore justified whenever the
hfs splitting is small in comparison with the multiplet structure.

Nonrelativistically

where l is the azimuthal quantum number. The relativistic value of (AJ);can
be obtained by direct calculation. It is much simpler however to avoid such
rather complicated calculations by determining only the form of (AJ); and
then fixing the factor by comparison with (5).

The separation of angles from the radial distance for Dirac's equation in a
central field has been made by Dirac and Darwin. We find it convenient to
use the radial functions denoted by Gordon as Pi, P&. In order to distinguish
them from the components of the wave-function 0' = (pi, p2, li 3, p4) we call
them pI, Q2. The y„ in terms of the QI, p~ may be written as

(Zplp3) Z41P4& 42r8& 42r4)
r

(6)

where p3=p& —v&, p4=p2 —r2, v3=pI+r&, r4=p2+v2 and p&, p2, TI, vg are
angular functions used by Weyl. The important thing for us is not the form of
the functions p, r but the fact that they enter '0 as shown in (6). The differ-
ential equations satisfied by P&, @2 may be mentioned at this point for future
reference. They are

Pauling and Goudsmit, McGraw Hill, 1930. p. 225. The present derivation of the rela-
tivistic result is an almost exact parallel of a short derivation of (5) given by the writer (Phys.
Rev. 37, 51 (1931).The A of the present text corresponds to gp0A of the just mentioned note.
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(7)

j' = —1, 1, —2, etc. for s, pi/9 p3/9 . . where A = Ii/mc is the Compton wave-
length, E is the energy and V is the potential energy.

In order to find (AJ); it is sufficient to find the diagonal matrix element of
A corresponding to the magnetic quantum number m =j. If this matrix ele-
ment be called (/, then (AJ)/=(j+1)/i. To find a we must integrate 4*
(n&y —n,x)4 over the whole configuration space. An inspection of (6) and
the matrices o.I, n2 shows that the summation over the spin variables brings
in a common factor Pig~/r'. The radius r is contained in this combination
only. Besides there is also a factor involving the polar. angles which gives rise
on integration to a number depending on I, j but not on a. Thus (AJ), is

C(I, j)J'",(f))(f)2r dr. The function C(I, j) may be determined by comparison
with (5). The radial properties of the proper function are contained in (5)
only in (r

—'). We look, therefore, for a connection between (r ') and f"o(f)i
@&r 'dr. This is given by the two Eqs. (7). We multiply the first by Qi, the
second by Q2 and add, thus eliminating V. The result we divide by r' on both
sides and obtain

, d(ki'+ A')
(4~//t)y)y, /r' = (1/Zr2) — — + (j'/r~) (y, ' —y, ').

dr

By partial integration

00 t'0

(4 /+) J (0 & / )d = (4 /A)'f (»&/"'i~ —(&'+»'),/(2'')
(8)

where ro is arbitrary. We now consider (8) for a light atom where the relativ-
istic corrections are not important. We may then choose such a value for the
so far arbitrary ro that the value of the first two terms on the right side of (8)
is small in comparison with the last. This may be done for anything but s
terms. For these the second term approaches a constant value also in the non-
relativistic case and the last term vanishes because j = —1 and p~ is small. In
the limit c~()() for anything but s terms the right hand side of (8) is therefore
(j'+1)(r—') with the normalization

Since C(l, j) does not involve n we may replace (r ') in (5) by

( ') I(4/A)/(/'+()i I (»»/")&'
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The combination which occurrs in (3) is

l(i + 1)(r ') —+ (4''/A) (PtPz/rz)re.
0

The replacement (10) has no meaning for s terms (l =j'+1 =0). Formula (5)
with the substitution (11) is correct however also in this case. '

Combining (3), (4), (11) we have

Ate = 47rj'gpsz[f(f + 1) —j(j + 1) —i(i + 1)] Q&P&r zdr/[Aj(j + 1)] (12)
0

with the radial function normalizing condition (9). For practical applications
it is convenient to express all lengths in terms of

an = h'/(4 'mme )s.

We then have on letting izsz/ass = R„n'/2 =2.909 cm '

(13)

l(l + 1) &II '
Ate = 2.909g [f(f + 1) —j(j + 1) —i(i + 1)]-

j(j +1) r
(12')

nonrelativistically. On the other hand if in formula (12) and the normalizing
condition (9) we use arr as the unit length the factor

4wgps'/A —+ E ag = 799gcm ' = 0.434(1840g) cm '.

NUMERICAL CALCULATIONS

(12")

To start with the central field of Thomas and Fermi' was used. On trying
it we find that it must be modified somewhat to bring about agreement with
the experimentally known energies. The field is changed so as to agree with
the term value of p&/& and it then is found by numerical trial to agree also with
the energy of p3/9 ~ We first explain the method of calculation for a given field.

The same units as those used by Fermi' are employed.

r = (h'/87r'me')x = arrx/2

—
&

= (hs/8~zme4)Z = Z/(4Z„).

