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ABsTRAcT

An attempt is made to systematize the general calculation of the interaction
energy of a pair of atoms each of which has one or two equivalent s-electrons outside of
closed shells. General expressions for this energy are set up in terms of certain integrals
and these integrals are evaluated for wave functions of Slater's type in terms of func-
tions which are either tabulated or derivable from those in the accompanying tables.
The method is applied to the calculation of some of the constants of a normal Nan
molecule (which show fair agreement with the experimental values) and the repulsion
energy of two normal helium atoms,

I. IxrRoDUcTroN

'HE interaction between two hydrogen atoms insofar as it is obtainable
from a erst-order calculation of the perturbation energy was determined

by Heitler and London in their paper' which opened the way to molecular cal-
culations. The investigation of the interaction between two atoms other than
hydrogen is considerably more complicated due to the greater number of
electrons and the increased number and complexity of the wave functions. In
this paper an effort is made to systematize such calculations for the case of
two atoms each of which has one or two equivalent s-electrons in its outer-
most shell. While the calculations are long in some cases they are not particu-
larly difficult; and. to judge from the examples worked out, the results are
fairly good.

II. THEORY

The theory for the type of interaction considered in this paper was erst
set forth by Heitler and London. However, it may be of some interest to de-
veiop it again at this time using the method of J. C. Slater in his paper on
"Theory of Complex Spectra. "'

1. Assumptions.

In the 6rst place it is assumed that the functions of the atoms can be re-
presented by products (or sums ot products) of wave functions of the indivi-
dual electrons, each such function being formed of one factor depending on
the space quantum numbers and the electron coordinates and one factor on
the spin quantum number and the spin coordinate, the latter being the com-
ponent of the spin vector along the line joining the nuclei of the two atoms

' Heitler and London, Zeits. f. Physik 44, 455 ('1927&
' Slater, Phys. Rev. 34, 1293 (1929).



involved. In accordance with the Pauli principle the complete wave function
for each atom is taken as a determinant the elements of which are the indi-
vidual wave functions with all possible permutations of electron coordinates.
This wave function is assumed to satisfy the wave equation for the given atom.
Similarly the wave function for the system of two atoms is taken as a deter-
minant involving the individual wave functions of both atoms (zero'th order
approximation). The electron spin serves only to determine the symmetry
but does not affect the energy in this approximation. Questions of nuclear
symmetry or spin are not considered here.

Another assumption made is that closed shells contribute nothing to the
interaction. Strictly speaking, closed shells cause a repulsion through the in-
teraction of each with the outer electrons of the other atoms and —a much
smaller force—through their interaction with each other. The repulsive effect
becomes rapidly smaller the deeper the shells in question are located within
the atoms. For ordinary molecular distances this repulsion is small compared
to the forces between the outer electrons.

The attraction between the atoms due to their mutual polarization (Van
der Waals force) is not treated in this paper. It is known' that this polariza-
tion force varies practically as 1/R' (R the distance between centers of atoms)
whereas the "exchange" force considered here varies exponentially. Conse-
quently for large distances the polarization force predominates and causes
an attraction. For small distances it becomes relatively unimportant. For
this reason it can be left out in calculations involving atoms in an "attrac-
tive" state where the equilibrium distance is small. In this case there is more-
over a cancellation between the polarization force and the repulsion due to
inner shells which may cause calculated results to be fairly accurate for the
heavier atoms. But for "repulsive" states the distance between atoms is
larger and the Van der Waals force must be taken into account; in fact there
could be no equilibrium without it. If wanted it can be obtained by a separate
calculation and added to the results obtained by the calculation treated here.

Finally, it is assumed that closed shells completely shield the nucleus in-
sofar as effects on another atom are concerned. That is, the effective charge
(which is to be understood hereafter whenever charge is mentioned) is the
nuclear charge less the charge of all the electrons in closed shells. For the
usual molecular distances this is certainly valid. In cases where the atoms are
exceptionally close together, the effective charge may have to be corrected
for incomplete shielding; but the formal results obtained below remain un-
changed.

