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ABSTRACT

The probability that a low velocity collision be inelastic is shown to depend in a
relatively simple manner upon three factors: the magnitude of the change in total
internal energy, AE; the matrix element, with respect to the initial and final states, of
the interaction energy at the closest distance of approach, 8'», and the "time of colli-
sion, " 7., a function of the relative velocity and of the sharpness of the collision, An
approximation to this probability is
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where P =2~rAE/h and ~&, e2, e3 are nearly unity, their precise values depending upon
the characteristics of the particular collision.

I. INTRODUCTION

HE Born method of treating a system involving a perturbation dependent
on the time has frequently been applied with success in the study of

high velocity collisions. Similar success has not been met in low velocity colli-
sions. This failure is due in part to the reluctance of modern theoretical physi-
cists to work with classical methods even when their use is justifiable. This
is illustrated by the problem of the transfer of energy between atoms. If the
atoms are replaced by sets of linear oscillators, as in the dispersion theory, the
classical equations give results qualitatively better than the approximate
quantum mechanical treatment of Kallman and London, ' and, in the most
interesting cases, identical with the more exact quantum mechanical results
of Rice.' Again, the author' has shown how to calculate the transfer of vibra-
tional energy between molecules. His wave equations were so complex that in
order to obtain numerical results crude approximations had to be made. With
the introduction of classical concepts these approximations are unnecessary.

The major difficulty in a precise quantum mechanical treatment, as given
by Rice and the author, occurs in operations involving the relative coordi-
nates of the centers of gravity of the two colliding systems. But the centers
of gravity may be described approximately by classical equations. In this
paper it is shown how a large class of low velocity inelastic collisions may be
readily treated starting from that wave equation of the internal coordinates
in which the relative coordinates occur as parameters and depend upon time
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in a manner determined by Newtonian equations. In these Newtonian equa-
tions the potential is taken to be the exact interaction potential averaged over
all the internal coordinates.

II. GENERAL THEORY

Let IIO be the unperturbed Hamiltonian of the internal coordinates of the
two systems, P„and P.„ the corresponding eigenfunctions and eigenwerte.
The subscript refers to the total aggregate of internal quantum numbers. The
mutual interaction U is appreciably different from zero only during a finite
interval of time. Hence the transition probability, obtained by the variation
of constants method, approaches a constant value at infinite time. This limit-
ing value, representing the probability of a transition during a collision in
which n'~n" is
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Here V "(X)=ff„"*V/„dv, and AZ= ~E„—Z„~. Let Z be the constant
total energy of the system. Then the relative coordinates X are to be ob-
tained as functions of time by solving the classical equation of motion whose
potential energy and total energy are ( V„"'+V„""")/2and 8—(8„+2„")/2
respectively. The arbitrariness of this determination of the relative coordin-
ates increases with the differences

~

V„"'—V„""
~

and ~E„P-„"~, so tha—t
this method becomes inapplicable when these differences are large.

Let the origin of time be chosen at the moment of closest approach, so
V "(t) has the maximum value W~2 ——V "(0). With each inelastic collision
we may associate a time of collision defined as that time interval 7 whose
product with lV» is equal to the integrated value of V "(/), i.e.
8"&2r f"„=U "(t)dt. We may then write
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We see that 5 has the maximum value of unity when AB =0, and that it de-
creases rapidly as 2~AEr/h becomes large. Before examining in detail the de-
pendence of 5 upon AE, it will be interesting to review the classical concepts
of energy interchange.

We consider the energy interchange between two linear oscillators A, B,
with angular frequencies wl, w2. Let only 8 be initially oscillating, and let
the coupling be suddenly introduced. A will start oscillating with a phase lag
with respect to B. If wi = w2, this phase difference will remain constant until
all the energy of 8 has been given to A. The situation is then reversed, B
will start oscillating with a phase lag, and gradually regain its initial energy.
However, if m&@w2, the phase diAerences will be continually changing. 8 will
start lagging in phase before all its energy has been lost, and hence A will
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never acquire all the energy of B. The maximum energy of A will decrease
with increasing ~w~

—w& ~. This maximum energy will also depend upon the
strength of the coupling. Hence if this coupling changes from zero to a maxi-
mum and then to zero so gradually that its change during the time interval
1/ ~w~

—w2
~

vanishes, the total energy transferred to A approaches zero. Thus
increasing ~w&

—w&
~

has the double effect of reducing the maximum energy
of A and of reducing the ratio of the final energy of A to this maximum en-
ergy. To obtain a quantitative idea of these effects in actual collisions, we
shall consider 8 to move past 2 with a constant velocity v and a closest dis-
tance of approach p. The coordinates of the oscillators A, B namely (, g are
taken to be normal to the plane of p and v. Then the interaction energy
e'$g(p'+v'P) "- gives rise to a transfer of energy from 8 to A of magnitude'
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provided we may consider 8 as undisturbed by A. Here P = (&/s) ~wx
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is the amplitude of g, and rrl, is the mass associated with (. If we now translate
these classical results into quantum language by defining I' = 2sAW/kw& as
the probability that A become excited, and W» ——e'$', p, /P' where f'0 is the
matrix element of $ over the normal and first excited states we obtain

2m W'gg
P — r(1+ P'")e e

h

where now r=P/v, P=r ~w~
—w,

~

=27rrAZ/h Here .we have used the quan-
tum result that 4vrm(go')'wq/k=1. It is interesting to note that a formula
identical to this is obtained from the quantum mechanics, as we should ex-

pect from the dispersion theory.
As a function of r, I' has the maximum value (2W~s/AZ)' when

r=r, =—k(2TAZ) '. In the classical picture, when r =ra the oscillators are
effectively separated just before A begins to return energy to B. As 7 be-
comes much smaller than 7.p, the systems do not remain in coritact long
enough for much energy to be transferred. When v))7p, energy Auctuates
many times between A and 8, the maximum energy of A gradually decreas-
ing as the systems are separated.