The unit of length is 1/2 of the Bohr radius and the unit of energy is 4 times
the Rydberg constant. Here 8 is the term value energy. The total energy is

mc' —4R„g.

In these units in terms of the central field function denoted by Fermi as p
the Eqs. (7) become

~ This may be found by means of (8) remembering that nonrelativistically (r '(l+1) =
2rg'(0) where P is Schroedinger's function normalized so as to have fs"4zP(rlr'dr = 1.

' L, H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927); Fermi, Zeit. f. Physik 48,
73 (1928).

7 Fermi, Zeit. f. Physik 49, 550 (1928).
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d$1 j f3.———— = n[, —(I/~) I1y (z —1)c(7*)]42
dS s

j'42
(14)

+ - —— = (1/n) [1 —n'~+ (n'/*) [I+ (Z —I)C'(») I]dS x

where y=(16(Z —1)/%')'/2, Z is the atomic number and n=2&re'/hc. For
small values of the argument »(»(0.3)C may be approximated by

e(~z) = 1 —~x

In this region it is convenient to use the variable

in terms of which (14) becomes

(15')

+ = & + 4'&

(15)

where
&2 = nZ, b = (n/Z) [» + y(Z —1) ]

c+ b = 1/&&

(15")

Eqs. (15) are exactly of the form occurring in the problem of the Coulomb
field. ' The solution of (15) may be put into the following form

41 = b (&rl &12)) $2 = c (&/1 + 112)i

n n(n+ 1)
e1 = c&&&'&e *z'F(1 —22', 2p+1, 2z);F(n, p; 2) = 1+ x+ 2."+

1/P 2 &P(P+ 1)

e2 ——c&&&2&e *z&F( -I', 2p —+ 1, 2z);

(bc)1/2y p + (j 2 &22)1/

22 = —8 —p, A = (e/2) [(b/c)'" + (c/b)'"]
& = (e/2) [(b/c)"' —(c/b)'"1

co(') j'+ A p+ 8 n'

co&» a —
&

(16)

It is seen from (15")that b depends for its existence on the variation of the
function C' with distance i.e. on the rate of change of the effective charge for
the potential. It is this variation that gives rise to y(Z —1) in the expression
for b. The quantity g is negligible in comparison being of the order of 0.1
while y(Z —1) =200. Although b is not very small we obtain a rough approx-
imation by letting b = 0 in (15).Then we obtain simple solutions

8 W. Gordon, Zeits. f. Physik 48, 11 (1928);C. G. Darwin, Proc. Roy. Soc.A118, 654 (1928).
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4'~ = ~~~(2(~G')"')

4 = U' —p)~~.(2(«y)"") + («y)"'~~.+~(2(«3)"')
(16')

where the J„are Bessel functions of order nz.

These approximate solutions have been used' for a preliminary estimate
of the difference between p~~~ and p3/9 terms. Although (16') is a sort of an
approximation an examination of the numerical values makes it validity
somewhat questionable. In the present case

y=2.4334, a =0.58994, b =0.0175i, c = 1.6776
For Pa~q(j'= —2), p=1.911 and I'=0.946
For Pug(j' = +1), p =0.8074 and n' =2.050

The number n'+p corresponds to the total quantum number of an electron
moving in the Geld of charge Ze. In our case n'+p = 2.86. The proper function
of the valence electron near the nucleus is therefore such as though there were
no screening but as if the electron had an energy

(2.86)'

i.e. , roughly as if it were an unscreened M electron. Setting b =0 amounts to
letting n'+p= ~. For this reason b was taken into account in one case by
means of (16) and in another by a somewhat different but mathematically
equivalent expansion. The results were checked numerically by using the
expressions for dP&/dy, dP&/dy which follow from the differential equations
and then computing fdic&/dydy, fdic&/dydy by Simpson's rule. The integrals
fo"qh&~r 'dr have then been also computed by Simpson's rule. The integrand
became relatively small for values smaller than those corresponding to
yx &0.3 and of the order of yx =0.2.

Formulas (16) contain an arbitrary factor which may be determined only
by continuing the solution for larger r and determining the normalization. It
is not important to continue the solution aery exactly particularly where the
functions are relatively small. These regions give a negligible contribution to
the normalization integral and only a small one to the effective value of
r '. The method of Kramers-Wentzel-Brillouin' was used. Since in the pres-
ent instance we are concerned with solving two simultaneous differential
equations a slight modification of the method had to be made. Eqs. (14) are
of the form

dt's j'4~ diaz j'Q&= (b —s)ya, + '= (c + s)4'&.
dS s dS s

Eliminating Pq and making the substitution

4~ = (~+ s)"'x~

(17)

' H. A. Kramers, Zeits. f. Physik 39, 828 (1926); G. Wentzel, Zeits. f. Physik 38, 518,
(1926);L. Brillouin, C. R. July (1926).
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we obtain the differential equation satisfied by X2

d X2 +f'xi = 0
dx

j'(j' + 1) j'(dv/dx) (d'v/dx') 3(dv/dx)'
f' = (v —f)(c+ v) —,— ——+ (17')

x' x(c+ v) 2(c+ v) 4(c+ v)'