2. Notation.

We consider two atoms A and 8 with nuclei a and b and effective nuclear
charges Z„and Zq. The two possible orientations of each electron spin vector
will be denoted by n and P (corresponding to m, =+I/2, m, = —I/O). The
coordinates of the various electrons will be speci6. ed by numbers. The indi-
vidual space wave-functions will be designated by N(a) and N(b); if the spin

' Eisenschitz and London, Zeits. f. Physik 60, 491 (1930).
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and the electron are to be distinguished, by u(ac41) for example. Combined
wave functions will be indicated by u with subscripts. The internuclear dis-
tance will be denoted by R, other distances by r with appropriate subscripts.
In integrations the element of volume in the total coordinate space will be
denoted by dv. and that in the coordinate space of a single electron by dv

(with a subscript if necessary). Then

Furthermore, let

d7 = dv1dv2 '

I = Jf u(a)u(b)do,

[u(b)] '
K4(a) = — do, etc. ,

ra

t' [u(ai)] 'lu(b2) 1'
I; dr

r12

u(a)u(b)J,(a) = — ds, etc. ,
ra

u(a1) u(b1) u', a2) u(b2)
dr

r12

[u(a1) ] 'u(a2) u, (b2)
J4(a) = d7, etc.

r12
(6)

Other symbols or quantities will be de6ned as needed.

3. Development.

It is convenient to break up the general problem into three cases that may
arise depending on the number of electrons involved (outside of closed shells).

(a) One electron on each atom. The spin vectors of the two electrons may
be either parallel or anti-parallel. In the 6rst case the resultant vector S will
be of one unit magnitude and hence will give three possible spin components,
M, = 1, 0, —1, according to its orientation, resulting in a triplet term ( 2).
In the second case S=O and hence M, =O, giving a singlet term ('Z). Hence
wave functions for 3II, =Em, =+ 1 correspond to the triplet. But those for
Zm, =0 may belong to either the triplet or singlet. The possible wave func-
tions are

Wave Function

u4 ——u(aai) u(bn2) —u(a442)u(bui)

u2 = u(a44. 1)u(bP2) —u(aa2)u(bP1)

u4 = u(api)u(bn2) —u(ap2)u(bc41)

u4 ——u(aP1) u(bP2) —u(aP2)u(bP1)

rn, (a) 4n, (b)

1
2

Multiplicity

1013
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We can now set up the secular equation to determine the energy levels.
In doing this, we note first that as Slater showed, ' the energy operator will
have no components (to the degree of approximation considered here) be-
tween states of different Zm, . Secondly we see that u2 and u3 are not ortho-
gonal to each other. The secular equation becomes

8' —IIll

II22 ~ ~23 +28

~'~32 —&32 ~' —&~3
= 0

where

1/2

II;; = u;8u;dr I 2dr u 2d7.

l/2

)., = j...,~, (j.. ~,j., ~,

The Hamiltonian operator H is given by

h ZgZb Zg, Z~ Zb Zb 1
(V'P + V2') + (" + ~

87i" 8$ R f l fa2 fbi fb2 f12

In this expression each nuclear charge is to be considered as a function of
the electron coordinates in the sense that it has two values: one for the case
where the electron in question is in the same atom (when the shielding by the
inner electrons is incomplete), the second when the electron is in the other
atom (when the shielding by the inner electrons is practically complete).