I II. APPLIcATIQNs

Inelastic low velocity collisions in actual experiments are too complex to
solve in a straightforward manner by quantum mechanics. We must replace
these collisions by simpler collisions in which irrelevant elements are omitted.
But in deciding which elements are important we must use our physical intui-
tion which is based on classical mechanics. In the previous section we found
that the classical mechanics, supplemented by the quantum conditions of dis-

persion theory, gives results identical to the quantum mechanics in the simple
collision of two linear oscillators. Moreover, we were able to interpret the

4 This may be obtained by a method analogous to that of N. Bohr, Phil. Mag. 25, 10 (1913).
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results in terms of elementary concepts. Hence if we are able to express the
probability of an inelastic collision in a form similar to that for two linear
oscillators, say as

2m 8'gg
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h
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we shall be able to form a physical picture of the collision, and thus see why
only certain factors are important.

The efficiency of an inelastic collision is usually expressed by an effective
cross section, o,q. Let rE be the closest distance of approach in a head-on col-
lision whose relative kinetic energy is E. Then if o.,g) zrI:, , an approximation
may be obtained by the method of Rice.' That closest distance of approach po
is found for which the transition probability is appreciable, say —,. Then
o,g=zpo . This is justified since the transition probability diminishes rapidly
when the closest distance of approach becomes larger than po. If o.,q«mpo',
an upper limit may readily be found by calculating the transition probability
P for a head-on collision. Then O,,q=XPvrrl. "'-', ) & i. The precise value of 1 va-
ries with different collisions, ranging from 0.1 to O.S for those collisions which
have been examined.

When the effective cross section O,g is larger than ~r~', we need consider
only those collisions whose closest distance of approach p is so large that the
centers of gravity of the two systems may be taken to move in straight lines.
If P is so large that the interaction between two atoms is essentially that of
dipoles, the probability of an energy transfer between an excited and normal
atom is found from (1) to be approximately
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Here W» ——e (2p' (x, -&iyl) " (x;.+iy, ) ", 7 = p/v, and AE as usual refers to
the magnitude of the change in the total internal energy. E'he formula of
Kallmap and London' is essentially obtained as the special case when v is
so adjusted that P =1, Hence their O.,q decreases too slowly with increasing
AB. When AE is small in comparison to the relative kinetic energy of transla-
tion, and when p)1, (2) is identical to the formula of Rice. Rice'sformula
is less general than (2), not being defined for 0 (P (1.Substitution of numeri-
cal values shows that at room temperature unless AX&0.01 volt, P is very
small when P~ 5 X10 ' cm. Hence the assumptions leading to (2) are rarely
justified.

Since for nearly all inelastic collision, o.,q«7f-r~, in most cases it will be
sufficient to find P only for head-on collisions, and then set O,g & P7rrg'.



LOB' UELOCITY INELASTIC COLLISIONS 281

In a head-on collision the only relative coordinate is r, the distance be-
tween the centers of gravity of the two systems. The interaction integrals
V "depend upon r approximately as

where r& is the closest distance of approach when the relative kinetic energy
is E. The approximate dependence of r upon time is found by solving the
classical equation of motion in which the potential is Ee (" "~&.' This solu-
tion is r —re=(1(n) logI (1+ cosh nvt) j2I. The velocity v is defined by
—,'-mv' =L~', nz being the reduced mass of the system. Substitution into (1) gives

~12 'o 2e2'tritd E/h 2

I' = ——dt
h 1 + cosh nvt

Integration gives, defining r =4 (nv)
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Eqs. (4) may be applied to that large group of collisions in which the
interaction energy may be written as (3). We see that the important factors
of a low velocity inelastic collision are the relative velocity, the sharpness of
the interaction potential, which together determine r, the energy resonance
DE, and the maximum value of the matrix element of the interaction energy,
8'~2. The precise form of the interaction potential is thus not very impor-
tant. Kith a knowledge of these three quantities we may at once obtain the
magnitude of 0',q.

As a numerical exaniple, Iet I be the probability that in a head-on col-
lision at room temperature an excited diatomic molecule in its first vibra-
tional state transfer its energy of excitation to a normal diatomic molecule.
I%ere typical values are 8'» —0.0005 volts, ~ =2 &10—"secs, and AL+ =0.02
volts, which on substitution in Eq. (4) leads to P = 6 and P = 2 && 10 '.

For a justification of this potential, see ref. 3, also London, Zeits. f. physik. Chem. B. ll,
237 (1930),and Kirkwood, Phys. Rev. 3/, 835 (1931).