Here the first two terms are exactly as though we were dealing with Schroe-
dinger's nonrelativistic equation. The third and fourth represent the main
part of the interaction of the electron spin with the electric field of the
nucleus. The last term is an unimportant correction. We have then in the
region f') 0

s = I( + )OI'" - I Jfd +'- *~.I (17")

a constant multiplier to be determined from normalization being understood.
The approximate solution (17") applies in the region f') 0. It has been

used from somewhat beyond the first maximum of Q2. It was joined to the
power series (16) at the maximum of Lf/(c+ )v]' )2For the calculation of

fo '$)$2r 'dr however the power series was used. The electron states in ques-
tion are p states with total quantum number 6. Therefore Q2 has 5 maxima
and minima between r =0 and ))v. Solution (17") applies reasonably well be-
tween the first and the last maximum. From there to r = ~ it was joined to
an exponential function by the device due to Kramers" which in our case
consists in making

(18')

join to the function

(18")

Here f=0 at r=r2
The value of ffdx from the first to the last maximum was made (4+ 1/4)x in
agreement with Kramers' half quantum number quantization rule. Neither
(18') nor (18") represent the transition region around f=0 satisfactorily.
The well-known conHuent hypergeometric function solution was used here.
The constant factor by which it should be multiplied was determined by mak-
ing it join and coincide with (18")for large x.

Instead of using (18'), (l8") another deliberately rougher method was
also tried. The phase integral was made to have the value 9'/2, the limits of
integration being from the first maximum to the point f= 0. The function Q2

then vanished at this point and was broken off from there on. This amounts
to treating the electron classically at large distances. The ratio of the nor-

"See also Zwaan Utrecht Dissertation, 1929.
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malization integrals was found to be roughly the same as in the more exact
calculation but their values were quite different. The comparison of the two
methods indicates that an absolute calculation of the g factor is more dificult
than a test of its constancy.

A serious limitation on the accuracy of these calculations is the lack of
knowledge of the central field. The potential function C(yx) is multiplied
throughout by Z —1 = 80 which makes an accurate knowledge of C important.
Fermi's table for C was tried first. The phase integral for pl/2 was found to be)9or/2. The field was then changed so as to have it purely Coulomb and due
to a single charge e from a certain point on. The amount (Z —1)C at this point
was subtracted from the potential for smaller values of x. Recomputing the
phase integral for a few such trial fields a field giving the desired value of the
phase integral was found. The phase integral for p3/2 was then computed and
was found to give the same result. This indicates that the field used was not
very bad for the present purpose. A summary of the main results of the cal-
culation follows.

y =4.4

y=2.4334, )=fax. From )=12 field is purely Coulomb

Pl/2
Experimental g =0.11223
First maximum of f'~'(c+v)'~'Po

at

P3/2
=0.09448

5.2

f

�r=2
fdx = 0.707

y=4. 4

Roots P =0.30, 0.9, 2.1, 4.8

f

�r=2
fdx = 0.431

y=6. 2

$ =0.35, 0.98, 2.2, 5.3

A(j' +
4x

A(j' +
4m

A(j +

$22dg = 31.3
0

$0 = 0.2

fp

ftl&2r 2dr = 28. 8aII '
1) o

J y,y, r odr = 0.7arI-o-
1) Jt

f &gator 'dr = 29.5an '
1) o

53.2

0.3

8.3a~ '

0.7' '

9.0a~ '.

Using Wulff's observed value of (Av)p~~o ——0.727 cm ' and i =1/2, 1840

g —2.9. From the splitting of p3/2 however 1840 g —1.4.
Calculations with the phase integral adjusted to be 9or/2 gave a ratio of

4 /Aor(J'+1)fo payor odr for p&~o to po~o of about 4.4. The only difference from
the preceding solution is in the normalization factors which in this case give
rise to a factor of roughly 2. The qualitative reason for this factor (1.7 by the
more accurate calculation) if that the electron has a higher energy in the po~o
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state so that it escapes vigorously from the inner shells of the atom. The
relativistic corrections consisting in the use of fo"P~&2r 'dr are seen also to
lead to a correction by about a factor of 2. This may be also verified analyti-
cally by the more easily handled solutions in terms of Bessell functions (16')
and leads to approximately the same result. It is felt that the above considera-
tions are sufficiently independent of the special assumptions made about the
nature of the central field. It is quite possible that the ratio of the values of
4s/A(j'+1)fo"Q, Pg 'd-r for the two P terms is somewhere between 3 and 4

but it appears impossible that it should be as large as 7. For Bi I, according to
Goudsmit' we would have to account for a factor of more than 10. On apply-
ing the corrections worked out here there remains a discrepancy by a factor
of roughly 3. In both cases (Dv) p&~~/(Av)P&~& is anomalously great. This sug-
gests that at close distances the nucleus binds the electron to the nuclear spin
axis more tightly than the magnetic doublet model would lead one to suppose.

The writer is very grateful to Dr. F. W. Doermann for his help with some
of the numerical calculations.