Now the individual wave functions satisfy equations involving the atomic
Hamiltonians. For example

H„u(al) = Ep,e(al),

where

h' Z~e
II = — V'l2 ——al

Sm'm fal

Using the fact that individual wave functions with opposite spins are or-
thogonal, one gets by a simple calculation

Z

crab

&ll = II44 = ~o + ~ob + e'
R

E; —[Z.)'( ( ) + ZONK ())] —[J, —1(Z J ( ) + Zd (5))]I+—
1 —I'

ZgZb
sr =sr =a. +„z„+„. ' +)'(, —[z.)(,()+z,)(,())]I

R
(10)
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Z~Z Q

IIpp IIpp I Ep + Epp + e'
' —e '[J-p —I(Z.Ji(a) + Z pIi(b)) j (11)
R

~23 = ~32 = —~'

The roots of the secular equation are given by

~ 1 Hllp

p'2 = H44 = Hgg,

and by the roots of

(13)

(14)

which are

5 —H22

+'~32 —H32

&~23 —H~3

W' —H»
=0)

and

Hg9 + H23
8'3 = H]] p&+ ~23

H22 —H23 ~(Z b——= ~o. + ~o~ + t."
1 —823 R

(16)
e, —Iz)((,) + z)'( p ) ) + x, —s (iz ( ) + &e (() )

)+ 1+ I2

The energy given by the roots W&= S'2= lV3 is that of the triplet, the
three levels having the same energy because the spin is not present in the
Hamiltonian. The root S'4 gives the energy of the singlet.

If one determines the wave functions corresponding to W3 and W~ one
finds by the usual theory that they are given (to within an arbitrary factor)
by

Q2 = 02+03~
N3 = S2 —03~

(17)

(18)

where u2 is the wave function belonging to the triplet and u3 to the singlet.
Heitler and London' pointed out that the functions of the triplet were all

antisymmetric in the two nuclei and hence would have a node in the region
between the nuclei, whereas the singlet function was symmetrical and would
not, and hence concluded that the singlet would have a lower energy than the
triplet. This means that

I, —I(ZJ,(a) + Z pIi(b)) ('0

and this has been verified in a number of calculations for typical cases in-
volving neutral atoms, i.e. those for which
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It is found in general that for neutral atoms the triplet energy rises mono-
tonically as the atoms approach each other and hence there is repulsion be-
tween them. The singlet energy, it turns out, has a minimum for some par-
ticular distance between the atoms, and thus a pair of atoms with electron
spins anti-parallel mill attract each other until they arrive to within this dis-
tance.

(b) One atom with one electron, the other with two For .this case the only ener-
gy level is a doublet because of the two possible spin orientations of the single
electron; since in the two-electron atom the spins must be opposite because
the space wave functions are the same. Hence there are only two functions
possible. If A is the atom with one electron these functions are

and

u(a+1) u(ad22) u(ad23)

u(bdp1) u(bu2) u(b(23)

u(baal) u(bP2) u(bP3)

(20)

u(aP1) u(aP2)

u(b(21) u(bn2)

u(bP1) u(bP2)

u(aP3)

Q (b613)

u (bP3)

The energy is given by

p = IyIIN yd7- Iy d7 = Q2Q Qgdg Q2 d7 (22)

where

h Zygo i i ia = —, gV ye2 ——Z g ——P —+ g — (23)
Q 2 i=1 R ~ai i=1 ~bi i& j 1 rij

Making use of the facts that matrix components of II between functions
with opposite spins are zero, and that the integrals are independent of the
electron labels, it follows readily that

J[",P",d = 3(( J ( 3) (32) (H)P ( 3) (32) (33)d

I a2 I b i I b3 Bn ui u b2 dM b3 dv.

J(,'d. = 3.I J r C 3) CH) C»)] d'
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By means of the relation

Hu(a1)u(b2)u(b3)

ZaZ b

~oa+ ~oh+ &

one obtains

Zg Ztt Zb I
+ + u(al) u(b2) u(b3)

2 F 3 ~bl ~12 ~13-,

ZcZb8' = ~O. + &ob + &2

21( —&.Ã ( )(2 —I') Z )( (b) (J +1(J (» &Z ( ) &2 (&))))
i —I2

(25)

The energy is given by

Because of the fact that the two atoms can behave in only one way, that
is, because there is nothing in the atom 8 to distinguish the two possible spin
orientations of the electron in atom A, the force between the atoms must be
repulsive. ' Another way of putting it is that an atom with a closed shell will
exert a repulsion on any other whatever the state of the latter may be.

(c) Each atom witk tu)o electrons For th. is case there is only one possible
wave function corresponding to a singlet PZ) state

u(an1) u(an2) u(an3) u(an4)

u(aP1) u(aP2) u(aP3) u(aP4)

u(bn1) u(ba2) (ubn3) u(bn4)

u(bP1) u(bP2) u(bP3) u(bP4)

8' = uHud7 u2dv

where H has a form similar to (23).
Expanding gives

H d = 4!I f ( 1) ( 2) (») (N)H (~1) ( 2) (») (»)d

—2
JI u(a3)u(a2)u(b1)u(b4)Pu(a1)u(a2)u(b3)u(b4)dr

+ I «( &) ( 4) (») (»)& (!) ( 2) (») (»)& )

f u2d7. =4I uaiua2ub3ub4 2dr

—2 uaiubiua3ub3 ua2ub4 2'

+ u ai u bi u a2 u b2 u a3 u b3 u a4 u b4 dv
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Proceeding as before one gets

i4' = Eo, y Eoy+ 8'{Z Zt/R+ (E2(4 —2I') —2(1 —I')(Z Ey(a) +Z/Eg(b))

+ 2I [(& —I') (Z.J~(s) +Z&i(b)) —(J3(s) + J3(b)) —J2(2 —4I') ])/(& —I')' j
(26)

This can be written also in the form

ZgZ g
tIt/" = Ep, + Epg+ e'

E2 [(Z~/—2)Eg(a)+ (Zp/2)ICg(b) ] J, I—[Z./—2)J,(a) + ( Z~ /2) J,(b) ]+4
1 —I'

I'E2+ J.—I [JH(a) + J,(b)]+ (27)
(g I2) 2

The term in braces is analogous to the perturbation energy obtained for
the case of two one-electron atoms. For two neutral atoms (Z, =Zq=2) it is
in fact 4 times this corresponding energy. The last term is a correction term
of the same order of magnitude as the preceding.

The force between the atoms in this case is repulsive just as in the previous
case.

III. INTEGRALS

We now come to the question of determining the numerical values of the
expressions set up in the preceding section. For this purpose it is necessary
first of all to choose atomic wave functions which are simple enough in form
so as not to complicate the calculations excessively and yet have suRjcient
accuracy for the purpose. In general the accuracy required in molecular prob-
lems is less than that for atomic problems because the theory itself is less
accurate.

The best form of wave function for the present purpose is that given by
Slater, ' of the form r" 'e " ""0'" where up=0. 529A, n is the eRective quan-
tum number and s is a shielding constant, both of the latter being assigned
by rules proposed by him. In the case of a stable molecule, i.e. for a pair of
atoms in an attractive state, these wave functions are to be used as given by
Slater with one exception, namely that n is to have only integral values. In
those cases for which Slater's n is not an integer there are two ways of pro-
ceeding. Either one can calculate the quantities for the two nearest values of
n and interpolate or—and this is the better procedure one can approximate
the wave function in the important region, i.e. where there is most overlapp-
ing, by using the nearest integral value of n and then readjusting the shielding
constant to get a good fit.

In the case of "repulsive" states, Slater's rules for setting up wave func-
tions are not accurate for the larger distances involved. One can either use
the real quantum number for n and take for s one less than the total number
of electrons in the atom; or one can determine the wave function by some

4 Slater, Phys. Rev. 36, 57 (1930).
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other method, for example that of Hartree, and having determined, fit to it
a wave function of the form given above by choosing suitable values of n and
s. This will be made clearer in an example to follow.

In any case one can write the wave function in the form r" 'e "" where o.

is a known constant. In the molecular problem the wave function is then nor-
malized. For the repulsion problem this is not advisable, it being better to
adjust the multiplying constant to get the best approximation to the true
wave function in the important region. In the latter case one can then assume
that enough of the electron charge (either positive or negative) is concen-
trated at the center of the atom to make up one electron. In what follows the
multiplying factor will be denoted by X if the wave function is normalized,
otherwise by C.

For the problem on hand we consider two wave functions, one for each
atom

From the condition

N(g) —+ rm —le—ar

pp(b) = Epr" 'e e'. -— (28)

it follows that

[I(e) ]pde 4~+ 2 rpme 2ardr—
0

(& )' ")"'
4pr(2m)!

(29)

and an analogous expression holds for Xq.
The integrals defined in the previous section can be calculated by a few

simple devices, such as the use of elliptic coordinates, the fact that the poten-
tial of a spherical shell is constant inside the shell and outside is the same as if
concentrated at the center, and the Neumann expansion of 1/r, p in terms of
Legendre functions. ' The integrals can be separated into two groups accord-
ing as to whether a=P or a/P.

In evaluating the integrals use is made of certain functions given by Guil-
lemin and Zener, ' which are most conveniently defined as follows

00 g
—a n Ov

A„(a) = A„(1,a) =
I

x"e—'dx =
1 An+1 0 P

ao pp)ea n ( a)v
A„(—l, a) =

I x"e *dx =—
1 „0 P!rp+ 1

1

8„(a) = x"e—*dx = A (—1, a) —A„(1, a)
-I

(30)

(31)

(32)

p)o '+1
Ji„(a) = x"e—*Qp(x)dx = -', x"e * ln —dx

1 1 g —1

= —', [(ln2a+C)A (1,a) —Ep( —2a)A (—1,a)] —0(n, a) (33)
' Sugiura, Zeits. f. Physik 45, 484 (1927).

Zener and Guillernin, Phys. Rev. 34, 999 (1929).Their notation has been changed slightly.
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where

and

C = 0.577216 (Euler's constant)

0(n, n) = gg n~ v— (34)

[1 + ( 1)nr].—
C n+1 Qn+ pQ n+

2
0&v& e (35)

(n —v+ 1)!
C n P

the coefficients C,n being defined by the relations

In addition to these we define the coefficients p, ' and g, ' by means of the
identities

7

Z(x) = gp'x'
i=0

(36)

Q(x) =Q Zp '+ Z~'x' (37)
i=0 i=0

where P, (x) and Q, (x) are Legendre functions of the first and second kind

respectively of order r (Qo(x) = 1/2 in (x+ 1) /(x —1)).
These coefficients satisfy recursion formulae which follow from the rela-

tions between Legendre functions

2' 1 — ' —1
p. ' = Pr—1 p, „(0& j & r, r & 1) (38)

(r &1)

and

p0 pl

27 1 j—] T 1 j
g q, „(0& j & ~, r & 1)

r 7
(39)

& V~-&) (r»)

g
0 P q

1 1 ~

The coefficients D
"

are defined by the identity

m+n

(x+ y)m(x —y)" = QD x y&
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so that

(40)

They satisfy the following relations

D„
mn

Dp

m—1,n m —l, n m, n—1 m, n—1+ D~-1 = Du —Du-1

(—1)"D~, D-+--. = ( —1)"D, ,

(0 ( p & m+ n) (41)

D2k+1

D„

mn
Do

Finally we require several more quantities, as follows

1

R," = x"P,(x)dx,
—1

(42)

Q n(n)

= 0

2m+1m f f

~ if rI, —7. ~ 0 crId even,

!(e+r+ 1)!
2

if m —v ( 0 or odd,

(a 1

x"e *P,(x)dx, —

(43)

Z p.'&-+'(n),
i=0

m ~v

A„(n) = Q —A„+„(n)
v=o

(44)

P m(n)
m &v

Z —P.+.(n)
v=O 1

In Tables I-VII' are given some of the values of

A„(1, n), A (—1, n), C„", R, ', p, ', q, ', and D„

By means of the de6ning equations and recursion formulae the tables can be
extended if necessary. Although it would be convenient to have tables of the

' Tables I and II were prepared by Dr. S. Ikehara to whom I am indebted, Bartlett (Phys.
Rev. 37, 507 (1931))has given a smaller table of A, (1, n). Part of Table III is given in refer-
ence (6).
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0

0 0
1 1
2 1
3
4 1
5 1
0 1
1 1
2 1
3
4
5 1

2 0
1

2 1
3 1
4 1
5 1,

3 0
1

2 1
3 1
4
5 1

4 0

2 1
3 1
4 1
5

5 0 1
1 1
2
3
4 1
5 1

—1
0
2
4
5

—2—2
0
3
6

—2

—3
0
4

10
0—5—6—4
0

3 0
3 —3
0 —6

—3 —1
2

3 3
6 0
6 —6
5 1—5 —4—5 1
0 6
6 6

10 0

—1
3
2—4—10

1—2 —1—4 1
0 5

other functions available, it did not appear advisable to go to the labor of pre-
paring them in view of the fact that the present theory is probably of a tem-
porary nature. From the tables given here, the other functions for speci6c
values of the arguments can be computed in a reasonably short time.

Using the functions and quantities mentioned, the integrals can be eval-
uated and are listed below. Those which can be obtained by interchanging a
and b, n and P, and m and I in inte!, rais already Hsted are omitted. The inte-
grals given are for normalized wave function's. Corresponding integrals for
unnormalized functions can be obtained from those below by multiplying I
and Ji(b) by C,C~/X,¹,Xi(b) by C,'/P, ', J2 and Z'2 by C.'Cs'/X, 'Xs' and

A(n) by C.'C~/N. '¹.
i. 0;=P

(~g) m+n+1 &
& m+a) i 2 D me

((2m)!(2N)!)'" p 0 2k + 1



1 (2nR)'"
EI(b) = —+ [(2aR —2m)A2 I(2nR) —(, '~Sj,

(2m)!R
(4&)

2~), I
n(ng)2m 2n—1 2e p 5m+(»—I)/2 D

EI = %(b) —. Q (—nR)" Q —A, .~, I g„(2nE), (48)
e(2m)! „=() v! „() 2p + 1

(Of tIM SRIlle Wlt11 R'tOIIIIC (PIR11t1tleS Intel ChRBgeJ),

2n(ng) m+n, 5 (m+m —1) /9 D

((2m)!(2e)!)'" 1=0 2k +!.
n(ng)2m+2m+I m+n m+a Sr, s

QD,""D."" g(2. y t)Z, Z,
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j'=0 S=O
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It is to be noted that the expression for J2 for nA)(l involves an infinite
(convergent) summation. The term at which this is to be cut off depends of
course on the accuracy desired. The error involved in cutting off the expan-
sion at the term 7. = k is measured by the error in cutting off the expansion of
p'e (s")( )'))' in aseries of Legendre polynomials P(p) at the kth term From.

the theory of expansions in terms of orthogonal functions it follows that the
root mean square error over the interval ( —1, +1),which results in cutting oR
this series at the kth term is less than that for the corresponding situation
in an expansion in terms of any other polynomials, in particular in a power
series. Now in the expansion

v=0 7. !

it is known from elementary theory that the error in the function in the range

( —1, +1) on cutting oR at the 0th term is less than

R
(P —~)—

2

(k + 1)!

Consequently the magnitude of this can be taken as a rough measure of
the error in the approximate expansion above, and may be helpful in deter-
mining the number of terms to keep in the series.
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From Eqs. (46), (48) and (51) and the analogous equations in the second
group, bearing in mind the definitions of the various functions, one can see
tbat in most cases the following approximations may be made

I'ICp I'/R,
IJp(b) IJ,(b) .

(58)

(59)

IV. API-'LICATI oNS

It may be well to ay a few words on the technique of these calculations.
The most essential point is to be systematic. All the functions required should
be calculated for the values of the arguments needed before beginning the
lengthy summations that occur in some of the integrals. The summations
should be carried out in tabular form; and it is wise to carry along the calcula-
tions for the various values of the argument simultaneously. This helps to
avoid mistakes, Finally one should carry perhaps two or three more signi6-
cant figures through the work than are required in the Anal result, because of
the large number of subtractions of nearly equal quantities that occurs.

In the actual calculation again there are two different procedures depend-
ing on whether the problem is one of attraction or repulsion. In the first case
what one generally desires i" the equilibrium distance between the atomic
nuclei, the energy at this position, and often the fundamental vibration fre-
quency. Consequently one calculates the interaction energy for a riumber of
values of the distance until one finds three consecutive values (fairly close to-
gether) such that the energy for the middle one is less than that for the other
two. One can then assume that the energy as a function of the distance can
be represented by a parabola in this region and thus determine the minimum
energy and the corresponding distance Ro. If now the parabola is represented
in the form

F. = —,'k(R —Ep)'+ Ep)

one can determine'k and then get the fundamental frequency (in wave num-
bers) by the relation

where 3' is the reduced mass

and t, the velocity of light.
In the case of a repulsion problem, what is generally desired is a knowl-

edge of the energy as a function of the distance. One can therefore calculate
it for a number of values of the distance (choosing them so as to have the
arguments of the functions among the values found in the tables in order to
avoid interpolation) and make a plot. It i., advisable to plot log E against the
distance because of its rapid rate of change; it is generally found that this
will give a curve not differing greatly from a straight line.
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As illustration of the method we may consider two typical calculations:

1. Sodium molecule ('Z state)

Using Slater's rule it is found that for a sodium atom the outer electron
has a shielding constant of 8.8, and quantum number n = 3, so that

z
a = — ——= 1 ' 385 X 10 2

nao

Carrying out the calculation one Ands the following values for the en-

ergy (AA= W —Eo):
aE

4.00
4. 25
4.50

E(in A)
2.888
3.069
3.249

AE(in volts)
—0.831

837
.801

From these values one gets for the minimum energy ~Z = —0.84 elec-
tron-volts, at a distance of separation Ro ——3.01A. and a fundamental vibra-
tion frequency of 1.7X10' cm '. These compare favorably with the experi-
mental values —1.0+0.1 volts, 3.07A. , and 158 cm ', as given by Loomis. '
Incidentally, the present tendency is to consider Loomis' value for the energy
as too high, about 0.8 volts being thought correct. ' In particular Kinsey" finds
it to be 0.85+.02 volts. For comparison, itmightbe mentioned that the cal-
culated energy of the triplet has values for the distances given above of
+1.11, 0.78, and 0.68 volts.

At this point the question naturally arises as to what is the effect of the
inner shells, the interactions of which had been neglected, on the energy. To
give an accurate answer to this question would involve considerable calcula-
tion but we can set up a rough argument to indicate the order of magnitude
of the energy due to the inner shells. By the latter is meant the interaction
between the outer electron of each atom with the inner shell of the second,
for the interaction between the two inner shells must be exceedingly small.
The argument is based on the fact that the interaction between two atoms
having electrons with wave functions of the form r - 'e "" and r" 'e ~" gives
rise to an energy of the form I'e &"+&)~ where I is a polynomial in R which
changes relatively little compared to the change in the exponential for
changes in R or even in the kinds of atoms. Consequently, in calculating or-
ders of magnitude one may assume I constant. Now consider the interaction
between a neon atom and an argon atom. Although such atoms have not been
treated in the theory of this paper, for such a rough calculation one may as-
sume that the repulsion will be of the same form as in the cases that have
been considered. Slater's rule (which can be used here for the accuracy de-
sired, even if this is a repulsion problem) gives for neon Z —s = 5.85, m = 2 (so
that m=5.52A ') and for argon Z —s=11.25, n=3 (P=4.25A '), whence

8 Loomis, Phys. Rev ~ 29) 607 (1927) and 31, 323 (1928). See Birge, Int. Crit. Tab. V,
pp. 415, 418, New York (1929).

9 Ladenburg and Thiele, Zeits. f. Physik. Chem. 7, 161 (1930).
'0 Kinsey, Proc, Nat. Acad. Sci. 15, 37 (1929).
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jog—9.7VR

Now the kinetic theory radii for neon and argon are 1.1 and 1.3A respec-
tively. "Hence a neon and an argon atom approach to about 2.4A at ordin-
ary temperature; so that this distance corresponds to an energy of about 10 '
volts. For R=3A 'this gives, considering I' unchanged (it certainly cannot
change by more than a small factor),

~E ~ 10—' volts.

Now for the interaction between the outer shell of each of two sodium
atoms with the inner shell of the other for the same value of R, the energy will
be different because of the different values for n and P, because the number of
electrons is less (we can make a rough allowance for this by dividing the re-
sults obtained by 4) and because I' is dilferent. Neglecting the change in P
which cannot be very large since the atoms are not very different in kind from
the preceding, we need only to consider the change in the exponential factor.
For the inner shell, Slater's rule gives u =6.47A ", for the outer, P = 1.39A '.
Hence the exponential in this case is e ' "~ instead o$ e ' '~ as above. Taking
this into account and also the decreased number of electrons

dE ~10—' volts
which is negligible.

Admittedly this is a very rough calculation but it should serve to give the
right order of magnitude. If for some reason the energy is somewhat larger
than this estimate, no harm is done for it tends to balance the effect of polari-
zation of the outer shells which has not been considered.

2. Helium atoms.

If each electron of a hehum atom A has a wave function u(a), then the
charge at any point is given by 2u'(a). If now one uses Hartree's charge dis-
tribution for helium in the range 0.5A to 2A and one assumes a simple ex-
ponential form for the wave function one finds as a good approximation

3 20'—1.48r/ao

where r is measured in A. However, this wave function is not normalized;
it is too low in the inner part of the atom. This can be compensated by imag-
ining additional electron charge concentrated at the center of the atom. The
exact position of the charge is not important for its effect on the result is
small. The simplest way of proceeding at this point is to use the expressions
for the integrals given in III modified by a appropriate factors C,/N. etc. ,

as indicated there, with the exception that the terms 1/R are not to be
changed. It can be verified that this implies neglecting a small part of the in-
teraction between the inner portion of the wave function of one atom and the
outer part of the other with respect to the integral E2, and also it neglects the
contribution of this inner part to the J& and J& integrals. But these are quite
small and tend to balance each other.

~' Rankin's, Phys. Zeits. 11, '?45 (1910);Phil, Mag. 29, 554 (1915).



Carrying out the calculation according to the theory of III, 3, one obtains
the following vR1Ucs fo1 thc lntcIRct1on cncI"gy:

1,430
1.787
2. 144
2.859
3.574

AE(in ergs)

6.38 X 10-'3
1.55&10 "
3.43&10 "
1.37 X10-»
4.68+10 '7

Slater's value

1.08)&10 "
2.09)&10 "
4.06X10 '4

1.5 X10-»
5.8 &10 '~

In thc 1Rst colUIIln R1C 1ncludcd for coDlpR1"1son thc vRlUcs CRlculRtcd by
Slater's formula"

It can be seen that the order of magnitude of the two sets of results is the
same and they are nearly equal in the region of 3A. It is difEicult deciding
which is the more correct. "

The writer wishes to express his indebtedness to Professor J.C. Slater and
to Professor R. M. Langer for their ever helpful advice and criticism.

"Slater, Phys. Rev. 32, 349 I'1928).
» Cf. Gentile, Zeits f. Phys. , 63, 795 ($930).


